
Algorithmik II

Markus Lohrey

Universität Siegen

Wintersemester 2020/2021

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 1 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Convolution of polynomials

Consider two polynomials (with coefficients from C or another field)

f (x) = a0 + a1x + a2x2 +⋯anxn, g(x) = b0 + b1x + b2x2 +⋯bmxm

represented by the coefficient tuples

f = (a0, . . . ,an,an+1, . . . ,aN−1), g = (b0, . . . ,bm,bm+1, . . . ,bN−1),

where N = n +m + 1, an+1 = ⋯ = aN−1 = bb+1 = ⋯ = bN−1 = 0.
We want to compute the product polynomial

(fg)(x) = a0b0 + (a1b0 + a0b1)x +⋯+ (a0bN−1 +⋯+ aN−1b0)xN−1

represented by the coefficient tuple

fg = (a0b0,a1b0 + a0b1, . . . ,a0bN−1 +⋯+ aN−1b0),

(also called the convolution of the tuples f and g).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 2 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Point representation of polynomials

Naive computation of fg : O(N2) scalar operations in the coefficient field.

FFT (James Cooley and John Tukey, 1965): only O(N log(N)) operation.

Main idea: work with the point representation of polynomials.

A polynomial f of degree at most N − 1 can be uniquely represented by its
values

(f (ζ0), f (ζ1), . . . , f (ζN−1)),

where ζ0, . . . , ζN−1 are N different values of the underlying field (e.g. C).

We obviously have (fg)(ζ) = f (ζ)g(ζ).

Hence: the point representation of the convolution of f and g can be
computed in time O(N) from the point representations of f and g .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 3 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Main principle of FFT

Main principle of the fast Fourier transformation (FFT):

coefficient rep. of f and g

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 4 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Main principle of FFT

Main principle of the fast Fourier transformation (FFT):

coefficient rep. of f and g

point rep. of f and g

evaluation

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 4 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Main principle of FFT

Main principle of the fast Fourier transformation (FFT):

coefficient rep. of f and g

point rep. of f and g

Auswertung

point rep. of f ⋅ g
pointwise ×

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 4 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Main principle of FFT

Main principle of the fast Fourier transformation (FFT):

coefficient rep. of f and g

point rep. of f and g

evaluation

coefficient rep. of f ⋅ g

point rep. of f ⋅ g

interpolation

pointwise ×

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 4 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Roots of unity

The crucial point is the choice of the points ζ0, ζ1, . . . , ζN−1.

Assumption: The coefficients of the polynomials come from a field F such
that:

N has a multiplicative inverse in F, i.e. the characteristics of F does
not divide N.

The polynomial XN − 1 has N different roots (the N-th roots of
unity), which can be written as ωi (0 ≤ i < N) for a root ω.

For the field F = C both conditions are satisfied and the N-th roots of
unity are ωj (0 ≤ j < N), where ω = e 2πi

N .

The root ω is also called a primitive N-th root of unity.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 5 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Roots of unity in C

Let ω = e 2πi
12 = cos (2π

12
) + sin (2π

12
) ⋅ i (a primitve 12-th root of unity in C).

Im

Re
.ω0

.ω1

.ω2.ω3

.ω4

.ω5

.
ω6

.
ω7

.
ω8 .

ω9

.
ω10

.
ω11

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 6 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Fast Fourier transformation (FFT)

Lemma 1

If there are N different N-th roots of unity, then there is a primitive N-th
root of unity.

Proof: Assume that the polynomial XN − 1 has N different roots.

The N-th roots of unity form a finite abelian group G of cardinality N
under multiplication.

We have to show that G is cyclic, i.e., G is generated by single element ω
(which then is a primitive N-th root of unity).

Assume that G is not cyclic. Then, xd = 1 for all x ∈ G , where d is a
proper divisor of N.

Thus, xd − 1 has N different roots, a contradiction.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 7 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Roots of unity

Some useful facts from algebra (recall that i ≡ j mod N means that
i − j = k ⋅N for some k ∈ Z):

Lemma 2

Let ω be a primitive N-th root of unity and let i , j ∈ Z:

ωi = ωj if and only if i ≡ j mod N.

ωi is a primitive N-th root of unity if and only if gcd(i ,N) = 1
(gcd(i ,N) = greatest common divisor of i and N).

In particular, ω−1 = ωN−1 is a primitive N-th root of unity.

