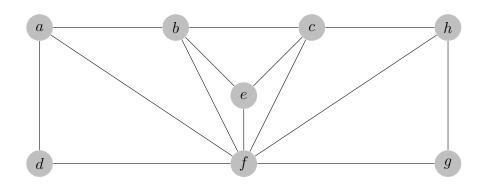
Diskrete Mathematik für Informatiker

WS 2016/2017

Übung 7

1. Gegeben sei folgender Graph und das Matching $M = \{\{h, f\}, \{c, e\}, \{a, d\}\}:$



- a) Ist M ein größtes Matching? Ist M perfekt?
- b) Finden Sie einen erweiternden Weg, der die Kanten $\{h,f\}$ und $\{c,e\}$ enthält?
- c) Geben Sie ggf. das aus dem resultierenden Weg entstehende Matching an. Ist dieses Matching ein größtes Matching? Ist es perfekt?
- 2. Bestimmen Sie die Anzahl der perfekten Matchings in folgenden Graphen:
 - a) $K_{n,n}$
 - b) K_{2n}
- 3. Zeichnen Sie den Graph G=(V,E) mit $V=\{1,2,3,4,5\},$ $E=\{\{1,2\},\{1,3\},\{1,5\},\{2,4\},\{2,5\},\{3,4\},\{3,5\}\}.$
 - a) Enthält G einen Eulerweg / Eulerkreis?

- b) Sei $G' = (V \cup \{6\}, E \cup \{\{1,6\}, \{2,6\}\})$. Enthält G' einen Eulerweg / Eulerkreis?
- c) Sei $G'' = (V \cup \{6,7\}, E \cup \{\{1,6\}, \{2,6\}, \{3,7\}, \{4,7\}\})$. Enthält G'' einen Eulerweg / Eulerkreis?
- 4. Bestimmen Sie ein Kriterium dafür, dass ein Graph G = (V, E) einen Eulerweg, aber keinen Eulerkreis hat.
- 5. Sei G ein Graph mit n Knoten.
 - a) Was ist die kleinste Anzahl an Kanten m, die man braucht, so dass G zusammenhängend ist?
 - b) Wie viele Kanten muss G mindestens haben, so dass G in jedem Fall zusammenhängend ist?
- 6. a) Beweisen Sie: K_n besitzt für $n \ge 3$ einen Hamiltonkreis.
 - b) Sei G ein Graph mit $n \geq 3$ Knoten. Wie viele Kanten muss G mindestens enthalten, damit G auf jeden Fall einen Hamiltonkreis besitzt?
- 7. Das Komplement eines Graphen G=(V,E) ist der Graph $\overline{G}=(V,\overline{E})$ mit $\{u,v\}\in\overline{E}$ genau dann, wenn $\{u,v\}\notin E$. Ein Graph G heißt selbstkomplementär, wenn G isomorph zu \overline{G} ist. Beweisen Sie, dass in jedem selbstkomplementären Graphen mit n Knoten gilt: $n\equiv 0$ mod 4 oder $n\equiv 1$ mod 4.

Lösung zu Übung 7

- 1. a) M ist kein größtes Matching, da in der folgenden Teilaufgabe ein größeres angegeben wird. M ist nicht perfekt, da es keine Kante $E \in M$ gibt mit $b \in E$ und keine mit $g \in E$. Außerdem kann M nicht perfekt sein, da es kein größtes Matching ist.
 - b) [g, h, f, c, e, b]

c)

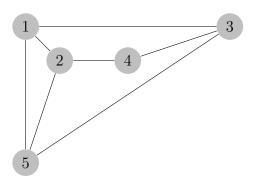
$$(M \cup \{\{g,h\}, \{f,c\}, \{e,b\}\}) \setminus \{\{c,e\}, \{h,f\}\}\$$

= \{\{a,d\}, \{g,h\}, \{f,c\}, \{e,b\}\}

Das resultierende Matching ist perfekt, also auch ein größtes Matching.

