
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Algorithmics 1
WS 2020/21

Exercise 7

Task 1
Construct an optimal binary search tree for the following elements v with probabilities
γ(v) (2 means 20% etc.).

v 1 2 3 4 5
γ(v) 2 1.5 4 1 1.5

Solution
To compute a BST with smallest weighted inner path length, we use dynamic program-
ming. Let cost[i, j] be the weighted inner path length of the optimal BST for the node set
{i, . . . , j} with root r[i, j].
i\j 1 2 3 4 5
1 2 5 12.5 14.5 18.5
2 0 1.5 7 9 13
3 0 4 6 10
4 0 1 3.5
5 0 1.5

i\j 1 2 3 4 5
1 1 1 3 3 3
2 2 3 3 3
3 3 3 3
4 4 5
5 5

cost[i, j] r[i, j]
Initialize cost[i, i − 1] = 0, cost[i, i] = γ(i) and r[i, i] = i. In the next step, the node with
the highest weight (probability) has to be the root node, hence we can fill in the tables at
position (i, i + 1). The trick in the following steps is now to pick a root, where the sum
of the optimal costs of the BST for the left and the right subtree plus the total weight
Γ = γ(i) + · · ·+ γ(j) is minimal (for the minimization we can ignore Γ of course). Among
the optimal roots, we pick the one with the largest key (by convention).

BST of size 3: For instance (1, 3); 7 + 7.5 (1) vs. 2 + 4 + 7.5 (2) vs. 5 + 7.5 (3). Hence,
node 3 is at the top. For the other 2 values ((2, 4) and (3, 5)), we do the same.

BST of size 4: For instance (2, 5); 10 + 8 (2) vs. 1.5 + 3.5 + 8 (3) vs. 7 + 1.5 + 8 (4) vs.
9 + 8 (5). Hence, node 3 is again at the top. The value (1, 4) is obtained similarly.

BST of size 5: We have 13+10 (1) vs. 2+10+10 (2) vs. 5+3.5+10 (3) vs. 12.5+1.5+10
(4) vs. 14.5 + 10 (5). Clearly node 3 wins. The optimal BST has weighted inner path
length of 18.5 and looks like this:

1

2

3

4

5

1



Task 2
Assume we want to construct an optimal binary search tree using the following greedy
algorithm: Choose an element v for which γ(v) is maximal as the root node and then
continue recursively. Show that this approach does not always yield an optimal binary
search tree.

Solution
Choose γ1 = 1

3
− ε, γ2 = 1

3
and γ3 = 1

3
+ ε. The greedy algorithm yields a chain (3− 2− 1)

with a weighted inner path length of(
1

3
+ ε

)
· 1 +

1

3
· 2 +

(
1

3
− ε
)
· 3 = 2− 2ε.

It is better to take the tree with root v = 2 (and left child 1, right child 3). We obtain a
weighted inner path length of

1

3
· 1 +

(
1

3
− ε+

1

3
+ ε

)
· 2 =

5

3
< 2− 2ε

for all 0 < ε < 1
6
.

Task 3
Use Floyd’s algorithm to compute all shortest paths in the following graph:

1 2

3

4 5

4
2

5 6

3

3

2

1

Solution
To use the dynamic programming approach, we compute the adjacency matrix of this
graph:

A =


0 ∞ 2 2 4
∞ 0 ∞ ∞ 3
1 3 0 ∞ ∞
∞ ∞ 5 0 ∞
∞ ∞ 6 ∞ 0


2



In the first step (k = 1) we consider the first row and first column of the matrix and change
value A[3, 4] and A[3, 5]. 

0 ∞ 2 2 4
∞ 0 ∞ ∞ 3
1 3 0 3 5
∞ ∞ 5 0 ∞
∞ ∞ 6 ∞ 0


We proceed with k = 2, but nothing changes. But k = 3 yields:

0 5 2 2 4
∞ 0 ∞ ∞ 3
1 3 0 3 5
6 8 5 0 10
7 9 6 9 0


For k = 4 nothing changes again. Now k = 5 (last row, last column):

0 5 2 2 4
10 0 9 12 3
1 3 0 3 5
6 8 5 0 10
7 9 6 9 0


This is the final matrix. Every entry A[i, j] shows us exactly the shortest paths from i to
j. For instance from 2 to 1 we pass by node 5 and 3 (length 3 + 6 + 1 = 10).

3


