Übungsblatt 11

Aufgabe 1 Sei (G, \circ) eine Gruppe und U eine Untergruppe von G. Zeigen Sie, dass U genau dann ein Normalteiler ist, wenn für alle $a \in G$ die Gleichung $a \circ U = U \circ a$ gilt, also wenn Links- und Rechtsnebenklassen von U übereinstimmen.

Aufgabe 2 Zeigen Sie, dass für alle $n \in \mathbb{N}$ die Gruppe $(\mathbb{Z}, +)/n\mathbb{Z}$ isomorph ist zu $(\mathbb{Z}_n, +_n)$.

Aufgabe 3 Beweisen Sie, dass für jeden Homomorphismus zwischen zwei endlichen Gruppen $\varphi: G_1 \to G_2$ gilt: $|G_1| = |\ker(\varphi)| \cdot |\operatorname{im}(\varphi)|$.

Aufgabe 4 Gegeben sei die Gruppe $G = (\mathbb{Z}, +)$, deren Untergruppe $U = 4\mathbb{Z}$ und die Abbildung $\varphi : G/U \to (\mathbb{Z}_2, +_2)$ mit $\varphi(a + 4\mathbb{Z}) = a \mod 2$ für $a \in \mathbb{Z}$. Zeigen Sie, dass $\varphi...$

- 1. ... eine Funktion ist.
- 2. ... ein Homomorphismus ist.
- 3. ... kein Isomorphismus ist.

Aufgabe 5 Zeigen Sie, dass jede Untergruppe einer unendlichen zyklischen Gruppe selbst zyklisch ist.

Aufgabe 6 Es seien K und L zwei Untergruppen einer endlichen Gruppe (G, \circ) . Beweisen oder widerlegen Sie:

- 1. $|K| \cdot |L| = |K \cap L| \cdot |KL|$.
- 2. KL ist genau dann eine Untergruppe von G, falls KL = LK.