Übungsblatt 7

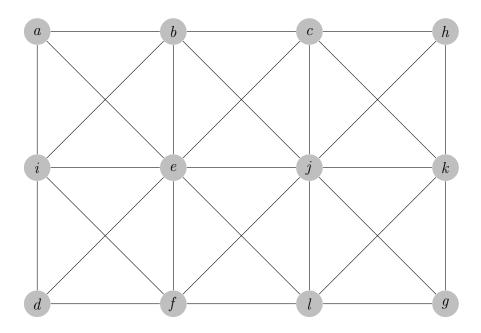
Aufgabe 1 Beweisen Sie die folgenden Aussagen:

- 1. $\chi(K_n) = n$
- 2. $\chi(K_{m,n}) = 2$
- 3. $\chi(P_n) = 2$
- 4. Falls n gerade: $\chi(C_n) = 2$, falls n ungerade: $\chi(C_n) = 3$

Lösung

- 1. Es gilt $\Delta(K_n) = n 1$, woraus $\chi(K_n) \leq n$ folgt. Wenn wir annehmen, dass $\chi(K_n) < n$ ist, dann müssen zwei Knoten dieselbe Farbe haben. Dies ist aber nicht zulässig, da alle Knoten miteinander verbunden sind.
- 2. Für alle Graphen G = (V, E) mit $E \neq \emptyset$ gilt $\chi(G) \geq 2$, also auch $\chi(K_{m,n}) \geq 2$. $K_{m,n}$ lässt sich färben, indem jede der zwei Partitionen eine Farbe erhält.
- 3. Es gilt wieder $\chi(P_n) \geq 2$. Der Graph lässt sich färben, indem die Farben abwechselnd vergeben werden.
- 4. Erneut gilt $\chi(C_n) \geq 2$. Für gerade n lässt sich der Graph färben, indem die Farben abwechselnd vergeben werden. Wir erhalten aus $\Delta(C_n) = 2$, dass $\chi(C_n) \leq 3$. Für ungerade n gilt $\chi(C_n) = 3$, denn: Sei $C_n = [v_1, \ldots, v_n, v_1]$. Dann müssen wir abwechselnd Farben bis v_n vergeben, aber v_n und v_1 haben nun dieselbe Farbe.

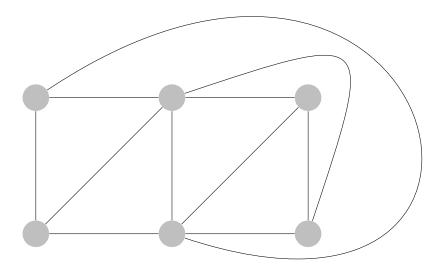
Aufgabe 2 Sei $G_{n,m}$ der Graph bestehend aus $n \cdot m$ Quadraten, wobei jeweils n Quadrate untereinander und m Quadrate nebeneinander liegen. Zusätzlich sind die beiden diagonal gegenüber liegenden Punkte in einem Quadrat miteinander verbunden. Z.B ist $G_{3,2}$ =



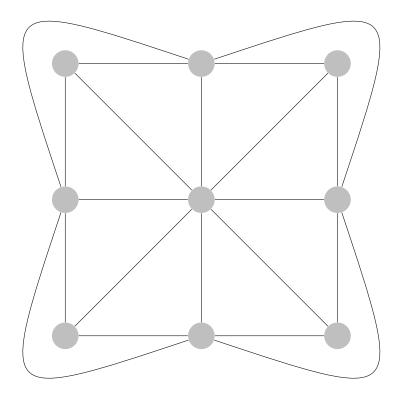
Bestimmen Sie, welche der $G_{n,m}$ planar sind. Tipp: Untersuchen Sie zunächst $G_{1,n}$ für alle $n \in \mathbb{N}$, anschließend $G_{2,2}$ und schließlich alle anderen $G_{n,m}$.

Lösung

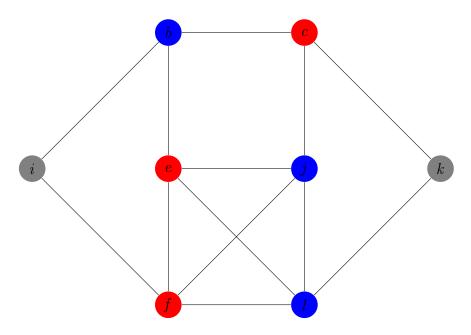
Alle $G_{1,n}$ bzw. $G_{m,1}$ lassen sich planar zeichnen, z.B. $G_{2,1}$:



 ${\cal G}_{2,2}$ lässt sich planar zeichnen:

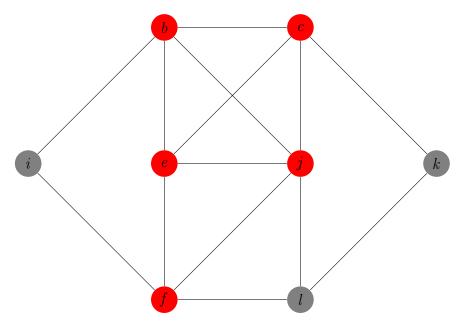


Der abgebildete Graph, $G_{3,2}$, ist hingegen nicht planar, da er eine Unterteilung des $K_{3,3}$ enthält. Wir bilden zunächst den Teilgraph $G_{3,2} \setminus \{a,h,d,g\}$. Danach entfernen wir die Kanten $\{i,e\},\{k,j\},\{b,j\}$ und $\{e,c\}$ und erhalten:



Dies ist eine Unterteilung des $K_{3,3}$, den man durch Entfernen von i und k und Einfügen der Kanten $\{b,f\}$ und $\{c,l\}$ erhält. $\{b,j,l\}$ und $\{c,e,f\}$ sind hierbei die beiden Partitionen.

