Universitat Siegen Algorithmics 1
Lehrstuhl Theoretische Informatik WS 2020/21
Markus Lohrey

Exercise 2

Task 1
Calculate 2063 - 3201 using the algorithm of Karatsuba. You do not have to use base 2.

Solution
For base b we have

rs = ACb" + (A — B)(D — C)b? 4 (BD + AC)b> + BD.
b=10,n=22=4,7r=2063=A| B, A=20,B=63,s=3201=C|D,C=32,D=1

rs = (20-32)-10* + (20 — 63)(1 — 32) - 10* + (63 - 1 +20-32) - 10 + 63 - 1
= 640 - 10* + 1333 - 10* + (63 + 640) - 10* + 63
= 6603663

The second = makes use of the following 3 calculations:
(a) 20:32,n=2,A=2 B=0,C=3,D=2

20-32=(2-3)-10°4+(2-0)(2—-3)-10" +(0-242-3)- 10" +0-2
= 600 — 20 + 60 = 640

(b) (20—63)(1—32)=43-31,n=2 A=4,B=3,C=3, D=1

43-31=(4-3)-10° 4+ (4—3)(1 —3)-10" +(3-1+4-3)-10' +3-1
= 1200 — 20 4 150 + 3 = 1333

(c) 63-1,n=2 A=6,B=3,C=0 D=1

63-1=(6-0)-10°+ (6 —3)(1 —=0)-10" +(3-1+6-0)-10" +3-1
=30+30+3 =63

Task 2
Use the algorithm of Strassen to calculate the following matrix product:

(b))

Solution

My = (Ajp — Ag)(Ba1 + Bag) = (=2 —0)(—=14+1) =0
o My= (A1 + Ap)(Bi1+Bx)=3B+0)(1+1)=6
My = (Ay — Ag1)(Biy + Biy) = (3= 1)(1+2) =6
o My= (A1 +A1)Byu=(3+(-2))-1=1
o Ms= A1 (Bis— By)=32-1)=3
® Mg = Ay(By — By1) =0(-1-1)=0
o My=(Agy + Ap)By=(1+40)-1=1
e Cy=M+M,—My+Mg=0+6—-14+0=5
e Co=My+Ms=1+3=4
e Cyy=Msg+M;=0+1=1
e Cyo=My—Ms+M;—M; =6—-6+3—-1=2

3 =2 . 1 2\ [(Cn Ci) (5 4
1 0 -1 1) \Cy Cxn/) \1 2
Task 3

Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically
faster than Strassen’s algorithm. His algorithm will use the divide-and-conquer method,
dividing each matrix into pieces of size n/4xn/4, and the divide and combine steps together
will take ©(n?) time. He needs to determine how many subproblems his algorithm has to
create in order to beat Strassen’s algorithm. If his algorithm creates a subproblems then
the recurrence for the running time 7'(n) becomes aT'(n/4) + ©(n?). What is the largest
integer value for a for which Professor Caesar’s algorithm would be asymptotically faster
than Strassen’s algorithm?

Hence we have

Solution o)
Strassen’s algorithm has a running time of ©(nls®) = ©(n%*807). Using the Master
Theorem for Caesar’s algorithm, we have b° = 42 = 16. Depending on a, it has the

following running time:
e O(n?) if a < 16 (which is better than Strassen’s algorithm),

e O(n?logn) if @ = 16 (which is also better than Strassen’s algorithm)

log(a)

e O <n10g<4>> if @ > 16. In this case, we want that log(a) - log(7)
log(4) log(2)

Therefore, 2@ < 64 — 9 and thus a < 49 (17 < a < 48).
log(7) log(2)

Hence, the largest integer for a is 48.

Task 4
Show that a binary tree with N leaves has at least height log, (V).

Solution

The set of binary trees 7 is defined as follows: () € T is a binary tree, and if t1, ¢, € T, then
(t1,t3) € T. The height h: T — Nis defined as: h() = 1, h(t1,t2) = 1 + max{h(ty), h(t2)}.
The number of leaves £: T — N is defined as ¢() = 1 and £(t1,t2) = €(t1) + £(t2). We now
want to show that for each ¢ € T it holds that h(t) > log,(¢(t)).

e For ¢t = () we have h(t) =1 > 0 =log,(1) = log,(£(%)).
e For t = (t1,t3) we have

h(t) =14 max{h(t1), h(t2)}
> 1+ max{logy(£(11)), log,(£(t2)) }
— 1+ logy(max{((t), ((12)})
= logy (2 max{l(t1), {(t2)})
> logy(€(t1) + £(t2))
= log, (£(t))

We made use of the following statements: For all z,y > 0:

e max{log(z),log(y)} = log(max{x, y}). This is true, because log is monotone.

o 2max{zr,y} > x+y. Ilfz <y, thenx+y <y+y =2y =2max{z,y}. The case
y < x is similar.

Task 5
Sort the array [2,8,13,5,7,16, 3, 12] using Quicksort.

Solution
quicksort(1,8): p = 4 (index of median of A[(], A[(¢ + r) div 2], Alr]), partition(1,8,4):
swap(4, 8) (pivot), swap(1, 1), swap(2,7), swap(3,8) (pivot), [2,3,5,12,7,16,8,13|, m =

w =

e quicksort(1,2): p =1, swap(1,2), swap(1,2), [1,2], m =1

— quicksort(1,0)
— quicksort(2, 2)

e quicksort(4,8): p = 8, partition(4,8,8): swap(8,8) (pivot), swap(4,4), swap(5,5),
swap(6,7), swap(7,8) (pivot), [2,3,5,12,7,8,13,16], m =7

— quicksort(4,6): p = 6, partition(4, 6,6): swap(6,6) (pivot), swap(4,5), swap(5, 6),
[2,3,5,7,8,12,13,16], m =5
* quicksort(4,4)
% quicksort (6, 6)
— quicksort(8, 8)

