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Exercise 6

Task 1
Given the following Fibonacci heap:

7 (7) 24
2 @) () () @) (46)
2 @ 6 (39)

Perform the following operations in that order:
delete-min, decrease-key(“52”,9), decrease-key(“46”,3), insert(42), delete-min,
decrease-key(“35”,7)

Solution

1. delete-min: The node with key 7 gets deleted.
And we tidy the forest a bit.
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2. decrease-key(“52”,9): 9 moves up, 21 gets marked.
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3. decrease-key(“46”,3): 3 moves up, 24 cannot be marked.
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4. insert(42): Inserting 42 as a new tree.
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5. delete-min: Node with key 3 gets deleted and we tidy the forest.



6. decrease-key(“35”,7): 7 moves up and 26 as well, since it is marked (but loses its
mark). 24 gets marked.
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Task 2
Show Theorem 17 from the lecture: For all £k > 0 we have

F_i 1+\/5 k-l-l_i 1_\/3 k+1
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On the last sheet we used Fy = 0 and F; = 1, but here we use Fy = I} = 1!

Solution

Let 22 = o + 1. The two solutions to this equation are r := %5 and s 1= =5 50 we
know that r2 =7 + 1 and s = s + 1.

For k = 0 we have

1 1 1 1 (1 1—
—rl - —s'=—=(r—s)=— +\/5— V5 =1=F,
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For k£ =1 we have
1, 1, ., 9 1 1
—r = —=8"=—=(r"—=5)=—%=((r+1)—(s+1)) = —=(r—s)=1=F
T et P = () (s )= (-5 =1=F



Assume the statement is already true for k£ + 1. Now we prove it for k + 2:
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The induction still works fine, if we use the convention from Sheet 5 for the Fibonacci
numbers. Just the formula changes to
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Task 3

Prove or disprove: The height of a Fibonacci heap of size n is at most O(logn).

Solution

Wrong: A Fibonacci heap of size n can have height n. In order to prove this, we will fix
some notation. A Fibonacci heap is a forest, where the roots of the trees have pointers.
For trees tq,1s,...,t, we write [tits - - - t;] for the corresponding Fibonacci heap. For a tree
t we write a(sy - --s;), if a is its root and the s; are the subtrees pointing at root a.

We can get a Fibonacci heap of size 1 with height 1 by a single call to insert. Assume we
have a Fibonacci heap of size n with height n, say [a(t)], so t has height n—1 and size n—1.
We add three nodes (three calls to insert) with value b < a (so b is the smallest value in
the whole forest). This yields [bbba(t)]. Then we do one call to delete-min: This removes
one of the three nodes we just added: [bba(t)]. Tt also combines the other two new nodes
into a tree of rank 1, since both have rank 0: [b(b)a(t)] (rank = number of children). This
tree in turn is combined with the old tree, since it also has rank 1: [b(a(t)b)]. Since b is
the smallest value, it became the new root node. By deleting the single child node labelled
with b (by calling decrease-key on it and then delete-min) we obtain [b(a(t))] which is a
tree of size n + 1 and height n + 1.

Task 4
Find the optimal order to compute the following product (only the dimensions of the
matrices are given):

(2x4)-(4%x6)-(6x1)-(1x10)-(10 x 10)
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Solution
We compute the number of multiplications by dynamic programming.

Matrix products of length 2: 48 | 24 | 60 | 100

Matrix products of length 3 (2+1 or 1+ 2):

48 +12 ;24 +8 =32 |24+ 40 = 64 ; 60 + 240 | 60 + 600 ; 100 + 60 = 160

Matrix products of length 4 (341 or 2+ 2 or 1 + 3):

32420 =52 ;48 + 60+ 120 ; 64 + 80 | 64 + 400 ; 24 + 100 + 40 = 164 ; 160 + 240

Matrix product of length 5 (44+1or 3+2or 2+ 3 or 1 +4):

52 4200 ; 32 4+ 100 + 20 = 152 ; 48 + 160 + 120 ; 164 + 80

Hence, to compute the product ABCDE it is the best to compute X = BC and Y = DF
first, then Z = AX and finally ZY, which takes 152 multiplications.

Task 5

Let X = (z1,...,2,) and Y = (y1,...,y,) be two sequences. We say X is a subsequence
of Y if there are indices 1 < 1 < iy < --- < i, < n such that for all 1 < 7 < m it holds
that x; = y;,.

Use dynamic programming to implement an algorithm that runs in polynomial time which,
given two sequences X and Y, computes the length of the longest common subsequence of
X and Y.

Solution
Let c[i, j] be the length of a LCS of (x1,...,z;) and (v1,...,y;). We have

0 ifi=0orj=0,
cli,jl=qcli—1,7—-1]+1 ifi,j > 0 and z; = yj,
max(c[t — 1,j],¢fi,j —1]) if 4,5 >0 and x; # y;.

We iniciate the table with 0 at position c[i, j], where i or j is 0. Wlog. let n < m. In
the first step, we compute c[i, 1] for i = 1,...,n and ¢[1,j] for j = 1,...,m. In step k we
compute cli, k] for i = k,...,n and c[k, j] for j =k, ..., m. After min(n, m) = n steps we
filled in exactly the whole table and we know the value ¢[n, m]. The algorithm works in
time O(n - m) C O(m?).

Example: X = (1,2,4),Y = (2,3,4,6). The goal is ¢[3, 4].

i\j|0O 1 2 3 4
00 0 0 0 O
110 0 0 0 O
210 11 1 1
310 1 1 2 2
Since 3 < 4, we can also just fill in the table row by row.