Proof:

ωi = ωj ⇔ ωi−j = 1 ⇔ ω(i−j)mod N = ω0 ⇔ (i − j) mod N = 0
⇔ i ≡ j mod N

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 8 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Roots of unity

First assume that gcd(i ,N) = 1. Then there exist a,b ∈ Z with
a ⋅ i + b ⋅N = 1.
Hence, ω = ω1 = ωa⋅i+b⋅N = (ωi)a(ωN)b = (ωi)a.
Thus, ωi is primitive root of unity.

Assume that ωi is a primitive root of unity.

Hence, there exists a ∈ Z such that ω1 = (ωi)a = ωa⋅i .

By the first statement of the lemma, we get 1 ≡ a ⋅ i mod N.

Hence, there exists b ∈ Z with 1 = a ⋅ i + b ⋅N.

This implies gcd(i ,N) = 1.
The third statement of the lemma follows from the second, since
gcd(−1,N) = 1.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 9 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Fast Fourier transformation (FFT)

Fix a primitive N-th root of unity ω.

Choose the points ζi = ωi (0 ≤ i ≤ N − 1) for the evaluation of f and g .

Evaluation of the polynomial f = a0 + a1x +⋯aN−1x
N−1 at the points

ω0 = 1, ω1, . . . , ωN−1 is equivalent to a matrix-vector multiplication:

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 ⋯ 1

1 ω1 ω2 ⋯ ωN−1

1 ω2 ω4 ⋯ ω2(N−1)

⋮ ⋮ ⋮ ⋮
1 ωN−1 ω2(N−1) ⋯ ω(N−1)

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
⋮

aN−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

f (1)
f (ω)
f (ω2)
⋮

f (ωN−1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

The linear mapping realized by the matrix FN(ω) = (ωij)0≤i ,j<N is called
the discrete Fourier transformation.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 10 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Inverse FFT

Lemma 3

(FN(ω))−1 = 1
N
FN(ω−1), i.e. the inverse of the matrix (ωij)0≤i ,j<N is the

matrix (ω−ij
N
)
0≤i ,j<N

(recall: ω−1 is a primitive N-th root of unity).

Proof: Since we have

xN − 1 = (x − 1) ⋅
N−1

∑
k=0

xk ,

every ωi for 1 ≤ i ≤ N − 1 is a root of the polynomial ∑N−1
k=0 xk .

Hence, we get for all 0 ≤ i ≤ N − 1:

N−1

∑
k=0

ωi ⋅k =
⎧⎪⎪⎨⎪⎪⎩

0 if i > 0
N if i = 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 11 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Inverse FFT

We obtain for all 0 ≤ i , j ≤ N − 1:

N−1

∑
k=0

ωik ⋅
ω−kj

N
=

N−1

∑
k=0

1

N
⋅ ωk⋅(i−j)

=
N−1

∑
k=0

1

N
⋅ ωk⋅(i−j) mod N

=
⎧⎪⎪⎨⎪⎪⎩

0 if i ≠ j
1 if i = j

(note that for 0 ≤ i , j ≤ N − 1: i = j if and only if (i − j) mod N = 0)

Hence (ω−ij
N
)
0≤i ,j<N is indeed the inverse of the matrix (ωij)

0≤i ,j<N .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 12 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

FFT using divide & conquer

It remains to compute the discrete Fourier transformation

f ↦ FN(ω) ⋅ f

(where f = (a0,a1, . . . ,aN−1)T) in time O(N log(N)).

Then, we can compute the inverse discrete Fourier transformation
(= interpolation)

h ↦ (FN(ω))−1 ⋅ h =
1

N
FN(ω−1) ⋅ h

within the same time bound.

The “school method” for the multiplication of a matrix with a vector
needs time O(N2): no gain over the “school method” for polynomial
multiplication.

We compute FN(ω) ⋅ f = (ωij)0≤i ,j<N ⋅ f using divide & conquer.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 13 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

FFT using divide & conquer

Assume that N is even. For f (x) = a0 + a1x +⋯+ aN−1x
N−1 let

f0(x) = a0 + a2x
2 + a4x

4 +⋯+ aN−2x
N−2

f̂0(x) = a0 + a2x + a4x
2 +⋯+ aN−2x

N−2
2

f1(x) = a1 + a3x
2 + a5x

4 +⋯+ aN−1x
N−2

f̂1(x) = a1 + a3x + a5x
2 +⋯+ aN−1x

N−2
2

We have f (x) = f0(x) + x ⋅ f1(x), f0(x) = f̂0(x2) and f1(x) = f̂1(x2).
The polynomials f̂0(x) and f̂1(x) have degree ≤ N−2

2
= N

2
− 1.

