Diskrete Mathematik für Informatiker

WS 2016/2017

Übung 8

- 1. Beweisen Sie: Ist (G, \circ) eine Gruppe und $a, b \in G$, so gibt es ein eindeutiges $c \in G$ mit $a \circ c = b$.
- 2. Beweisen oder widerlegen Sie die folgenden Aussagen: In jeder Gruppe (G, \circ) mit neutralem Element e gilt für alle $a, b \in G$
 - a) $a \circ a = a \circ b \Rightarrow a = b$
 - b) $a \circ a = b \circ b \Rightarrow a = b$
 - c) $a^5 = a \Rightarrow a^4 = a$
 - d) $a^5 = e \wedge a^4 = e \Rightarrow a = e$
- 3. Zeigen Sie, dass es eine Gruppe G und Elemente $a,b\in G$ gibt, so dass die Gleichung $(ab)^{-1}=a^{-1}b^{-1}$ nicht erfüllt ist.
- 4. Geben Sie die Verknüpfungstabellen der folgenden Monoide an und bestimmen Sie, welches Monoid eine Gruppe ist:
 - a) S_3
 - b) $(\mathbb{Z}_5 \setminus \{0\}, \cdot)$
 - c) (\mathbb{Z}_4,\cdot)
- 5. Berechnen Sie:
 - a) $5^{40} \mod 3$
 - b) $(77 \cdot 34) + (85 \cdot 44) \mod 4$
 - c) $2^{3^4} \mod 5$
- 6. Beweisen Sie: Es ist $(a+b)^5 \equiv a^5 + b^5 \mod 5$ für alle $a,b \in \mathbb{Z}$.

Lösung zu Übung 8

1. Zum Beweis der Existenz wählt man $c=a^{-1}\circ b$, denn es gilt

$$a \circ (a^{-1} \circ b) = (a \circ a^{-1}) \circ b = e \circ b = b$$

Sei $c' \in G$ ein weiteres Element mit $a \circ c' = b$. Es muss also gelten, dass $a \circ c' = a \circ c$. Verknüpft man dies mit a^{-1} , so erhält man:

$$a^{-1} \circ (a \circ c') = (a^{-1} \circ a) \circ c' = e \circ c' = c'$$
$$= a^{-1} \circ (a \circ c) = (a^{-1} \circ a) \circ c = e \circ c = c$$

- 2. a) $a \circ a = a \circ b \Rightarrow a^{-1} \circ a \circ a = a^{-1} \circ a \circ b \Rightarrow a = b$
 - b) Gilt nicht in $(\mathbb{Z}_2, +_2)$, da $0 +_2 0 = 1 +_2 1 = 0$.
 - c) Gilt nicht in $(\mathbb{Z}_4, +_4)$, da $1^5 = 1$, aber $1^4 = 0$.
 - d) $a^5 = e \wedge a^4 = e \Rightarrow a^5 = a^4 \Rightarrow (a^{-1})^4 a^5 = (a^{-1})^4 a^4 \Rightarrow a = e$
- 3. Diese Gleichheit kann nur in nicht kommutativen Gruppen verletzt sein. Die einfachste solche Gruppe ist S_3 . Ihre Elemente sind Permutationen (Bijektionen) auf $\{1,2,3\}$, die wir in Zykelschreibweise angeben. Z.B. bedeutet f=(1,2,3), dass f(1)=2, f(2)=3 und f(3)=1. Die Gruppenoperation ist die Funktionskomposition (Achtung: $(f\circ g)(x)=g(f(x))$), das neutrale Element die Identität und die inversen Elemente die Umkehrfunktionen. Betrachte a=(2,3) und b=(1,2,3). Wir erhalten $a\circ b=(1,2)$, $a^{-1}=a$, $b^{-1}=(1,3,2)$ und somit

$$(a \circ b)^{-1} = (1,2) \neq a^{-1} \circ b^{-1} = (2,3) \circ (1,3,2) = (1,3)$$

