Exercise 6

Task 1

Given the following Fibonacci heap:

Perform the following operations in that order:
delete-min, decrease-key (" 52 ", 9), decrease-key ("46", 3), insert(42), delete-min, decrease-key ("35", 7)

Task 2

Show Theorem 17 from the lecture: For all $k \geq 0$ we have

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}
$$

On the last sheet we used $F_{0}=0$ and $F_{1}=1$, but here we use $F_{0}=F_{1}=1$!

Task 3

Prove or disprove: The height of a Fibonacci heap of size n is at most $O(\log n)$.

Task 4

Find the optimal order to compute the following product (only the dimensions of the matrices are given):

$$
(2 \times 4) \cdot(4 \times 6) \cdot(6 \times 1) \cdot(1 \times 10) \cdot(10 \times 10)
$$

Task 5

Let $X=\left(x_{1}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ be two sequences. We say X is a subsequence of Y if there are indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that for all $1 \leq j \leq m$ it holds that $x_{j}=y_{i_{j}}$.
Use dynamic programming to implement an algorithm that runs in polynomial time which, given two sequences X and Y, computes the length of the longest common subsequence of X and Y.

