Exercise 6

Task 1

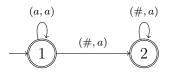
Which of the following statements are correct? Give reasons for your answer.

- (a) (\mathbb{N}, \leq) is automatically presentable.
- (b) Let $M \subseteq \mathbb{N}$ (unary relation), then (\mathbb{N}, M) is automatically presentable.
- (c) If (\mathbb{N}, R_1) and (\mathbb{N}, R_2) are automatically presentable, then (\mathbb{N}, R_1, R_2) is automatically presentable.

Solution:

(a) This statement is correct: Let $f: \mathbb{N} \to \{a\}^*$ be defined by $f(i) = a^i$. Let $(\{a\}^*, \leq_a)$ with $a^i \leq_a a^j$ if and only if $i \leq j$. Then (\mathbb{N}, \leq) and $(\{a\}^*, \leq_a)$ are isomorphic and f is the corresponding isomorphism, as $i \leq j$ if and only if $f(i) = a^i \leq a^j = f(j)$. Furthermore, f is bijective. Moreover, $(\{a\}^*, \leq_a)$ is automatic, as

is a finite automaton for $\{a\}^*$ and



is a 2-tape automaton for \leq_a .

(b) This statement is correct: If M or N \ M is finite, then let ({a}*, P) with P = {aⁱ | i ∈ M} and f(i) = aⁱ. We find that ({a}*, P) and (N, M) are isomorphic and f is the corresponding isomorphism. The automaton that accepts {a}* is shown in part (a). If M is finite, then P is finite and thus accepted by a finite automaton as finite languages are always regular (recall that P is a unary relation and a 1-tape automaton is a "standard" finite automaton).

If $\mathbb{N} \setminus M$ is finite, then the complement of P is finite and hence regular. As regular languages are closed under taking the complement, we find that P is regular and thus there is a finite automaton which accepts P. Thus, $(\{a\}^*, P)$ is automatic in this case.

If both M and $\mathbb{N} \setminus M$ are infinite, then let $M = \{a_0, a_1, a_2, ...\}$ and let $\mathbb{N} \setminus M = \{b_1, b_2, ...\}$ (note that both M and $\mathbb{N} \setminus M$ are countable as subsets of \mathbb{N}). We define $(\{a\}^* \cup \{b\}^*, P)$ by $P = \{a\}^*$ and $f \colon \mathbb{N} \to \{a\}^* \cup \{b\}^*$ by

$$f(i) = \begin{cases} a^j & \text{if } i \in M, a_j = i, \\ b^j & \text{if } i \notin M, b_j = i. \end{cases}$$

Then f is an isomorphism, as f is bijective and $f(i) \in P$ holds if and only if $i \in M$. Furthermore, we find that $(\{a\}^* \cup \{b\}^*, P)$ is automatic, as

is an automaton for $\{a\}^* \cup \{b\}^*$ and $P = \{a\}^*$ is accepted by the finite automaton in part (a).

(c) The statement is not correct: By parts (a) and (b), we know that (\mathbb{N}, \leq) and (\mathbb{N}, M) are automatically presentable, where $M \subset \mathbb{N}$ is a unary relation. However, we show that (\mathbb{N}, \leq, M) is not necessarily automatically presentable: We can define every natural number $n \in \mathbb{N}$ using \leq (and =): Let a and b be free variables. Define a < b by $a \leq b \land \neg(a = b)$. We define the following formulas:

$$s(a,b) = \neg \exists z (a < z \land z < b),$$

$$0(a) = \neg \exists z \ z < a.$$

The formula s(a, b) states that there is no natural number which is greater than a and smaller than b (that is, b is the immediate successor of a). The formula 0(a) defines the natural number 0, as there is no natural number, which is smaller than 0. Furthermore, we define $s^0(a) = 0(a)$ and for every $i \in \mathbb{N}$ let

$$s^{i+1}(a) = \exists x_i(s^i(x_i) \land s(x_i, a)).$$

Then $s^n(a)$ states that the free variable a is the natural number n. Let M be an undecidable subset of \mathbb{N} . If the structure (\mathbb{N}, \leq, M) were automatically presentable, then $\operatorname{Th}(\mathbb{N}, \leq, M)$ would be decidable by the Theorem of Khoussainov/Nerode. Then we could check if $n \in M$, by checking if $\forall x(s^n(x) \to M(x)) \in \operatorname{Th}(\mathbb{N}, \leq, M)$. As M is undecidable, we obtain a contradiction. Thus, (\mathbb{N}, \leq, M) cannot be automatically presentable.

Task 2

Are any two countable linear orders without a smallest and a largest element isomorphic?

Solution:

We find that (\mathbb{Z}, \leq) and (\mathbb{Q}, \leq) are countable linear orders without a smallest and a largest element, but they are not isomorphic: For example, we find that (\mathbb{Q}, \leq) is dense, but (\mathbb{Z}, \leq) is not dense. In order to show a contradiction, assume that there is a bijection $h : \mathbb{Z} \to \mathbb{Q}$, such that

$$a \le b \iff h(a) \le h(b)$$

holds for all $a, b \in \mathbb{Z}$. Fix two elements $a, b \in \mathbb{Z}$ such that a + 1 = b. As \mathbb{Q} is dense, there is an element $q \in \mathbb{Q}$, such that h(a) < q < h(b). As h is a bijection, we have q = h(c) for an element $c \in \mathbb{Z}$. However, we either have c < a or b < c, as a + 1 = b. This yields a contradiction.