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Exercise 7

Task 1
Check whether (N,≤) |= ∃x∀y(x ≤ y) holds by applying the technique from the proof of
the Theorem of Khoussainov and Nerode.

Solution:
In the solution of exercise sheet 6, task 1, we showed that (N,≤) is isomorphic to the
following automatic structure: ({a}∗,≤a), where ai ≤a a

j if and only if i ≤ j. In particular,
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is a 2-tape automaton for ≤a.

As a first step, we transform the formula ∃x∀y(x ≤a y) into an equivalent formula which
does not contain a ∀-quantifier: A ∀-quantifier can be expressed using a negation of an
∃-quantifier. We find

∃x∀y(x ≤a y) ≡ ∃x¬∃y¬(x ≤a y).

Now let F = ∃x¬∃y¬(x ≤a y). We start with the (atomic) subformula F1 = x ≤a y, which
is treated in case 1 (slide 75) in the proof of the Theorem of Khoussainov und Nerode.
This means that we construct a synchronous 2-tape automaton BF1 , such that

K(BF1) = {(w1, w2) ∈ {a}∗ × {a}∗ | w1 ≤a w2}.

In this concrete example, we can take the 2-tape automaton from above, which accepts
precisely this relation. Note that all variables of F are free variables in F1, and we assume
that they are ordered according to their occurrence in F1 – thus, the homomorphism from
case 1 on slide 75 is the identity mapping.

Next, we consider the subformula F2 = ¬F1 = ¬(x ≤a y): This corresponds to case 3 (slide
77) from the proof of the Theorem of Khoussainov and Nerode. We thus need a 2-tape
automaton BF2 , such that

L(BF2) = {w1 ⊗ w2 | w1, w2 ∈ {a}∗} \ L(BF1),

respectively,
K(BF2) = {(an, am) | n > m}.

The following automaton satisfies this property:
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Next, we consider the subformula F3 = ∃yF2 = ∃y¬(x ≤a y). This corresponds to case 5
(slide 78). Let f be the homomorphism defined by f(w1 ⊗ w2) = w1 (slide 78). We are
looking for an automaton BF3 , such that

L(BF3) = f(L(BF2)).

This means that we simply ignore the second component:
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This non-deterministic automaton accepts the same language as the following deterministic
automaton:
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Next, we consider the subformula F4 = ¬F3 = ¬∃y¬(x ≤a y), which again corresponds to
case 3 (slide 77). It is easy to see that the complement of L(BF3) only contains the empty
word ε. Hence, BF4 is the following automaton (which is obtained by switching accept and
non-accept states in the above deterministic automaton):
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The formula F is of the form F = ∃xF4 (as on slide 80). We have ({a}∗,≤a) |= F if and
only if L(BF4) 6= ∅. As L(BF4) = {ε}, we find that F ∈ Th(N,≤).
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Task 2
Show that Th(C,+, ·) is decidable.

Solution:
By Tarski’s Theorem, we know that Th(R,+, ·) is decidable: Let F be a formula, such that
(C,+, ·) is suitable for F . We transform F into a formula F ′, such that (R,+, ·) is suitable
for F ′ and such that F ∈ Th(C,+, ·) if and only if F ′ ∈ Th(R,+, ·).
The main idea is that each complex number is uniquely representable by two real numbers,
its real part and its imaginary part. Thus, we replace each variable x in F by two new
variables x1, x2 in F ′, such that x1 represents the real part of x and x2 represents the
imaginary part of x. Furthermore, we transform subformulas of the form ∃xG into ∃x1∃x2G
and subformulas of the form ∀xG into ∀x1∀x2G. It remains to transform x + y = z into

(x1 + y1 = z1) ∧ (x2 + y2 = z2)

and x · y = z into
(x1y1 − x2y2 = z1) ∧ (x2y1 + x1y2 = z2).

(as Th((C,+, ·)rel) is decidable if and only if Th(C,+, ·) is decidable).
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