Let 0 ≤ i < N. Since ω2 is a primitive N
2
-th root of unity, we get:

(FN(ω) ⋅ f0)i = f0(ωi) = f̂0(ω2i) = f̂0(ω2i modN) = f̂0(ω2(i mod
N
2
))

= f̂0((ω2)i mod
N
2) = (FN

2
(ω2) ⋅ f̂0)i mod

N
2
,

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 14 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

FFT using divide & conquer

In particular, we have

(FN(ω) ⋅ f0)i = (FN(ω) ⋅ f0)i+N
2
= (FN

2
(ω2) ⋅ f̂0)i

for 0 ≤ i ≤ N
2
− 1.

We obtain

FN(ω) ⋅ f0 =
⎛
⎝
FN

2

(ω2) ⋅ f̂0
FN

2

(ω2) ⋅ f̂0
⎞
⎠

and analogously

FN(ω) ⋅ f1 =
⎛
⎝
FN

2
(ω2) ⋅ f̂1

FN
2

(ω2) ⋅ f̂1
⎞
⎠ .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 15 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

FFT using divide & conquer

With f (x) = f0(x) + x ⋅ f1(x) we get for all 0 ≤ i ≤ N − 1:

(FN(ω) ⋅ f)i = f (ωi)
= f0(ωi) + ωi ⋅ f1(ωi)
= (FN(ω) ⋅ f0)i + ωi ⋅ (FN(ω) ⋅ f1)i

We have reduced the computation of FN(ω) ⋅ f to

the computation of FN
2

(ω2) ⋅ f̂0 and FN
2

(ω2) ⋅ f̂1
(2 FFTs in dimension N/2)
and Θ(N) many further arithmetic operations.

We obtain the recursion Tfft(N) = 2Tfft(N/2) + dN for a constant d .

Master theorem I (a = b = 2, c = 1): Tfft(N) ∈ θ(N logN).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 16 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Fast Fourier transformation (FFT)

Main principle of FFT:

coefficient rep. of f and g

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 17 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Fast Fourier transformation (FFT)

Main principle of FFT:

coefficient rep. of f and g

point rep. of f and g

evaluation

FN(ω)
O(N log(N))

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 17 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Fast Fourier transformation (FFT)

Main principle of FFT:

coefficient rep. of f and g

point rep. of f and g

evaluation

FN(ω)
O(N log(N))

point rep. of f ⋅ g
pointwise ×
O(N)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 17 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

Fast Fourier transformation (FFT)

Main principle of FFT:

coefficient rep. of f and g

point rep. of f and g

evaluation

FN(ω)
O(N log(N))

coefficient rep. of f ⋅ g

point rep. of f ⋅ g

interpolation
1
N
FN(ω−1)

O(N log(N))

pointwise ×
O(N)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 17 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

FFT over finite fields

Assume we want to use FFT in order to multiply polynomials with integer
coefficients.

The main problem with computing in the field C are rounding errors to to
appoximation of N-th roots of unity.

Recall that FFT works for every field F with the following properties:

N has a multiplicative inverse in F, i.e., the characteristic of F does
not divide N.

There is a primitive N-th root of unity.

Lemma 4

Let p be a prime number. The field Fp has an N-th primitive root of unity,
if N is a divisor of p − 1.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 18 / 158

Number-theoretic algorithms Fast Fourier transformation (FFT)

FFT over finite fields

Solution of the rounding problem for C:

Assume that all coefficients of the product polynomial f ⋅ g belong to
the interval [−d ,d].

N = 2m is convenient for FFT.

Search for a prime p of the form p = 2m ⋅ k + 1 for some
k ≥ 1 (Fourier prime) with p > 2d (there are many such primes, see e.g.
http://www.csd.uwo.ca/~moreno/CS874/Lectures/Newton2Hensel.html/node9.html).

Since gcd(N,p) = 1, N has a multiplicative inverse in Fp. We can
therefore do FFT in Fp.