Alternativ kann auch eine Unterteilung des K_5 angegeben werden:

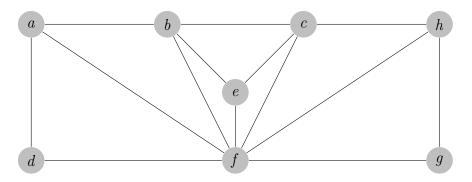


 $\bf Aufgabe~3~$ Sei Gein Baum mit 6 Knoten. Wie viele Blätter kann G enthalten?

Lösung

G enthält mindestens 2 Blätter (wenn $G=P_6$) und höchstens 5 Blätter (wenn $G=K_{1,5}$).

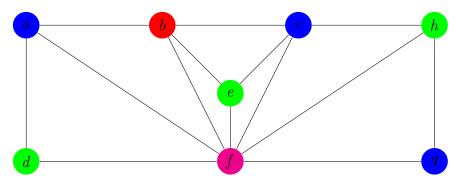
Aufgabe 4 Gegeben sei folgender Graph G:



Bestimmen Sie $\chi(G)$ und geben Sie eine 4-Färbung an.

Lösung

 $\chi(G)$ ist höchstens 4, da G endlich und planar ist. G[b,c,e,f] ist isomorph zu K_4 , also ist $\chi(G) \geq 4$. Insgesamt ist $\chi(G) = 4$. Mögliche Färbung:



Aufgabe 5 Beweisen Sie: Für einen Graphen mit m Kanten gilt

$$\chi(G) \le \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$$

Hinweis: Nehmen Sie an, ihr Graph hat $\chi(G)$ Farbklassen. Was können Sie dann für die Anzahl der Kanten zwischen den Farbklassen folgern?

Lösung

Zwischen zwei Farbklassen muss es mindestens eine Kante geben, also $m \ge \sum_{i=1}^{\chi(G)-1} i = \frac{\chi(G)(\chi(G)-1)}{2}$. Durch Umstellen erhalten wir:

$$\chi(G) (\chi(G) - 1) \le 2m$$

$$\Leftrightarrow \chi(G)^2 - \chi(G) \le 2m$$

$$\Leftrightarrow \chi(G)^2 - \chi(G) + \frac{1}{4} \le 2m + \frac{1}{4}$$

$$\Leftrightarrow \left(\chi(G) - \frac{1}{2}\right)^2 \le 2m + \frac{1}{4}$$

$$\Rightarrow \chi(G) - \frac{1}{2} \le \sqrt{2m + \frac{1}{4}}$$

$$\Leftrightarrow \chi(G) \le \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$$

Aufgabe 6 Wie viele Kreise der Länge r enthält der vollständige Graph K_n ?

Lösung

Idee: Es kommt nur darauf an, wie viele Möglichkeiten es gibt, r Knoten auszuwählen, da alle Knoten miteinander verbunden sind. Hierbei ist die Reihenfolge egal, da wir alle Kreise mit derselben Knotenmenge identifizieren. Wir erhalten also $\binom{n}{r}$ verschiedene echte Kreise der Länge r, falls $r \leq n$, ansonsten 0.

Aufgabe 7 Beweisen Sie: Ist G = (V, E) ein Baum mit $|V| \ge 2$, so hat jeder Knoten v den Grad $d_G(v) \ge 1$ und für die Summe aller Knotengrade gilt $\sum_{v \in V} d_G(v) = 2(|V| - 1)$. Gilt auch die Rückrichtung dieser Aussage?

Lösung

Da ein Baum zusammenhängend ist, gilt $d_G(v) \ge 1$ wegen $|V| \ge 2$. Induktion über |V|:

$$|V| = 2$$
: $\sum_{v \in V} d_G(v) = 2 = 2(|V| - 1)$

 $|V| \to |V| + 1$: Sei G' = (V', E') mit $V = V' \uplus \{x\}$ und $E' \subseteq E$. Wir müssen zeigen, dass es genau ein $x' \in V'$ gibt mit $\{x, x'\} \in E$. Wäre E = E', so wäre G nicht zusammenhängend. Gäbe es zwei neue Kanten $E = E' \uplus \{\{x', x\}, \{x'', x\}\}$, so wäre G kein Baum, da es einen Pfad von $[x', \ldots, x'']$ in G' gibt, da G' zusammenhängend ist, und wir einen Kreis $[x, x', \ldots, x'', x]$ erhalten. Insgesamt gilt also

$$\sum_{v \in V} d_G(v) = 2 + \sum_{v \in V'} d'_G(v) = 2(|V'| - 1) = 2 + 2(|V| - 1 - 1) = 2(|V| - 1)$$

Die Rückrichtung der Aussage gilt nicht, denn die Gleichung gilt z.B. auch für den Graph, der aus einem Dreieck und einem einzelnen Knoten besteht: Sei $C_3 = (V, E)$. Dann ist G = (V', E) mit $V' = V \cup \{4\}$ ein Graph mit 2(|V'|-1) = 2(4-1) = 6 und $\sum_{v \in V'} d_G(v) = 6$.