Exercise 1

Task 1

Prove or disprove the following statements:
(a) $n \log n \in \mathcal{O}\left(n^{2}\right)$
(d) $n-\log n \in o(n)$
(b) $n^{2} \in \mathcal{O}(n)$
(e) $2+(-1)^{n} \in \Theta(1)$
(c) $n^{n} \in \Omega\left(2^{n}\right)$
(f) $n!\in \omega\left(2^{n}\right)$

Solution

(a) True: We know that $\log (n) \leq n$ for all $n \in \mathbb{N}$ with $n \geq 1$, so $n \log (n) \leq n^{2}$. Therefore, $n \log (n) \in \mathcal{O}\left(n^{2}\right)$ since for $c=1$ and for all $n \geq n_{0}=1$ it holds that $n \log (n) \leq c \cdot n^{2}$.
(b) False: Let $n_{0} \in \mathbb{N}, c>0$ and assume that for all $n \geq n_{0}$ it holds that $n^{2} \leq c \cdot n$, especially for $n=c+n_{0}+1 \geq n_{0}$ we have that $\left(c+n_{0}+1\right)^{2} \leq c \cdot\left(c+n_{0}+1\right)$. It follows that $c+n_{0}+1 \leq c$ which is a contradiction.
(c) True: We have $n^{n} \in \Omega\left(2^{n}\right) \Leftrightarrow 2^{n} \in \mathcal{O}\left(n^{n}\right)$. We choose $c=1$ and $n_{0}=2$, then clearly we have $2^{n} \leq c \cdot 2^{n} \leq c \cdot n^{n}$ for all $n \geq n_{0}$.
(d) False: Let $c=\frac{1}{2}$ and let $n_{0} \in \mathbb{N}$. Then $n-\log (n) \leq c n$ means $n \leq 2 \log (n)$, which is false for any $n \geq 1$.
(e) True: We have $1 \leq 2+(-1)^{n} \leq 3$ for any $n \in \mathbb{N}$. Hence $2+(-1)^{n} \leq c \cdot 1$ with $c=3$, which implies $2+(-1)^{n} \in \mathcal{O}(1)$, and $1 \leq c \cdot\left(2+(-1)^{n}\right)$ with $c=1$, which implies $1 \in \mathcal{O}\left(2+(-1)^{n}\right)$.
(f) True: We have $n!\in \omega\left(2^{n}\right) \Leftrightarrow 2^{n} \in o(n!)$. For $n=4$ we have $2^{n}<n$!, since $2^{4}=16<$ $24=4$!. Therefore $2^{n}<n$! for all $n \geq 4$. Hence we also have $2^{n}<c \cdot n$! for all $c \geq 1$. Now let $0<c<1$ and choose $n_{0}=\left\lceil\frac{1}{c}\right\rceil \cdot 4$. Clearly $n_{0}-1 \geq 7$. By our observation before we have $2^{n_{0}-1} \leq\left(n_{0}-1\right)!\leq c \cdot\left(n_{0}-1\right)!\cdot\left\lceil\frac{1}{c}\right\rceil$. It follows $2^{n_{0}} \leq c \cdot n_{0}$!.

Alternatively you can use lim (or lim sup or lim inf) to prove these statements. For instance

$$
\lim _{n \rightarrow \infty} \frac{n-\log (n)}{n}=1>0,
$$

hence we know $n-\log (n) \notin o(n)$.

Task 2

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(n) \in \Theta(n)$. Prove or disprove the following statements:
(a) $f(n)^{k} \in \Theta\left(n^{k}\right)$ for all $k \in \mathbb{N}, k \geq 1$
(b) $2^{f(n)} \in \Theta\left(2^{n}\right)$

Solution

(a) True: From $f(n) \in \Theta(n)$ it follows that:
(1) $f(n) \in \mathcal{O}(n)$, so there exist $n_{0} \in \mathbb{N}, c>0$ such that for all $n \geq n_{0}$ we have $f(n) \leq c \cdot n$, which implies that $f(n)^{k} \leq(c \cdot n)^{k}=c^{k} \cdot n^{k}$, therefore $f(n)^{k} \in \mathcal{O}\left(n^{k}\right)$.
(2) $n \in \mathcal{O}(f(n))$, so there exist $n_{0} \in \mathbb{N}, c>0$ such that for all $n \geq n_{0}$ we have $n \leq$ $c \cdot f(n)$, which implies that $n^{k} \leq(c \cdot f(n))^{k}=c^{k} \cdot f(n)^{k}$, therefore $n^{k} \in \mathcal{O}\left(f(n)^{k}\right)$.

