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Exercise 4

Task 1
Consider the structure (N, +, -, s,0). Use Godel’s -function in order to formalize the fol-
lowing statements in predicate logic:

(a)
(b)
(c)

x¥ = z (use free variables z, y and z2),
Fermat’s Last Theorem,

Collatz conjecture.

Solution:
We give the main ideas:

(a)

(b)

We express ¥ = z as: There is a sequence (ay,...,ay,ay+1) with a1 =1, @41 = a; -
for 1 < ¢ < y and ay41 = z. This holds if there are t,p € N with 5(¢,p,1) = 1,
B(t,p,i+1)=pB(t,p,i)-x forevery 1 <i <y and (t,p,y +1) = z.

Fermat’s Last Theorem states the following: For all natural numbers a,b,¢ > 1 and
n > 3 we have a” + b" # ¢". We already know how to formalize ¥ = z. From Exercise
2, Task 2, we know how to formalize the numbers 1 and 2 and the relations > and >
in (N, +,-,5,0). We can thus formalize: If a,b,c > 1 and n > 2 and a" = d, b" =V
and ¢ = ¢, then a’ + b # (.

Let f: N — N be defined as f(2n) = n and f(2n+ 1) = 3(2n + 1) + 1. Let C,, be
the sequence (n, f(n), f(f(n)),...). We write C,,[i] for the ith element of the sequence.
The Collatz conjecture is the following question: Is there for every n an integer 7, such
that C,[j] = 17 The function f can be formalized by distinguishing between odd and
even numbers and by defining the numbers 2 and 3 (Exercise 2, Task 2). Using the
[B-function, we can formalize the Collatz conjecture as follows: For every n € N there
are t,p € N, such that B(t,p,1) = n, p(t,p,i +1) = f(5(t,p,7)) and there is j € N
such that 5(t,p,j) = 1.



Task 2
Show that the set of valid formulas of predicate logic is undecidable. Use a reduction to
the Post correspondence problem for the proof.

Post correspondence problem (PCP)
Input: A sequence of pairs (s1,t1),. .., (Sk, tx), such that & > 0,s;,¢; € {0 1} (1<q § k:)
i

Question: Are there indices iy, ... 4, € {1,...,k} (m > 1) such that s;, ---s; =1t;

Hint: Let e be a 0-ary function symbol, fy and f; be unary function symbols and P denote
a binary predicate symbol. Let 2z = ¢;...¢, € {0,1}* (¢ > 0) be a string and let ¢ be a
term. We define f.(t) as f., (... (fe (¢))...). Let

/\P fe(e), fi(e)),

Gy = VUVUJ(P(U,U)) — /\P(fSi<U>7ft¢(w>>>7
¢3 = 3z(P(z, 2))

and let ¢ = @1 A\ ¢ — ¢3. Show that ¢ is valid if and only if the corresponding instance
(s1,t1), ..., (sk, tx) of the post correspondence problem has a solution.

Solution:

We have to show two directions. In order to prove the first direction, we assume that ¢ is
valid. The main idea is to define a structure A in such a way that it yields the existance
of a solution to the corresponding instance (s1,t1),. .., (S, tx) of the post correspondence
problem. We define Uy = {0, 1}*, e = ¢, fi'(s) = 50, fi*(s) = sl and

PA={(s,t) | ir,...,im) EN™ 15 =8; ...5, Nt=t; ...t; }.

That is, e is the empty string e and f5*, f{* (and also f; for w € {0,1}*) concatenate
strings (for example, f(u) = wv). If (s,t) € {0,1}* x {0,1}* satisfies (s,t) € P*, then
S = 8 ...8, and t = t; ...t; for some indices iy,... %, € N. As ¢ is valid, we have
AE ¢. It A ¢1 A ¢o, then it follows that A = ¢3, that is, there is a solution to the
instance (sq,t1), ..., (S, tx) of the post correspondence problem: If A = ¢5 then there exists
z € {0,1}*, such that there are indices iy,...,%, € Nwith z =s; ...s;,, =1t;, ...t . We
have A |= ¢4, as f(ed) = s;, fA(e?) =1, and (s4,t;) € P4 for every 1 < i < k. It remains
to show that A |= ¢y: Let s,¢ € {0, 1}* with (s,t) € PA. Then there is a sequence of indices
(i1, 0pm) with s = 55, ...s;, and t = ¢;,...¢;, . Let 1 < j < k. We have to show that
(fg;‘(s), fg]“(t)) € PA. This holds as there are indices (i1, . . . i, j) With f;j(s) = Si, ... 5,5
and f{;‘(t) =t ... Lt

In order to prove the other direction, we have to show that if the instance (s1,t1), ..., (sk, tg)
of the post correspondence problem has a solution, then ¢ is valid. Let (i1, ..., ;) be the
solution to the instance (s1,t1), ..., (Sk, tx) of the post correspondence problem. If A (= ¢,
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or A £ ¢9, then A |= ¢ trivially holds. It remains to consider the case that A | ¢; and

A |= ¢o: we then have to show that A |= ¢3 holds as well. Define ¢: {0, 1}* — U4 by ¢(e) =
e, ¥(s0) = fi(1(s)) and ¥(s1) = f{(1(s)). As A f= ¢y, we find that ((s;), ¥(t:)) € P
for every 1 < i < k. In particular, we have (1(s;,), ¥ (t;,)) € P*. We show inductively, that
(V(s4, ... 83, ), U(ts, ... 1;,,)) € P2 holds as well:

Let (¢(si ... 54,),0(ti, ... t;,)) € PAfor1 <€ < m.As A = ¢1, we have (¢(s;,,, ), ¥(t,,,)) €
PA. By definition of ¢, we find that for all v, w € {0, 1}*, it holds that ¥(vw) = fA(¢)(v)). In
particular, we find ¥ (s;, ... s;,,,) = f;‘;z+1 (V(siy - .- 55,)) and P(ty, ... ty,,,) = f{iﬂ ((tiy .- ti,))-
As A |= ¢o we find that (¢(s;, ... Si,11),¥(t, ... ti,,,)) € PA: this concludes the induction.

As (W(siy..-8i,), (L, .. t;,)) € PAand as s;, ...8;, = tiy...ti, as (ir,...,0y,) is a
solution to the instance of the post correspondence problem, we find that A = ¢3 and

hence A |= ¢.



