Exercise 5

Task 1

Compute a spanning subtree of maximal weight using Kruskal's algorithm for the following graph:

Solution

We first sort the edges by their weights in decreasing order. To illustrate better what it yields, we show the graph one more time:

Kruskal's algorithm now takes greedily any heavy edge into the set F, such that (V, F) has no cycles.
In the end the spanning subtree has the following edges: $F=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{7}, e_{8}, e_{9}\right\}$.

Task 2

(a) Show that for each tree $T=(V, E)$ with $|V|>0$ we have $|E|=|V|-1$.
(b) Show that every connected graph has a spanning subtree.

Solution

(a) We do an induction on $|V|$. In case $|V|=1$ it is clear that $|E|=0$. Now let $|V|>1$. Since T has no cycles, there is a leaf in T, meaning there is a $v \in V$ with $\left|v_{E}\right|=1$, where $v_{E}=\left\{\{v, u\} \in V^{2} \mid\{v, u\} \in E\right\}$. So $\left|v_{E}\right|=1$ means that v borders only one edge, which means that the node u with $\{v, u\} \in E$ is the parent node of v. Let $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \backslash\{v\}$ and $E^{\prime}=E \backslash v_{E}$. This is a tree, since it is connected, because T is connected and v is a leaf, and it also has no cycles, since $E^{\prime} \subseteq E$ and T has no cycles. Furthermore, $\left|V^{\prime}\right|=|V|-1$, so by induction hypothesis we obtain $\left|E^{\prime}\right|=\left|V^{\prime}\right|-1$. We have now proven that $|E|=\left|E^{\prime}\right|+1=\left|V^{\prime}\right|-1+1=\left|V^{\prime}\right|=|V|-1$.
(b) Let $G=(V, E)$ be a connected graph. If G is a tree, G is a spanning tree of G. Otherwise, choose an edge $e \in E$ that is on a cycle in G and let $E^{\prime}=E \backslash\{e\}$. Now $G^{\prime}=\left(V, E^{\prime}\right)$ is still connected and $E^{\prime} \subset E$. We set $G=G^{\prime}$ and iterate the above step. This algorithm terminates because G is finite and we remove one edge in each step. Repeatedly removing edges on cycles in a finite graph eventually leads to a graph that has no cycles and is therefore a (spanning) subtree.

Task 3

Use Dijkstra's algorithm to compute all shortest paths starting at node s.

Solution

For Dijkstra's algorithm it is useful to draw a table and indicate the tree nodes, the boundary nodes and the unknown nodes. The latter ones have distance ∞ to the treenodes (where distance is bold), since they cannot be reached in one step. The shortest paths are resulting in a tree, highlighted in red.

Node	\mathbf{s}	n_{1}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}	n_{7}	n_{8}
Step 0	$\mathbf{0}$	3	11	∞	∞	∞	∞	∞	∞
Step 1	$\mathbf{0}$	$\mathbf{3}$	10	4	∞	∞	∞	∞	∞
Step 2	$\mathbf{0}$	$\mathbf{3}$	10	$\mathbf{4}$	6	∞	13	∞	∞
Step 3	$\mathbf{0}$	$\mathbf{3}$	10	$\mathbf{4}$	$\mathbf{6}$	14	13	∞	∞
Step 4	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{6}$	12	13	∞	∞
Step 5	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 2}$	13	18	∞
Step 6	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 2}$	$\mathbf{1 3}$	18	25
Step 7	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 8}$	25
Step 8	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 8}$	$\mathbf{2 5}$

Task 4

Let F_{n} be the n-th Fibonacci number $\left(F_{1}=F_{2}=1\right.$ and $\left.F_{n+1}=F_{n}+F_{n-1}\right)$. Show that

$$
\sum_{i=1}^{n} F_{i}^{2}=F_{n} \cdot F_{n+1}
$$

and

$$
\sum_{i=1}^{2 n+1}(-1)^{i-1} F_{i}=F_{2 n}+1
$$

Solution

We can show the first statement by induction in n. For $n=1$ we have $1^{2}=1^{2}$. Assume we already showed the equation for n and want to prove it for $n+1$. Then

$$
\begin{aligned}
\sum_{i=1}^{n+1} F_{i}^{2} & =\sum_{i=1}^{n} F_{i}^{2}+F_{n+1}^{2} \\
& =F_{n} \cdot F_{n+1}+F_{n+1}^{2} \\
& =\left(F_{n}+F_{n+1}\right) \cdot F_{n+1} \\
& =F_{n+2} \cdot F_{n+1} .
\end{aligned}
$$

For the second statement, we also do an induction in n. The case $n=1$ yields $1-1+2=$
$2=1+1$. Going to $n+1$ we get

$$
\begin{aligned}
\sum_{i=1}^{2 n+3}(-1)^{i-1} F_{i} & =\sum_{i=1}^{2 n+1}(-1)^{i-1} F_{i}-F_{2 n+2}+F_{2 n+3} \\
& =\left(F_{2 n}+1\right)-F_{2 n+2}+\left(F_{2 n+2}+F_{2 n+1}\right) \\
& =F_{2 n}+F_{2 n+1}+1 \\
& =F_{2 n+2}+1 .
\end{aligned}
$$

Remark: Both inductions work with $n=0$ as well (assuming $F_{0}=0$).