This yields the coefficients of f ⋅ g modulo p, from which we get
(because of p > 2d) the coefficients in Z.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 19 / 158

http://www.csd.uwo.ca/~moreno/CS874/Lectures/Newton2Hensel.html/node9.html

Number-theoretic algorithms Fast Fourier transformation (FFT)

Further applications of FFT

FFT has many applications, e.g.

fast multiplication of integers starting with Schönhage-Strassen
(running time: O(n log n log log n).
Latest development (Harvey, van der Hoeven, March 2019):
multiplication of n-bit integers in time O(n log n), see
https://web.maths.unsw.edu.au/~davidharvey/papers/nlogn/.

pattern matching in strings

filter algorithms in signal processing

fast algorithms for the discrete cosine and sine transformation (used
for instance in JPEG and MP3/MPEG).

FFT can be found on a list of the 10 most important algorithms of the
20th century: https://cs.gmu.edu/~henryh/483/top-10.html.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 20 / 158

https://web.maths.unsw.edu.au/~davidharvey/papers/nlogn/
https://cs.gmu.edu/~henryh/483/top-10.html

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

The best current algorithm for multiplying two (n × n)-matrices needs
approx. Θ(n2,372873...) many arithmetic operations (Virginia Vassilevska
Williams 2014).

Conjecture

For every ǫ > 0 there exists an algorithm for multiplying two
(n × n)-matrices in time O(n2+ε).

Assume now that we have three (n × n)-matrices A, B and C .

How many arithmetic operations are needed to test whether A ⋅B = C
holds?

Trivial answer: O(n2,372873...)

But there is a better method!

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 21 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

Theorem 5 (Korec, Wiedermann 2014)

Let A,B ,C be (n × n)-matrices with entries from Z. Using O(n2) many
operations we can check whether A ⋅B = C holds.

Proof: Let

A = (ai ,j)1≤i ,j≤n,
B = (bi ,j)1≤i ,j≤n,
C = (ci ,j)1≤i ,j≤n and

D = (di ,j)1≤i ,j≤n = A ⋅B −C .

Thus, we have A ⋅B = C if and only if D is the zero-matrix.

Let x be real-valued variable and consider the column-vector

v(x) = (1, x , x2, . . . , xn−1)T .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 22 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

Hence, D ⋅ v(x) = [A ⋅B −C] ⋅ v(x) is a column-vector whose i -th entry is
the polynomial

pi(x) = di ,1 + di ,2x + di ,3x
2 +⋯+ di ,nx

n−1.

We therefore have A ⋅B = C if and only if pi(x) is the zero polynomial for
all 1 ≤ i ≤ n.
We use the following theorem:

Cauchy bound

Let p(x) = anxn + an−1x
n−1 +⋯+ a1x + a0 ∈ R[x] be not the

zero-polynomial and an ≠ 0. For every α with p(α) = 0 we have

∣α∣ < 1 + max{∣ai ∣ ∣ 0 ≤ i ≤ n − 1}
∣an∣

.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 23 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

Proof of the Cauchy bound:

Assume that we have already proved the Cauchy bound for the case an = 1.

Then we get the general statement as follows:

Let α be a root of p(x) = anxn + an−1x
n−1 +⋯+ a1x + a0 with an ≠ 0.

Then α is also a root of the polynomial xn + an−1
an

xn−1 +⋯+ a1
an
x + a0

an
.

The Cauchy bound for the case an = 1 yields

∣α∣ < 1 +max{∣
ai
an
∣ ∣ 0 ≤ i ≤ n − 1} = 1 + max{∣ai ∣ ∣ 0 ≤ i ≤ n − 1}

∣an∣
.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 24 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

It remains to prove the Cauchy bound for a polynomial

p(x) = xn + an−1x
n−1 +⋯+ a1x + a0.

Let h = max{∣ai ∣ ∣ 0 ≤ i ≤ n − 1}.

Assume that p(α) = αn + an−1α
n−1 +⋯ + a1α + a0 = 0, i.e.,

αn = −an−1αn−1 −⋯− a1α − a0. (1)

We show that ∣α∣ < 1 + h.

If ∣α∣ ≤ 1, we have ∣α∣ < 1 + h (if h = 0 then we have αn = 0, i.e., α = 0).

Now assume that ∣α∣ > 1.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 25 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

Using (1) and the laws ∣a+b∣ ≤ ∣a∣+ ∣b∣, ∣a ⋅b∣ = ∣a∣ ⋅ ∣b∣ for all a,b ∈ R, we get

∣α∣n ≤ ∣an−1∣ ⋅ ∣α∣n−1 +⋯ + ∣a1∣ ⋅ ∣α∣ + ∣a0∣
≤ h ⋅ (∣α∣n−1 +⋯+ ∣α∣ + 1)

= h ⋅
∣α∣n − 1

∣α∣ − 1
.

