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Exercise 4

Task 1
Consider the structure (N,+, ·, s, 0). Use Gödel’s β-function in order to formalize the fol-
lowing statements in predicate logic:

(a) xy = z (use free variables x, y and z),

(b) Fermat’s Last Theorem,

(c) Collatz conjecture.

Solution:
We give the main ideas:

(a) We express xy = z as: There is a sequence (a1, . . . , ay, ay+1) with a1 = 1, ai+1 = ai · x
for 1 ≤ i ≤ y and ay+1 = z. This holds if there are t, p ∈ N with β(t, p, 1) = 1,
β(t, p, i+ 1) = β(t, p, i) · x for every 1 ≤ i ≤ y and β(t, p, y + 1) = z.

(b) Fermat’s Last Theorem states the following: For all natural numbers a, b, c ≥ 1 and
n ≥ 3 we have an + bn 6= cn. We already know how to formalize xy = z. From Exercise
2, Task 2, we know how to formalize the numbers 1 and 2 and the relations ≥ and >
in (N,+, ·, s, 0). We can thus formalize: If a, b, c ≥ 1 and n > 2 and an = a′, bn = b′

and cn = c′, then a′ + b′ 6= c′.

(c) Let f : N → N be defined as f(2n) = n and f(2n + 1) = 3(2n + 1) + 1. Let Cn be
the sequence (n, f(n), f(f(n)), . . . ). We write Cn[i] for the ith element of the sequence.
The Collatz conjecture is the following question: Is there for every n an integer j, such
that Cn[j] = 1? The function f can be formalized by distinguishing between odd and
even numbers and by defining the numbers 2 and 3 (Exercise 2, Task 2). Using the
β-function, we can formalize the Collatz conjecture as follows: For every n ∈ N there
are t, p ∈ N, such that β(t, p, 1) = n, β(t, p, i + 1) = f(β(t, p, i)) and there is j ∈ N
such that β(t, p, j) = 1.
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Task 2
Show that the set of valid formulas of predicate logic is undecidable. Use a reduction to

the Post correspondence problem for the proof.

Post correspondence problem (PCP)
Input: A sequence of pairs (s1, t1), . . . , (sk, tk), such that k ≥ 0, si, ti ∈ {0, 1}∗ (1 ≤ i ≤ k).
Question: Are there indices i1, . . . , im ∈ {1, . . . , k} (m ≥ 1) such that si1 · · · sim = ti1 · · · tim?

Hint: Let e be a 0-ary function symbol, f0 and f1 be unary function symbols and P denote
a binary predicate symbol. Let z = c1 . . . c` ∈ {0, 1}` (` ≥ 0) be a string and let t be a
term. We define fz(t) as fc`(. . . (fc1(t)) . . . ). Let

φ1 =
k∧

i=1

P (fsi(e), fti(e)),

φ2 = ∀v∀w(P (v, w)→
k∧

i=1

P (fsi(v), fti(w))),

φ3 = ∃z(P (z, z))

and let φ = φ1 ∧ φ2 → φ3. Show that φ is valid if and only if the corresponding instance
(s1, t1), . . . , (sk, tk) of the post correspondence problem has a solution.

Solution:
We have to show two directions. In order to prove the first direction, we assume that φ is
valid. The main idea is to define a structure A in such a way that it yields the existance
of a solution to the corresponding instance (s1, t1), . . . , (sk, tk) of the post correspondence
problem. We define UA = {0, 1}∗, eA = ε, fA0 (s) = s0, fA1 (s) = s1 and

PA = {(s, t) | ∃(i1, . . . , im) ∈ Nm : s = si1 . . . sim ∧ t = ti1 . . . tim}.

That is, eA is the empty string ε and fA0 , fA1 (and also fAw for w ∈ {0, 1}∗) concatenate
strings (for example, fAv (u) = uv). If (s, t) ∈ {0, 1}∗ × {0, 1}∗ satisfies (s, t) ∈ PA, then
s = si1 . . . sim and t = ti1 . . . tim for some indices i1, . . . , im ∈ N. As φ is valid, we have
A |= φ. If A |= φ1 ∧ φ2, then it follows that A |= φ3, that is, there is a solution to the
instance (s1, t1), . . . , (sk, tk) of the post correspondence problem: IfA |= φ3 then there exists
z ∈ {0, 1}∗, such that there are indices i1, . . . , im ∈ N with z = si1 . . . sim = ti1 . . . tim . We
have A |= φ1, as fAsi (e

A) = si, f
A
ti

(eA) = ti and (si, ti) ∈ PA for every 1 ≤ i ≤ k. It remains
to show that A |= φ2: Let s, t ∈ {0, 1}∗ with (s, t) ∈ PA. Then there is a sequence of indices
(i1, . . . , im) with s = si1 . . . sim and t = ti1 . . . tim . Let 1 ≤ j ≤ k. We have to show that
(fAsj (s), f

A
tj

(t)) ∈ PA. This holds as there are indices (i1, . . . , im, j) with fAsj (s) = si1 . . . simsj
and fAtj (t) = ti1 . . . timtj.
In order to prove the other direction, we have to show that if the instance (s1, t1), . . . , (sk, tk)
of the post correspondence problem has a solution, then φ is valid. Let (i1, . . . , im) be the
solution to the instance (s1, t1), . . . , (sk, tk) of the post correspondence problem. If A 6|= φ1
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or A 6|= φ2, then A |= φ trivially holds. It remains to consider the case that A |= φ1 and
A |= φ2: we then have to show thatA |= φ3 holds as well. Define ψ : {0, 1}∗ → UA by ψ(ε) =
eA, ψ(s0) = fA0 (ψ(s)) and ψ(s1) = fA1 (ψ(s)). As A |= φ1, we find that (ψ(si), ψ(ti)) ∈ PA
for every 1 ≤ i ≤ k. In particular, we have (ψ(si1), ψ(ti1)) ∈ PA. We show inductively, that
(ψ(si1 . . . sim), ψ(ti1 . . . tim)) ∈ PA holds as well:
Let (ψ(si1 . . . si`), ψ(ti1 . . . ti`)) ∈ PA for 1 ≤ ` < m. AsA |= φ1, we have (ψ(si`+1

), ψ(ti`+1
)) ∈

PA. By definition of ψ, we find that for all v, w ∈ {0, 1}∗, it holds that ψ(vw) = fAw (ψ(v)). In
particular, we find ψ(si1 . . . si`+1

) = fAsi`+1
(ψ(si1 . . . si`)) and ψ(ti1 . . . ti`+1

) = fAti`+1
(ψ(ti1 . . . ti`)).

As A |= φ2 we find that (ψ(si1 . . . si`+1), ψ(ti1 . . . ti`+1
)) ∈ PA: this concludes the induction.

As (ψ(si1 . . . sim), ψ(ti1 . . . tim)) ∈ PA and as si1 . . . sim = ti1 . . . tim , as (i1, . . . , im) is a
solution to the instance of the post correspondence problem, we find that A |= φ3 and
hence A |= φ.
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