Exercise 6

Task 1

Given the following Fibonacci heap:

Perform the following operations in that order:
delete-min, decrease-key(" 52 ", 9), decrease-key ("46", 3), insert(42), delete-min, decrease-key("35", 7)

Solution

1. delete-min: The node with key 7 gets deleted.

And we tidy the forest a bit.

2. decrease-key(" 52 ", 9): 9 moves up, 21 gets marked.

3. decrease-key(" 46 ", 3): 3 moves up, 24 cannot be marked.

4. insert(42): Inserting 42 as a new tree.

5. delete-min: Node with key 3 gets deleted and we tidy the forest.

6. decrease-key (" 35 ", 7): 7 moves up and 26 as well, since it is marked (but loses its mark). 24 gets marked.

Task 2

Show Theorem 17 from the lecture: For all $k \geq 0$ we have

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k+1} .
$$

On the last sheet we used $F_{0}=0$ and $F_{1}=1$, but here we use $F_{0}=F_{1}=1$!

Solution

Let $x^{2}=x+1$. The two solutions to this equation are $r:=\frac{1+\sqrt{5}}{2}$ and $s:=\frac{1-\sqrt{5}}{2}$, so we know that $r^{2}=r+1$ and $s^{2}=s+1$.
For $k=0$ we have

$$
\frac{1}{\sqrt{5}} r^{1}-\frac{1}{\sqrt{5}} s^{1}=\frac{1}{\sqrt{5}}(r-s)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)=1=F_{0}
$$

For $k=1$ we have

$$
\frac{1}{\sqrt{5}} r^{2}-\frac{1}{\sqrt{5}} s^{2}=\frac{1}{\sqrt{5}}\left(r^{2}-s^{2}\right)=\frac{1}{\sqrt{5}}((r+1)-(s+1))=\frac{1}{\sqrt{5}}(r-s)=1=F_{1}
$$

Assume the statement is already true for $k+1$. Now we prove it for $k+2$:

$$
\begin{aligned}
F_{n+2} & =F_{n+1}+F_{n} \\
& =\frac{1}{\sqrt{5}} r^{k+1}-\frac{1}{\sqrt{5}} s^{k+1}+\frac{1}{\sqrt{5}} r^{k}-\frac{1}{\sqrt{5}} s^{k} \\
& =\frac{1}{\sqrt{5}}\left(r^{k+1}-s^{k+1}+r^{k}-s^{k}\right) \\
& =\frac{1}{\sqrt{5}}\left(r^{k}(r+1)-s^{k}(s+1)\right) \\
& =\frac{1}{\sqrt{5}}\left(r^{k+2}-s^{k+2}\right) \\
& =\frac{1}{\sqrt{5}} r^{k+2}-\frac{1}{\sqrt{5}} s^{k+2}
\end{aligned}
$$

The induction still works fine, if we use the convention from Sheet 5 for the Fibonacci numbers. Just the formula changes to

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

Task 3

Prove or disprove: The height of a Fibonacci heap of size n is at most $O(\log n)$.

Solution

Wrong: A Fibonacci heap of size n can have height n. In order to prove this, we will fix some notation. A Fibonacci heap is a forest, where the roots of the trees have pointers. For trees $t_{1}, t_{2}, \ldots, t_{l}$ we write $\left[t_{1} t_{2} \cdots t_{l}\right]$ for the corresponding Fibonacci heap. For a tree t we write $a\left(s_{1} \cdots s_{j}\right)$, if a is its root and the s_{i} are the subtrees pointing at root a.
We can get a Fibonacci heap of size 1 with height 1 by a single call to insert. Assume we have a Fibonacci heap of size n with height n, say $[a(t)]$, so t has height $n-1$ and size $n-1$. We add three nodes (three calls to insert) with value $b<a$ (so b is the smallest value in the whole forest). This yields $[b b b a(t)]$. Then we do one call to delete-min: This removes one of the three nodes we just added: $[b b a(t)]$. It also combines the other two new nodes into a tree of rank 1, since both have rank $0:[b(b) a(t)]$ (rank $=$ number of children). This tree in turn is combined with the old tree, since it also has rank $1:[b(a(t) b)]$. Since b is the smallest value, it became the new root node. By deleting the single child node labelled with b (by calling decrease-key on it and then delete-min) we obtain $[b(a(t))]$ which is a tree of size $n+1$ and height $n+1$.

Task 4

Find the optimal order to compute the following product (only the dimensions of the matrices are given):

$$
(2 \times 4) \cdot(4 \times 6) \cdot(6 \times 1) \cdot(1 \times 10) \cdot(10 \times 10)
$$

Solution

We compute the number of multiplications by dynamic programming.
Matrix products of length 2: $48|24| 60 \mid 100$
Matrix products of length $3(2+1$ or $1+2)$:
$48+12 ; 24+8=32|24+40=64 ; 60+240| 60+600 ; 100+60=160$
Matrix products of length $4(3+1$ or $2+2$ or $1+3)$:
$32+20=52 ; 48+60+120 ; 64+80 \mid 64+400 ; 24+100+40=164 ; 160+240$
Matrix product of length $5(4+1$ or $3+2$ or $2+3$ or $1+4)$:
$52+200 ; 32+100+20=152 ; 48+160+120 ; 164+80$
Hence, to compute the product $A B C D E$ it is the best to compute $X=B C$ and $Y=D E$ first, then $Z=A X$ and finally $Z Y$, which takes 152 multiplications.

Task 5

Let $X=\left(x_{1}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ be two sequences. We say X is a subsequence of Y if there are indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that for all $1 \leq j \leq m$ it holds that $x_{j}=y_{i_{j}}$.
Use dynamic programming to implement an algorithm that runs in polynomial time which, given two sequences X and Y, computes the length of the longest common subsequence of X and Y.

Solution

Let $c[i, j]$ be the length of a LCS of $\left(x_{1}, \ldots, x_{i}\right)$ and $\left(y_{1}, \ldots, y_{j}\right)$. We have

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

We iniciate the table with 0 at position $c[i, j]$, where i or j is 0 . Wlog. let $n<m$. In the first step, we compute $c[i, 1]$ for $i=1, \ldots, n$ and $c[1, j]$ for $j=1, \ldots, m$. In step k we compute $c[i, k]$ for $i=k, \ldots, n$ and $c[k, j]$ for $j=k, \ldots, m$. After $\min (n, m)=n$ steps we filled in exactly the whole table and we know the value $c[n, m]$. The algorithm works in time $\mathcal{O}(n \cdot m) \subseteq \mathcal{O}\left(m^{2}\right)$.
Example: $X=(1,2,4), Y=(2,3,4,6)$. The goal is $c[3,4]$.

$i \backslash j$	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	1	1	1	1
3	0	1	1	2	2

Since $3<4$, we can also just fill in the table row by row.