Since ∣α∣ > 1, we obtain:

∣α∣ − 1 ≤ h ⋅ ∣α∣
n − 1

∣α∣n
< h

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 26 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

Let us define

a = max{∣ai ,j ∣ ∣ 1 ≤ i , j ≤ n},
b = max{∣bi ,j ∣ ∣ 1 ≤ i , j ≤ n},
c = max{∣ci ,j ∣ ∣ 1 ≤ i , j ≤ n}.

The absolute values of the coefficients of the polynomials pi(x) can be
bounded as follows:

∣di ,j ∣ = ∣
n

∑
k=1

ai ,kbk,j − ci ,j ∣ ≤
n

∑
k=1
∣ai ,k ∣ ⋅ ∣bk,j ∣ + ∣ci ,j ∣ ≤ n ⋅ a ⋅ b + c .

Let d = n ⋅ a ⋅ b + c and r = 1 + d .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 27 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

If pi(x) is not the zero polynomial, then we can write

pi(x) = di ,1 + di ,2x + di ,3x
2 +⋯+ di ,kx

k−1 ∈ Z[x]

with di ,k ≠ 0.

Since A,B ,C are matrices over Z, all di ,j are integers and thus ∣di ,k ∣ ≥ 1.

Then, by the Cauchy bound, every root α of pi(x) satisfies

∣α∣ < 1 + max{∣di ,j ∣ ∣ 1 ≤ j ≤ k − 1}
∣di ,k ∣

≤ 1 + d = r .

Hence, for all 1 ≤ i ≤ n we have

pi(x) = 0 ⇐⇒ pi(r) = 0.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 28 / 158

Number-theoretic algorithms A ⋅ B = C?

How can we test whether A ⋅B = C?

We can therefore check with the following algorithm, whether A ⋅B = C :

1 Compute a, b, c , and r = 1 + n ⋅ a ⋅ b + c according to Slide 27.
(3n2 many comparisons, 2 additions, 2 multiplications)

2 Compute the column vector u = (1, r , r2, . . . , rn−1)T = v(r).
(n − 2 multiplications)

3 Compute the vectors p ∶= B ⋅ u, s ∶= A ⋅ p and t ∶= C ⋅ u
(O(n2) many arithmetic operations)

4 We obtain

s = t ⇐⇒ A ⋅B ⋅ v(r) = C ⋅ v(r)
⇐⇒ [A ⋅B −C] ⋅ v(r) = 0
⇐⇒ pi(r) = 0 for all 1 ≤ i ≤ n
⇐⇒ pi(x) = 0 for all 1 ≤ i ≤ n
⇐⇒ A ⋅B = C

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 29 / 158

Parallel algorithms

Parallel algorithms and NC

1 Introduction to parallel architectures

2 The class NC and parallel matrix multiplication

3 Parallel computation of prefix sums

4 Parallel integer addition, multiplication and division

5 Parallel computation of determinants

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 30 / 158

Parallel algorithms

Introduction to parallel architectures

Parallel random access machines (PRAM)

CRCW (concurrent read concurrent write)
CREW (concurrent read exclusive write)
EREW (exclusive read exclusive write)
ERCW (exclusive read concurrent write)

Vector machines

SIMD or MIMD

Boolean and arithmetic circuits

DAG (directed acyclic graph) with input and output gates
gates for basic boolean / arithmetic operations

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 31 / 158

Parallel algorithms

Example for a boolean circuit

x0

x2

x3

x1

y1

y2

Gates on the same level can be evaluated in parallel.

Parallel time corresponds to depth (number of gates on a longest path
from an input to an output) of the circuit (here 4).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 32 / 158

Parallel algorithms

The class NC

NC denotes the class of all problems that can be “efficiently parallelized”.

NC stands for “Nick’s Class” (after Nick Pippenger).

Definition(s):

All problems that can solved by a PRAM with nO(1) processors in
time (log n)O(1).
All problems that can be solved by boolean circuits of depth
(log n)O(1) and nO(1) gates (one circuit for every bit length n
of the input).

The class is robust against small changes in the machine model.

The question NC
?= P is open.

