Übungsblatt 8

Aufgabe 1 Beweisen Sie:

Sei G = (V, E) ein zusammenhängender Graph und sei jeder Knoten $v \in V$ vom Grad höchstens 2 ($\forall v \in V : d_G(v) \leq 2$). Dann ist G entweder ein einzelner Knoten, der P_n oder der C_n .

Hinweis: Versuchen Sie vollständige Induktion über die Anzahl der Kanten.

Aufgabe 2 Gegeben folgender Graph und das Matching $M = \{\{h, f\}, \{c, e\}, \{a, d\}\}:$



- (a) Ist M maximal/perfekt?
- (b) Finden Sie einen erweiternden Weg, der die Kanten $\{h, f\}$ und $\{c, e\}$ enthält?
- (c) Geben Sie ggf. das aus dem resultierenden Weg entstehende Matching an. Ist dieses Matching maximal/perfekt?

Aufgabe 3 Bestimmen Sie die Anzahl der perfekten Matchings im bipartiten Graphen $K_{n,n}$ und im vollständigen Graphen K_{2n} .

Aufgabe 4 Zeichnen Sie den Graph
$$G = (V, E)$$
 mit $V = \{1, 2, 3, 4, 5\}, E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}\}.$

- (a) Enthält G einen Eulerweg / Eulerkreis?
- (b) Sei $G' = (V \cup \{6\}, E \cup \{\{1, 6\}, \{2, 6\}\})$. Enthält G' einen Eulerweg / Eulerkreis?

(c) Sei $G'' = (V \cup \{6,7\}, E \cup \{\{1,6\}, \{2,6\}, \{3,7\}, \{4,7\}\})$. Enthält G'' einen Eulerweg / Eulerkreis?

Aufgabe 5 Bestimmen Sie ein Kriterium, so dass ein Graph G = (V, E) einen Eulerweg, aber keinen Eulerkreis hat.

Aufgabe 6 Beweisen oder widerlegen Sie: In jedem Graph G=(V,E) mit Eulerkreis gibt es eine Menge von echten Kreisen, so dass jede Kante $e \in E$ in genau einem dieser Kreise liegt.

Aufgabe 7 Sei G ein Graph mit n Knoten.

- (a) Was ist die kleinste Anzahl an Kanten m, die man braucht, so dass G zusammenhängend ist?
- (b) Wie viele Kanten muss G mindestens haben, so dass G in jedem Fall zusammenhängend ist?