We therefore obtain that $f(n)^{k} \in \Theta\left(n^{k}\right)$.
(b) False: Let $f(n)=2 n$, so $f(n) \in \Theta(n)$. Assume that the statement is true so we have $2^{2 n}=4^{n} \in \Theta\left(2^{n}\right)$, so $4^{n} \in \mathcal{O}\left(2^{n}\right)$. This means there exist $n_{0} \in \mathbb{N}, c>0$ such that for every $n \geq n_{0}$ we have $4^{n} \leq c \cdot 2^{n}$. This implies $\left(\frac{4}{2}\right)^{n} \leq c$. But since 2^{n} is not a bouned function, this yields a contradiction.

Task 3

Use the Master Theorem to determine the asymptotic growth of the following functions:
(a) $T_{1}(n)=7 \cdot T_{1}\left(\frac{n}{2}\right)+4 n$
(d) $T_{4}(n)=8 \cdot T_{4}\left(\frac{n}{2}\right)+n^{3}$
(b) $T_{2}(n)=7 \cdot T_{2}\left(\frac{n}{2}\right)+1000 n^{2}$
(e) $T_{5}(n)=6 \cdot T_{5}\left(\frac{n}{3}\right)+n^{3}$
(c) $T_{3}(n)=8 \cdot T_{3}\left(\frac{n}{2}\right)+n^{2}$
(f) $T_{6}(n)=64 \cdot T_{6}\left(\frac{n}{8}\right)+n^{2}$

Solution

(a) $a=7, b=2, c=1$. Since $a=7>2=b^{c}$, case 3 applies:

$$
T_{1}(n) \in \Theta\left(n^{\frac{\log (a)}{\log (b)}}\right)=\Theta\left(n^{\frac{\log (7)}{\log (2)}}\right)
$$

(b) $a=7, b=2, c=2$. Since $a=7>4=b^{c}$, case 3 applies:

$$
T_{2}(n) \in \Theta\left(n^{\frac{\log (a)}{\log (b)}}\right)=\Theta\left(n^{\frac{\log (7)}{\log (2)}}\right)
$$

(c) $a=8, b=2, c=2$. Since $a=8>4=b^{c}$, case 3 applies:

$$
T_{3}(n) \in \Theta\left(n^{\frac{\log (a)}{\log (b)}}\right)=\Theta\left(n^{3}\right)
$$

(d) $a=8, b=2, c=3$. Since $a=8=2^{3}=b^{c}$, case 2 applies:

$$
T_{4}(n) \in \Theta\left(n^{c} \log (n)\right)=\Theta\left(n^{3} \log (n)\right)
$$

(e) $a=6, b=3, c=3$. Since $a=6<27=b^{c}$, case 1 applies:

$$
T_{5}(n) \in \Theta\left(n^{c}\right)=\Theta\left(n^{3}\right) .
$$

(f) $a=64, b=8, c=2$. Since $a=64=8^{2}=b^{c}$, case 2 applies:

$$
T_{6}(n) \in \Theta\left(n^{c} \log (n)\right)=\Theta\left(n^{2} \log (n)\right)
$$

Task 4
Sort the array $[2,8,13,4,7,16,3,12]$ using Mergesort.

Solution

mergesort (1, 8), $m=4$

- mergesort(1,4),$m=2$
$-\operatorname{mergesort}(1,2), m=1$, merge($1,1,2$), $[2,8]$
$-\operatorname{mergesort}(3,4), m=3$, merge $(3,3,4),[4,13]$
- merge(1, 2, 4), [2, 4, 8, 13]
- mergesort(5,8), $m=6$
$-\operatorname{mergesort}(5,6), m=5$, merge $(5,5,6),[7,16]$
$-\operatorname{mergesort}(7,8), m=7, \operatorname{merge}(7,7,8),[3,12]$
$-\operatorname{merge}(5,6,8),[3,7,12,16]$
merge(1, 4, 8), $[2,3,4,7,8,13,16]$