There are so-called P-complete problems (e.g. evaluation of boolean
circuits) that belong to P, but most people belief that they do not belong
to NC.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 33 / 158

Parallel algorithms

Compute a sum of n numbers

Example

The sum s = ∑n−1
i=0 xi can be computed with n processors in time log n.

The balanced binary tree technique:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

s

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

⊗ ⊗

⊗

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 34 / 158

Parallel algorithms

Parallel matrix multiplication

Theorem 6

The product of two (n × n)-matrices can be computed with n3 processors
in time 1 + log n.

Proof: Let A = (aij) and B = (bij).
We have (A ⋅B)ij = ∑n

k=1 aikbkj .

Compute with n3 processors all n3 products aikbkj .

Assign n processors to each of the n2 sums.

Compute in time log n all n2 sums (using the balanced binary tree
technique).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 35 / 158

Parallel algorithms

Parallel prefix sums

The problem:

Input: xi (0 ≤ i ≤ n − 1)

Output: all prefix sums ∑i
j=0 xj for all 0 ≤ i ≤ n − 1

Theorem 7

All prefix sums can be computed with n processors in time log n.

Proof:. Let xi = 0 for all i < 0.
for d ∶= 0 to ⌈log n⌉ − 1 do

for all i ∈ {0, . . . ,n − 1} do in parallel
xi ∶= xi−2d + xi

endfor
endfor

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 36 / 158

Parallel algorithms

Parallel prefix sums

Let xi ,k be the value of the variable xi after the k-th iteration of the outer
for-loop (note that d = k − 1 in the k-th iteration)

By induction on k we show: xi ,k = ∑i
j=i−2k+1 xj .

For k = 0 we have xi ,0 = xi = ∑i
j=i xj = ∑i

j=i−20+1 xj .

Now assume that xi ,k−1 = ∑i
j=i−2k−1+1 xj .

Then after the k–th iteration of the outer for-loop we have:

xi ,k = xi−2k−1,k−1 + xi ,k−1

=
i−2k−1

∑
j=i−2k−1−2k−1+1

xj +
i

∑
j=i−2k−1+1

xj =
i

∑
j=i−2k+1

xj

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 37 / 158

Parallel algorithms

Parallel prefix sums

Finally, for k = ⌈log n⌉ we have for all 0 ≤ i ≤ n − 1:

xi ,⌈log n⌉ =
i

∑
j=i−2⌈log n⌉+1

xj =
i

∑
j=0

xj .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗∑i
j=i−1 xj

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗∑i
j=i−3 xj

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗∑i
j=i−7 xj

∑i
j=i−15 xj

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 38 / 158

Parallel algorithms

Parallel Integer Arithmetic

In the following we want to find efficient parallel algorithms for the
important arithmetic operations on integers:

addition (basically the same algorithm also works for subtraction)

multiplication

division with remainder

The size parameter n is always the number of bits of the two input
integers a and b.

The elementary operations carried out by the processors are bit
manipulations (computing the logical and, or, xor of two bits).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 39 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry =
sum =

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 0

sum = 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 1 0

sum = 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 1 1 0

sum = 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 0 1 1 0

sum = 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 0 0 1 1 0

sum = 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 0 0 0 1 1 0

sum = 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 0 0 0 0 1 1 0

sum = 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 1 0 0 0 0 1 1 0

sum = 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 1 1 0 0 0 0 1 1 0

sum = 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 0 1 1 0 0 0 0 1 1 0

sum = 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 1 0 1 1 0 0 0 0 1 1 0

sum = 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 0 1 0 1 1 0 0 0 0 1 1 0

sum = 0 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 1 0 1 0 1 1 0 0 0 0 1 1 0

sum = 1 0 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0

sum = 1 1 0 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0

sum = 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Adding binary integers

The school method for adding binary integers is not a good parallel
algorithm!

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

carry = 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0

sum = 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 40 / 158

Parallel algorithms

Integer Addition in NC

Theorem 8

Two binary n-bit integers can be added with n processors in time O(log n).
Proof: Let a = (an−1⋯a1a0)2 and b = (bn−1⋯b1b0)2 be the input number
(least significant bit = right-most bit).

