Diskrete Mathematik für Informatiker

WS 2016/2017

Übung 5

- 1. a) Lösen Sie die folgende Gleichung mit Hilfe des binomischen Lehrsatzes: $x^3 + 3x^2 + 3x + 1 = 8$.
 - b) Zeigen Sie, dass für $n \ge 1$ folgende Gleichung erfüllt ist:

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0$$

- 2. Zeichnen Sie die folgenden Graphen planar:
 - a) K_4
 - b) $K_{2,4}$
 - c) C_5
 - d) P_5
- 3. Gegeben ein ungerichteter Graph

$$G = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 4\}\}).$$

- a) Zeichnen Sie G.
- b) Bestimmen Sie $G \setminus 3$
- c) Bestimmen Sie $G \setminus \{1, 2\}$
- d) Bestimmen Sie G[1, 2, 5]
- e) Geben Sie die Nachbarschaft der Knoten 2 und 4 an!
- f) Geben Sie den Grad aller Knoten an!
- g) Bestimmen Sie einen Weg der Länge 3 vom Knoten 1 zum Knoten 3.

- h) Ist G zusammenhängend?
- i) Ist G bipartit?
- j) Ist G planar? (Geben sie ggf. eine planare Zeichnung an!)
- 4. Beweisen Sie, dass jeder ungerichtete Graph G=(V,E) ($|V|\geq 2$) mindestens 2 Knoten mit gleichem Grad hat!
- 5. Wie viele Graphen mit n Knoten gibt es?
- 6. Beweisen Sie: C_n ist bipartit genau dann, wenn n gerade ist.

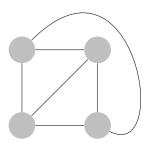
Lösung zu Übung 5

1. a) $x^{3} + 3x^{2} + 3x + 1 = 1x^{0} + 3x^{1} + 3x^{2} + 1x^{3}$ $= {3 \choose 0}x^{0}1^{3} + {3 \choose 1}x^{1}1^{2} + {3 \choose 2}x^{2}1^{1} + {3 \choose 3}x^{3}1^{0}$ $= (x+1)^{3}$

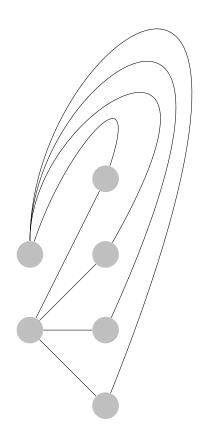
Mit x = 1 ergibt sich $(1+1)^3 = 2^3 = 8$.

b)
$$\sum_{k=0}^{n} {n \choose k} (-1)^k = \sum_{k=0}^{n} {n \choose k} (-1)^k 1^{n-k} = (1-1)^n = 0$$

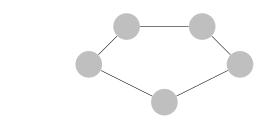
2. a)



b)

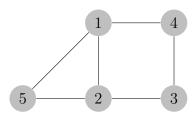


c)



d)

3. a)



- b) $G \setminus 3 = (\{1, 2, 4, 5\}, \{\{1, 2\}, \{1, 4\}, \{1, 5\}, \{2, 5\}\})$
- c) $G \setminus \{1, 2\} = (\{1, 2, 3, 4, 5\}, \{\{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 4\}\})$
- d) $G[1,2,5] = (\{1,2,5\}, \{\{1,2\}, \{1,5\}, \{2,5\}\})$
- e) $N_G(2) = \{1, 3, 5\}, N_G(4) = \{1, 3\}, N_G(2) \cup N_G(4) = \{1, 3, 5\}$
- f) $d_G(1) = 3$, $d_G(2) = 3$, $d_G(3) = 2$, $d_G(4) = 2$, $d_G(5) = 2$
- g) [1, 2, 3]
- h) Ja.
- i) Nein, da ein Dreieck schon nicht bipartit ist.
- j) Ja.
- 4. Jeder Knoten $v \in V$ hat einen Grad $0 \le d_G(v) \le |V| 1$. Damit alle Knoten unterschiedlichen Grad haben, muss also insbesondere ein Knoten v_1 mit $d_G(v_1) = 0$ und ein Knoten v_2 mit $d_G(v_2) = |V| 1$ existieren. Wegen $d_G(v_2) = |V| 1$ muss $\{v_1, v_2\} \in E$ gelten, aber wegen $d_G(v_1) = 0$ muss $\{v_1, v_2\} \notin E$ gelten, was ein Widerspruch ist.
- 5. Ein (einfacher, ungerichteter) Graph mit n Knoten kann höchstens $e_n = \frac{n \cdot (n-1)}{2}$ Kanten besitzen. Wir erhalten also insgesamt 2^{e_n} Graphen mit n Knoten.
- 6. Wir schreiben C_n als Pfad $[v_1, \ldots, v_n, v_{n+1}]$, wobei $v_1 = v_{n+1}$. Damit C_n bipartit ist, muss es eine Partition $V = A \uplus B$ so geben, dass für alle $1 \le i \le n$ gilt: $v_i \in A \Leftrightarrow v_{i+1} \in B$.
 - n gerade: Dann ist $V_g = \{v_i \mid 1 \le i \le n, i \text{ gerade}\}$ und $V_u = \{v_i \mid 1 \le i \le n, i \text{ ungerade}\}$ eine Partition mit der gewünschten Ei-

genschaft. Insbesondere ist $v_n \in V_g$ und $v_1 \in V_u$.

n ungerade: Sei $A \uplus B$ eine Partition mit der gewünschten Eigenschaft. Sei $v_1 \in A$ ($v_1 \in B$ verläuft analog). Dann muss $v_2 \in B$ sein, $v_3 \in A$, usw. Wir erhalten also, dass $v_n \in A$, was ein Widerspruch ist.