4. a) Seien e = id, d = (1, 2, 3), $d_2 = (1, 3, 2)$, $s_1 = (2, 3)$, $s_2 = (1, 3)$, $s_3 = (1, 2)$. Hierbei steht d für "nach rechts drehen" (d_2 für zwei mal nach rechts drehen) und s_i für "Spiegeln um i" (die i-te Komponente wird festgehalten und die beiden anderen getauscht). Erst Spalte, dann Zeile (Spalte \circ Zeile):

	e	s_3	s_1	s_2	d	d_2
\overline{e}	e	s_3	s_1	s_2	d	d_2
$\overline{s_3}$	s_3	e	d	d_2	s_1	s_2
s_1	s_1	d_2	e	d	s_2	s_3
s_2	s_2	d	d_2	e	s_3	s_1
d	d	s_2	s_3	s_1	d_2	e
$\overline{d_2}$	d_2	s_1	s_2	s_3	e	d

Für die Inversen erhalten wir $d^{-1} = d_2$ und $d_2^{-1} = d$. Die Spiegelungen sind selbstinvers, also $s_1^{-1} = s_1$, $s_2^{-1} = s_2$ und $s_3^{-1} = s_3$. Insgesamt ist S_3 also eine Gruppe.

b) Spalte o Zeile:

		1	2	3	4
	1	1	2	3	4
-	2	2	4	1	3
	3	3	1	4	2
	4	4	3	2	1

1 ist das neutrale Element. Die Inversen sind $2^{-1}=3,\ 3^{-1}=2$ und $4^{-1}=4.$ Somit ist $(\mathbb{Z}_5\setminus\{0\},\cdot)$ eine Gruppe.

c) Spalte o Zeile:

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

1 ist das neutrale Element. (\mathbb{Z}_4,\cdot) ist aber keine Gruppe, da 0^{-1} und 2^{-1} nicht definiert sind.

5. a)

$$5^{40} \mod 3 = (5 \mod 3)^{40} \mod 3$$

= $2^{40} \mod 3$
= $(2^2 \mod 3)^{20} \mod 3$
= $1^{20} \mod 3$
= 1

b)
$$(77 \cdot 34) + (85 \cdot 44) \mod 4 = ((77 \cdot 34) \mod 4 + (85 \cdot 44) \mod 4) \mod 4$$

$$= ((77 \cdot 34) \mod 4$$

$$+ (85 \mod 4 \cdot 44 \mod 4) \mod 4) \mod 4$$

$$= ((77 \cdot 34) \mod 4 + (1 \cdot 0) \mod 4) \mod 4$$

$$= ((77 \cdot 34) \mod 4) \mod 4$$

$$= (77 \mod 4 \cdot 34 \mod 4) \mod 4$$

$$= (1 \cdot 2) \mod 4$$

$$= 2$$

c)

$$2^{3^4} \mod 5 = (2^3 \mod 5)^{3^3} \mod 5$$

$$= 3^{3^3} \mod 5$$

$$= (3^3 \mod 5)^{3^2} \mod 5$$

$$= 2^{3^2} \mod 5$$

$$= 2^9 \mod 5$$

$$= 2$$

6.

 $(a+b)^{5} \bmod 5 = \left(\sum_{i=0}^{5} {5 \choose i} a^{i} b^{5-i}\right) \bmod 5$ $= \left(\sum_{i=0}^{5} {5 \choose i} a^{i} b^{5-i} \bmod 5\right) \bmod 5$ $= \left(\sum_{i=0}^{5} \frac{5!}{(5-i)!i!} a^{i} b^{5-i} \bmod 5\right) \bmod 5$ $= \left(a^{5} \bmod 5 + b^{5} \bmod 5 + \sum_{i=1}^{4} \frac{5!}{(5-i)!i!} a^{i} b^{5-i} \bmod 5\right) \bmod 5$ $= \left(a^{5} \bmod 5 + b^{5} \bmod 5 + \sum_{i=1}^{4} \frac{5!}{i!} a^{i} b^{5-i} \bmod 5\right) \bmod 5$ $= (a^{5} + b^{5}) \bmod 5$