Step 1: Compute with n processors in time O(1) the carry propagation
string cncn−1⋯c2c1c0:

ci =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ai−1 = bi−1 = 0 ∨ i = 0
1 ai−1 = bi−1 = 1
p else

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 41 / 158

Parallel algorithms

Integer Addition in NC

Step 2: Compute with n processors in time O(log n) carryi from ci with
the parallel prefix sum algorithm applied to the following binary associative
operation:

0 ⋅ x = 0
1 ⋅ x = 1
p ⋅ x = x

Note: the parallel prefix sum algorithm works for any binary associative
operation ((x ⋅ y) ⋅ z = x ⋅ (y ⋅ z)) instead of +.

Step 3: Compute the i -th bit of the sum a+ b as the XOR (exclusive or) of
ai , bi and carryi (where an = bn = 0).

Recall: 0 xor 0 = 1 xor 1 = 0, 0 xor 1 = 1 xor 0 = 1

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 42 / 158

Parallel algorithms

Integer Addition in NC

Example:

a = 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

b = 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1

c = 1 p 0 1 0 1 0 p 1 p p p 0 p 1 0

carry = 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0

sum = 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 43 / 158

Parallel algorithms

Integer Multiplikation in NC

Next goal: compute product of a = (an−1⋯a1a0)2, b = (bn−1⋯b1b0)2.
Note: a ⋅ b has at most 2n bits.

Reduction to iterated integer addition:

a ⋅ b = (n−1∑
i=0

ai ⋅ 2
i) ⋅ b = n−1

∑
i=0
(ai ⋅ 2i ⋅ b)

Note: 2i ⋅ b = (bn−1⋯b1b0 0⋯0±
i many

)2 (i -fold shift) is easy to compute.

From Theorem 8 we get: two n-bit integers can be multiplied with n2

processors in time (log n)2 (use a balanced binary tree of depth log n
where in each node two integers of bit length at most 2n are added).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 44 / 158

Parallel algorithms

Integer Multiplication in NC

Lemma 9

From three n-bit integers a,b, c we can compute with n processors in time
O(1) two (n + 1)-bit integers d , e such that a + b + c = d + e.

Proof:
100111
011100
+111101

10
01

11 111101
10 +000110

10
+10

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 45 / 158

Parallel algorithms

Integer Multiplication in NC

Theorem 10

The sum n many n-bit integers can be computed with n2 processors in
time O(log n).
Proof:

Divide the n input numbers a1,a2, . . . ,an into blocks of three
numbers (and possibly one block of at most two numbers).

For each block [ai ,ai+1,ai+2] (n/3 many) compute in constant time
with O(n2) processors two numbers (with at most n + 1 bits) whose
sum is ai + ai+1 + ai+2.

In this way, we obtain (n + 1)-bit numbers b1,b2, . . . ,bm with
m ≈ 2n/3 such that ∑n

i=1 ai = ∑m
i=1 bi .

After roughly log3/2(n) iterations of this step only two numbers x1, x2
with roughly n + log3/2(n) bits such that ∑n

i=1 ai = x1 + x2 remain.

Compute x1 + x2 in time O(log n).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 46 / 158

Parallel algorithms

Integer Multiplication in NC

Using the reduction from Slide 44 we get:

Corollary

Two n-bit integers can be multiplied with n2 processors in time O(log n).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 47 / 158

Parallel algorithms

Integer Division in NC

Goal: Compute for two given integers s, t > 0 with at most n bits the
unique numbers q and r such that s = qt + r and 0 ≤ r < t.

We will accomplish this in time O((log n)2) with O(n4) processors.
Main tool: Newton approximation for roots.

Let f ∶ R→ R.

Guess an initial value x0 and compute the sequence (xi)i≥0 using the
recursion

xi+1 = xi −
f (xi)
f ′(xi) , where f ′ = df /dx

If you are lucky this sequence (xi)i≥0 converges to a root of f (a value y
with f (y) = 0).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 48 / 158

Parallel algorithms

Integer Division in NC

Take f (x) = t − 1
x
. Hence, 1

t
is the unique root of f .

f ′(x) = 1
x2
, hence Newton’s recursion becomes

xi+1 = xi −
f (xi)
f ′(xi) = xi −

t − 1
xi

1
x2
i

= 2xi − tx2i

Let x0 be the unique number of the form 1
2j

(j ≥ 0) in the interval (1
2t
, 1
t
].

We compute x0 in time O(1) using n processors as follows: find the unique
power of two 2j in the interval [t,2t), reverse the order of bits and place a
decimal point after the first 0.