- 2. a) Bei $K_{n,n}$ wählen wir zu jedem Knoten auf der linken Seite ($\{\langle i,0\rangle \mid 1 \leq i \leq n\}$) einen auf der rechten ($\{\langle j,1\rangle \mid 1 \leq j \leq n\}$). Als Urnenexperiment: Die n Knoten auf der rechten Seite befinden sich in der Urne. Wir ziehen alle n Knoten der Reihe nach, wobei den Knoten $\langle j,1\rangle$ im Schritt i zu ziehen, bedeutet, dass Kante $\{\langle i,0\rangle,\langle j,1\rangle\}$ in das Matching aufgenommen wird. Beim Ziehen ist also die Reihenfolge wichtig und es wird nicht zurückgelegt, also erhalten wir $n^n = n!$ Möglichkeiten.
 - b) Idee: Wir ziehen zu Anfang für Knoten 1 einen anderen Knoten i mit $2 \le i \le 2n$, fügen Kante $\{1,i\}$ in das Matching hinzu, und fahren mit $K_{2n} \setminus \{1,i\}$ fort, der isomorph zu $K_{2(n-1)}$ ist. Schließlich kommen wir bei K_2 an, wo es für den Knoten 1 nur noch die Kante $\{1,2\}$ gibt. Insgesamt erhalten wir also: K_{2n} besitzt $\prod_{i=1}^{n} 2i 1$ perfekte Matchings (das Produkt aller ungeraden Zahlen bis 2n 1).

3.



a) Kein Eulerweg und kein Eulerkreis, da $d_u = 4$.

- b) Eulerweg [5, 2, 1, 6, 2, 4, 3, 5, 1, 3], aber kein Eulerkreis, da $d_u=2.\,$
- c) Eulerweg [5, 2, 1, 6, 2, 4, 3, 5, 1, 3, 7, 4], aber kein Eulerkreis, da $d_u = 2$.
- 4. $d_u = 2$
- 5. a) P_n besitzt die kleinste Anzahl an Kanten: n-1.
 - b) K_{n-1} besitzt die größte Anzahl an Kanten für n-1 Knoten. Erweitert man diesen um einen Knoten, so muss man noch eine Kante hinzufügen, damit der resultierende Graph zusammenhängend ist. Insgesamt benötigt man also mindestens $\frac{(n-1)(n-2)}{2}+1$ Kanten.
- 6. a) $[1, \ldots, n]$ ist ein Hamiltonkreis für K_n .
 - b) Idee: Betrachte K_{n-1} zusammen mit einem weiteren Knoten n. Führt man nur eine Kante $(\{i,n\})$ für 1 < i < n) von K_{n-1} zu n, so gibt es keinen Hamiltonkreis. Führt man allerdings eine weitere Kante ein $(\{j,n\})$ für $1 < i \neq j < n)$, so gibt es einen Hamiltonkreis. Die Behauptung ist also, dass es bei mindestens $\frac{(n-1)(n-2)}{2} + 2$ Kanten einen Hamiltonkreis geben muss. Sei also G = (V, E) ein Graph mit |V| = n, $|E| = \frac{(n-1)(n-2)}{2} + 2$, und sei $\{x,y\} \notin E$. Wenn wir zeigen können, dass $d_G(x) + d_G(y) \geq n$, so hat G nach dem Satz von Ore in jedem Fall einen

Hamiltonkreis. Wir nehmen an, dass $d_G(x) + d_G(y) \le n - 1$ und führen dies zum Widerspruch. Betrachte $(V', E') = G \setminus \{x, y\}$. Es

gilt, dass |V'| = n - 2 und

$$|E'| \ge |E| - (n-1) = \frac{(n-1)(n-2)}{2} + 2 - (n-1)$$

$$= \frac{(n-1)(n-2)}{2} + \frac{4 - 2(n-1)}{2}$$

$$= \frac{n^2 - 3n + 2 + 4 - 2n + 2}{2}$$

$$= \frac{n^2 - 5n + 8}{2}$$

$$= \frac{n^2 - 5n}{2} + 4$$

 K_{n-2} besitzt aber nur $\frac{(n-2)(n-3)}{2} = \frac{n^2-5n+6}{2} = \frac{n^2-5n}{2} + 3$ Kanten, was ein Widerspruch ist.

7. Damit G isomorph zu seinem Komplement ist, muss $|E| = |\overline{E}|$ gelten. Es gilt $K_n = (V, E \cup \overline{E})$. K_n besitzt $\frac{n(n-1)}{2}$ Kanten, also $2|E| = \frac{n(n-1)}{2}$, und damit $|E| = \frac{n(n-1)}{4}$. Es muss also entweder n oder n-1 durch 4 teilbar sein. Im Fall, dass n-1 durch 4 teilbar ist, bleibt beim Dividieren von n durch 4 ein Rest von 1.