
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Algorithmics 1
WS 2020/21

Exercise 2

Task 1
Calculate 2063 · 3201 using the algorithm of Karatsuba. You do not have to use base 2.

Solution
For base b we have

rs = ACbn + (A−B)(D − C)b
n
2 + (BD + AC)b

n
2 + BD.

b = 10, n = 22 = 4, r = 2063 = A | B, A = 20, B = 63, s = 3201 = C | D, C = 32, D = 1

rs = (20 · 32) · 104 + (20− 63)(1− 32) · 102 + (63 · 1 + 20 · 32) · 102 + 63 · 1
= 640 · 104 + 1333 · 102 + (63 + 640) · 102 + 63

= 6603663

The second = makes use of the following 3 calculations:

(a) 20 · 32, n = 2, A = 2, B = 0, C = 3, D = 2

20 · 32 = (2 · 3) · 102 + (2− 0)(2− 3) · 101 + (0 · 2 + 2 · 3) · 101 + 0 · 2
= 600− 20 + 60 = 640

(b) (20− 63)(1− 32) = 43 · 31, n = 2, A = 4, B = 3, C = 3, D = 1

43 · 31 = (4 · 3) · 102 + (4− 3)(1− 3) · 101 + (3 · 1 + 4 · 3) · 101 + 3 · 1
= 1200− 20 + 150 + 3 = 1333

(c) 63 · 1, n = 2, A = 6, B = 3, C = 0, D = 1

63 · 1 = (6 · 0) · 102 + (6− 3)(1− 0) · 101 + (3 · 1 + 6 · 0) · 101 + 3 · 1
= 30 + 30 + 3 = 63

Task 2
Use the algorithm of Strassen to calculate the following matrix product:(

3 −2
1 0

)
·
(

1 2
−1 1

)

1

Solution

• M1 = (A12 − A22)(B21 + B22) = (−2− 0)(−1 + 1) = 0

• M2 = (A11 + A22)(B11 + B22) = (3 + 0)(1 + 1) = 6

• M3 = (A11 − A21)(B11 + B12) = (3− 1)(1 + 2) = 6

• M4 = (A11 + A12)B22 = (3 + (−2)) · 1 = 1

• M5 = A11(B12 −B22) = 3(2− 1) = 3

• M6 = A22(B21 −B11) = 0(−1− 1) = 0

• M7 = (A21 + A22)B11 = (1 + 0) · 1 = 1

• C11 = M1 + M2 −M4 + M6 = 0 + 6− 1 + 0 = 5

• C12 = M4 + M5 = 1 + 3 = 4

• C21 = M6 + M7 = 0 + 1 = 1

• C22 = M2 −M3 + M5 −M7 = 6− 6 + 3− 1 = 2

Hence we have (
3 −2
1 0

)
·
(

1 2
−1 1

)
=

(
C11 C12

C21 C22

)
=

(
5 4
1 2

)
Task 3
Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically
faster than Strassen’s algorithm. His algorithm will use the divide-and-conquer method,
dividing each matrix into pieces of size n/4×n/4, and the divide and combine steps together
will take Θ(n2) time. He needs to determine how many subproblems his algorithm has to
create in order to beat Strassen’s algorithm. If his algorithm creates a subproblems then
the recurrence for the running time T (n) becomes aT (n/4) + Θ(n2). What is the largest
integer value for a for which Professor Caesar’s algorithm would be asymptotically faster
than Strassen’s algorithm?

Solution
Strassen’s algorithm has a running time of Θ(n

log(7)
log(2)) = Θ(n2.807...). Using the Master

Theorem for Caesar’s algorithm, we have bc = 42 = 16. Depending on a, it has the
following running time:

• Θ(n2) if a < 16 (which is better than Strassen’s algorithm),

• Θ(n2 log n) if a = 16 (which is also better than Strassen’s algorithm)

2

• Θ
(
n

log(a)
log(4)

)
if a > 16. In this case, we want that log(a)

log(4)
< log(7)

log(2)
.

Therefore, log(a)
log(7)

< log(4)
log(2)

= 2 and thus a < 49 (17 ≤ a ≤ 48).

Hence, the largest integer for a is 48.

Task 4
Show that a binary tree with N leaves has at least height log2(N).

Solution
The set of binary trees T is defined as follows: () ∈ T is a binary tree, and if t1, t2 ∈ T , then
(t1, t2) ∈ T . The height h : T → N is defined as: h() = 1, h(t1, t2) = 1 + max{h(t1), h(t2)}.
The number of leaves ` : T → N is defined as `() = 1 and `(t1, t2) = `(t1) + `(t2). We now
want to show that for each t ∈ T it holds that h(t) ≥ log2(`(t)).

• For t = () we have h(t) = 1 ≥ 0 = log2(1) = log2(`(t)).

• For t = (t1, t2) we have

h(t) = 1 + max{h(t1), h(t2)}
≥ 1 + max{log2(`(t1)), log2(`(t2))}
= 1 + log2(max{`(t1), `(t2)})
= log2(2 max{`(t1), `(t2)})
≥ log2(`(t1) + `(t2))

= log2(`(t))

We made use of the following statements: For all x, y ≥ 0:

• max{log(x), log(y)} = log(max{x, y}). This is true, because log is monotone.

• 2 max{x, y} ≥ x + y. If x ≤ y, then x + y ≤ y + y = 2y = 2 max{x, y}. The case
y < x is similar.

Task 5
Sort the array [2, 8, 13, 5, 7, 16, 3, 12] using Quicksort.

Solution
quicksort(1, 8): p = 4 (index of median of A[`], A[(` + r) div 2], A[r]), partition(1, 8, 4):
swap(4, 8) (pivot), swap(1, 1), swap(2, 7), swap(3, 8) (pivot), [2, 3, 5, 12, 7, 16, 8, 13], m = 3

• quicksort(1, 2): p = 1, swap(1, 2), swap(1, 2), [1, 2], m = 1

– quicksort(1, 0)

– quicksort(2, 2)

3

• quicksort(4, 8): p = 8, partition(4, 8, 8): swap(8, 8) (pivot), swap(4, 4), swap(5, 5),
swap(6, 7), swap(7, 8) (pivot), [2, 3, 5, 12, 7, 8, 13, 16], m = 7

– quicksort(4, 6): p = 6, partition(4, 6, 6): swap(6, 6) (pivot), swap(4, 5), swap(5, 6),
[2, 3, 5, 7, 8, 12, 13, 16], m = 5

∗ quicksort(4, 4)

∗ quicksort(6, 6)

– quicksort(8, 8)

4

