Diskrete Mathematik für Informatiker

WS 2016/2017

Übung 10

- 1. Sei (G, \circ) eine Gruppe und U eine Untergruppe von G. Zeigen Sie, dass U genau dann ein Normalteiler ist, wenn für alle $a \in G$ die Gleichung $a \circ U = U \circ a$ gilt, also wenn Links- und Rechtsnebenklassen von U übereinstimmen.
- 2. Zeigen Sie, dass für alle $n \in \mathbb{N}$ die Gruppe $(\mathbb{Z}, +)/n\mathbb{Z}$ isomorph ist zu $(\mathbb{Z}_n, +_n)$.
- 3. Beweisen Sie, dass für jeden Homomorphismus zwischen zwei endlichen Gruppen $\varphi: G_1 \to G_2$ gilt: $|G_1| = |\ker(\varphi)| \cdot |\operatorname{im}(\varphi)|$.
- 4. Gegeben sei die Gruppe $G = (\mathbb{Z}, +)$, deren Untergruppe $U = 4\mathbb{Z}$ und die Abbildung $\varphi : G/U \to (\mathbb{Z}_2, +_2)$ mit $\varphi(a + 4\mathbb{Z}) = a \mod 2$ für $a \in \mathbb{Z}$. Zeigen Sie, dass φ
 - a) eine Funktion ist.
 - b) ein Homomorphismus ist.
 - c) kein Isomorphismus ist.
- 5. Geben Sie die Primfaktorzerlegung der folgenden Zahlen an:
 - a) 1024
 - b) 3072
 - c) 15360
 - d) 30030

6. Sei kgV(a, b) das kleinste gemeinsame Vielfache der Zahlen $a,b\in\mathbb{Z}$:

$$\mathrm{kgV}(a,b) := \min\{n > 0 \mid a|n \wedge b|n\}.$$

Beweisen Sie, dass für alle $a,b\in\mathbb{Z}$ gilt

$$a \cdot b = ggT(a, b) \cdot kgV(a, b).$$