
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Algorithmics 1
WS 2020/21

Exercise 5

Task 1
Compute a spanning subtree of maximal weight using Kruskal’s algorithm for the following
graph:

3

7 9

12

8

16

62

8
5

3

11

14

Solution
We first sort the edges by their weights in decreasing order. To illustrate better what it
yields, we show the graph one more time:

e11

e8 e5

e3

e6

e1

e9e13

e7
e10

e12

e4

e2

Kruskal’s algorithm now takes greedily any heavy edge into the set F , such that (V, F) has
no cycles.
In the end the spanning subtree has the following edges: F = {e1, e2, e3, e4, e5, e7, e8, e9}.

e11

e8 e5

e3

e6

e1

e9e13

e7
e10

e12

e4

e2

1

Task 2

(a) Show that for each tree T = (V,E) with |V | > 0 we have |E| = |V | − 1.

(b) Show that every connected graph has a spanning subtree.

Solution

(a) We do an induction on |V |. In case |V | = 1 it is clear that |E| = 0. Now let |V | > 1.
Since T has no cycles, there is a leaf in T , meaning there is a v ∈ V with |vE| = 1,
where vE = {{v, u} ∈ V 2 | {v, u} ∈ E}. So |vE| = 1 means that v borders only
one edge, which means that the node u with {v, u} ∈ E is the parent node of v. Let
T ′ = (V ′, E ′) with V ′ \ {v} and E ′ = E \ vE. This is a tree, since it is connected,
because T is connected and v is a leaf, and it also has no cycles, since E ′ ⊆ E and
T has no cycles. Furthermore, |V ′| = |V | − 1, so by induction hypothesis we obtain
|E ′| = |V ′|−1. We have now proven that |E| = |E ′|+1 = |V ′|−1+1 = |V ′| = |V |−1.

(b) Let G = (V,E) be a connected graph. If G is a tree, G is a spanning tree of G.
Otherwise, choose an edge e ∈ E that is on a cycle in G and let E ′ = E \ {e}. Now
G′ = (V,E ′) is still connected and E ′ ⊂ E. We set G = G′ and iterate the above step.
This algorithm terminates because G is finite and we remove one edge in each step.
Repeatedly removing edges on cycles in a finite graph eventually leads to a graph that
has no cycles and is therefore a (spanning) subtree.

Task 3
Use Dijkstra’s algorithm to compute all shortest paths starting at node s.

s

3

1 9

12

8

16

62

8
13

2

11

7

Solution
For Dijkstra’s algorithm it is useful to draw a table and indicate the tree nodes, the
boundary nodes and the unknown nodes. The latter ones have distance∞ to the treenodes
(where distance is bold), since they cannot be reached in one step. The shortest paths are
resulting in a tree, highlighted in red.

2

Node s n1 n2 n3 n4 n5 n6 n7 n8

Step 0 0 3 11 ∞ ∞ ∞ ∞ ∞ ∞
Step 1 0 3 10 4 ∞ ∞ ∞ ∞ ∞
Step 2 0 3 10 4 6 ∞ 13 ∞ ∞
Step 3 0 3 10 4 6 14 13 ∞ ∞
Step 4 0 3 10 4 6 12 13 ∞ ∞
Step 5 0 3 10 4 6 12 13 18 ∞
Step 6 0 3 10 4 6 12 13 18 25
Step 7 0 3 10 4 6 12 13 18 25
Step 8 0 3 10 4 6 12 13 18 25

s

n1 n3 n6

n8

n7n5n2

n4

3

1 9

12

8

16

62

8
13

2

11

7

Task 4
Let Fn be the n-th Fibonacci number (F1 = F2 = 1 and Fn+1 = Fn + Fn−1). Show that

n∑
i=1

Fi
2 = Fn · Fn+1

and
2n+1∑
i=1

(−1)i−1Fi = F2n + 1.

Solution
We can show the first statement by induction in n. For n = 1 we have 12 = 12. Assume
we already showed the equation for n and want to prove it for n + 1. Then

n+1∑
i=1

Fi
2 =

n∑
i=1

Fi
2 + F 2

n+1

= Fn · Fn+1 + F 2
n+1

= (Fn + Fn+1) · Fn+1

= Fn+2 · Fn+1.

For the second statement, we also do an induction in n. The case n = 1 yields 1− 1 + 2 =

3

2 = 1 + 1. Going to n + 1 we get

2n+3∑
i=1

(−1)i−1Fi =
2n+1∑
i=1

(−1)i−1Fi − F2n+2 + F2n+3

= (F2n + 1)− F2n+2 + (F2n+2 + F2n+1)

= F2n + F2n+1 + 1

= F2n+2 + 1.

Remark: Both inductions work with n = 0 as well (assuming F0 = 0).

4

