Übungsblatt 3

Aufgabe 1

Beweisen oder widerlegen Sie die folgenden Aussagen für beliebige Formeln F, G:

- (a) Wenn F und G gültig sind, dann gilt $F \equiv G$.
- (b) Wenn F und G erfüllbar sind, dann gilt $F \equiv G$.
- (c) Wenn F und G unerfüllbar sind, dann gilt $F \equiv G$.
- (d) Wenn F erfüllbar und G gültig ist, dann gilt $F \equiv G$ oder $\neg F$ ist erfüllbar.
- (e) Wenn $F \equiv G$ gilt, dann müssen F und G die gleichen atomaren Formeln enthalten.
- (f) $(F \to G) \to H \equiv F \to (G \to H)$.
- (g) Aus $F \equiv G \vee H$ folgt $F \equiv G$ oder $F \equiv H$.
- (h) Aus $F \to G \equiv G \to F$ folgt $F \equiv G$.
- (i) Angenommen $F, G \models H$ und $F, H \models G$ und $G, H \models F$. Dann sind alle drei Formeln äquivalent zueinander.

Aufgabe 2

Zeigen Sie die folgenden Äquivalenzen mit Hilfe der Äquivalenzregeln aus der Vorlesung (siehe Folien 64–65):

(a)
$$A \lor B \equiv ((\neg A) \to (A \land C)) \lor ((C \lor B) \land B) \lor B$$

(b)
$$\neg A \land B \land C \equiv \neg A \land ((C \land D) \lor (C \land \neg D)) \land (A \lor B)$$

Aufgabe 3

Zeigen Sie, dass über den atomaren Formeln A_1, \ldots, A_n genau 2^{2^n} Formeln existieren, die paarweise nicht äquivalent sind.

 $\bf Aufgabe~4$ Seien F_1,F_2 und F_3 Formeln mit folgenden Wahrheitstafeln:

A	B	C	$ F_1 $	F_2	F_3
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	1	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	1	0	0

Geben Sie $\mathrm{DNF}(F_i)$ und $\mathrm{KNF}(F_i)$ für $i \in \{1,2,3\}$ an.