Exercise 7

Task 1

Construct an optimal binary search tree for the following elements v with probabilities $\gamma(v)$ (2 means 20% etc.).

v	1	2	3	4	5
$\gamma(v)$	2	1.5	4	1	1.5

Solution

To compute a BST with smallest weighted inner path length, we use dynamic programming. Let cost $[i, j]$ be the weighted inner path length of the optimal BST for the node set $\{i, \ldots, j\}$ with root $\mathrm{r}[i, j]$.

$i \backslash j$	1	2	3	4	5
1	2	5	12.5	14.5	18.5
2	0	1.5	7	9	13
3		0	4	6	10
4			0	1	3.5
5				0	1.5

$i \backslash j$	1	2	3	4	5
1	1	1	3	3	3
2		2	3	3	3
3			3	3	3
4				4	5
5					5

Initialize $\operatorname{cost}[i, i-1]=0, \operatorname{cost}[i, i]=\gamma(i)$ and $\mathrm{r}[i, i]=i$. In the next step, the node with the highest weight (probability) has to be the root node, hence we can fill in the tables at position $(i, i+1)$. The trick in the following steps is now to pick a root, where the sum of the optimal costs of the BST for the left and the right subtree plus the total weight $\Gamma=\gamma(i)+\cdots+\gamma(j)$ is minimal (for the minimization we can ignore Γ of course). Among the optimal roots, we pick the one with the largest key (by convention).
BST of size 3: For instance $(1,3) ; 7+7.5$ (1) vs. $2+4+7.5(2)$ vs. $5+7.5$ (3). Hence, node 3 is at the top. For the other 2 values $((2,4)$ and $(3,5))$, we do the same.
BST of size 4: For instance $(2,5) ; 10+8(2)$ vs. $1.5+3.5+8(3)$ vs. $7+1.5+8$ (4) vs. $9+8(5)$. Hence, node 3 is again at the top. The value $(1,4)$ is obtained similarly.
BST of size 5: We have $13+10(1)$ vs. $2+10+10(2)$ vs. $5+3.5+10(3)$ vs. $12.5+1.5+10$ (4) vs. $14.5+10(5)$. Clearly node 3 wins. The optimal BST has weighted inner path length of 18.5 and looks like this:

Task 2

Assume we want to construct an optimal binary search tree using the following greedy algorithm: Choose an element v for which $\gamma(v)$ is maximal as the root node and then continue recursively. Show that this approach does not always yield an optimal binary search tree.

Solution

Choose $\gamma_{1}=\frac{1}{3}-\varepsilon, \gamma_{2}=\frac{1}{3}$ and $\gamma_{3}=\frac{1}{3}+\varepsilon$. The greedy algorithm yields a chain ($3-2-1$) with a weighted inner path length of

$$
\left(\frac{1}{3}+\varepsilon\right) \cdot 1+\frac{1}{3} \cdot 2+\left(\frac{1}{3}-\varepsilon\right) \cdot 3=2-2 \varepsilon .
$$

It is better to take the tree with root $v=2$ (and left child 1 , right child 3). We obtain a weighted inner path length of

$$
\frac{1}{3} \cdot 1+\left(\frac{1}{3}-\varepsilon+\frac{1}{3}+\varepsilon\right) \cdot 2=\frac{5}{3}<2-2 \varepsilon
$$

for all $0<\varepsilon<\frac{1}{6}$.

Task 3

Use Floyd's algorithm to compute all shortest paths in the following graph:

Solution

To use the dynamic programming approach, we compute the adjacency matrix of this graph:

$$
A=\left(\begin{array}{ccccc}
0 & \infty & 2 & 2 & 4 \\
\infty & 0 & \infty & \infty & 3 \\
1 & 3 & 0 & \infty & \infty \\
\infty & \infty & 5 & 0 & \infty \\
\infty & \infty & 6 & \infty & 0
\end{array}\right)
$$

In the first step $(k=1)$ we consider the first row and first column of the matrix and change value $A[3,4]$ and $A[3,5]$.

$$
\left(\begin{array}{ccccc}
0 & \infty & 2 & 2 & 4 \\
\infty & 0 & \infty & \infty & 3 \\
1 & 3 & 0 & 3 & 5 \\
\infty & \infty & 5 & 0 & \infty \\
\infty & \infty & 6 & \infty & 0
\end{array}\right)
$$

We proceed with $k=2$, but nothing changes. But $k=3$ yields:

$$
\left(\begin{array}{ccccc}
0 & 5 & 2 & 2 & 4 \\
\infty & 0 & \infty & \infty & 3 \\
1 & 3 & 0 & 3 & 5 \\
6 & 8 & 5 & 0 & 10 \\
7 & 9 & 6 & 9 & 0
\end{array}\right)
$$

For $k=4$ nothing changes again. Now $k=5$ (last row, last column):

$$
\left(\begin{array}{ccccc}
0 & 5 & 2 & 2 & 4 \\
10 & 0 & 9 & 12 & 3 \\
1 & 3 & 0 & 3 & 5 \\
6 & 8 & 5 & 0 & 10 \\
7 & 9 & 6 & 9 & 0
\end{array}\right)
$$

This is the final matrix. Every entry $A[i, j]$ shows us exactly the shortest paths from i to j. For instance from 2 to 1 we pass by node 5 and 3 (length $3+6+1=10$).