Example: t = 11011 → 100000 → 0.00001

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 49 / 158

Parallel algorithms

Integer Division in NC

Lemma 11

The sequence (xi)i≥0 with xi+1 = 2xi − tx2i and x0 the unique number of
the form 1

2j
in the interval (1

2t
, 1
t
] satisfies 0 ≤ 1 − t ⋅ xi < 1

2(2
i)
.

Proof: Induction over i :

By definition of x0 we have 1
2t
< x0 ≤ 1

t
, i.e., 0 ≤ 1 − tx0 < 1

2
.

For i ≥ 0 we obtain 1 − t ⋅ xi+1 = 1 − t(2 ⋅ xi − t ⋅ x2i) = (1 − t ⋅ xi)2.
Since by the induction hypothesis we have 0 ≤ 1 − t ⋅ xi < 1

2(2
i)
, we get

0 ≤ 1 − t ⋅ xi+1 = (1 − t ⋅ xi)2 < (1

2(2i)
)2 = 1

2(2i+1)
.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 50 / 158

Parallel algorithms

Integer Division in NC

From the previous lemma we obtain for k = ⌈log(log(s))⌉ ∈ O(log n):
0 ≤ 1 − t ⋅ xk <

1

2(2⌈log(log(s))⌉)
≤ 1

s
≤ t

s
.

Hence, 0 ≤ s − s ⋅ xk ⋅ t < t, i.e., 0 ≤ s
t
− s ⋅ xk < 1.

It follows that the integer part q = ⌊ s
t
⌋ of s

t
is either ⌈s ⋅ xk⌉ or ⌊s ⋅ xk⌋ (the

correct value can be found by a test involving a single multiplication).

The remainder r can be computed as r = s − qt.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 51 / 158

Parallel algorithms

Integer Division in NC

Estimate for the parallel time: let bi be the number of bits of xi .

Recall: xi+1 = 2 ⋅ xi − t ⋅ x2i and b0 ≤ n + 1.

2 ⋅ xi has at most bi + 1 bits, t ⋅ x2i has at most n + 2bi bits.

We obtain bi+1 ≤ 2bi + n + 1 and hence bi ≤ (2i+1 − 1) ⋅ (n + 1) ∈ O(2in).
Theorefore, xk (and all xi with i < k) have at most
O(2⌈log(log(s))⌉n) ≤ O(log(s) ⋅ n) ≤ O(n2) many bits.

It follows that the computation of xi+1 = 2 ⋅ xi − t ⋅ x2i from xi needs time
O(log(n)) with O(n4) processors.
Since k ∈ O(log(n)), the total parallel running time is O((log n)2).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 52 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Goal: An NC-algorithm for inverting an (n × n)-matrix (if the matrix is
invertible).

Convention: In the following considerations we assume that a single
processor can carry out a single arithmetic operation (addition,
multiplication, division with remainder) in time O(1).
Our previous results show that with this assumption we stay in the class
NC (assuming that all numbers that arise during the computations have at
most O(nc) bits for some constant c).

Remark: If A is an (n ×m)-matrix and B is an (m × p)-matrix, then we
can compute A ⋅B with n ⋅m ⋅ p processors in time O(log(m)).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 53 / 158

Parallel algorithms

Mathematical background: permutations

A permutation on [1,n] ∶= {1, . . . ,n} is a bijection σ ∶ [1,n] → [1,n].
The set of all permutations of [1,n] is denoted with Sn.

Composition of functions yields a natural product operation on Sn:

For σ, τ ∈ Sn we denote with στ the permutation such that for all
i ∈ [1,n]: (στ)(i) = τ(σ(i)) .
A transposition (on [1,n]) is a permutation σ that swaps two elements
i , j ∈ [1,n] with i ≠ j :

σ(i) = j
σ(j) = i
σ(k) = k for all k ∈ [1,n] ∖ {i , j}

We write this transposition as (i , j) or equivalently (j , i).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 54 / 158

Parallel algorithms

Mathematical background: permutations

Every permutation σ be written as a product of transpositions.

Example: Consider the permutation σ ∶ [1,8] → [1,8] with
a 1 2 3 4 5 6 7 8

σ(a) 5 4 7 2 3 8 1 6

We have σ = (1,7)(3,5)(5,7)(2, 4)(6, 8) (the transpositions are evaluated
from left to right).

The sign of a permutation σ is

sign(σ) =
⎧⎪⎪⎨⎪⎪⎩
+1 if σ is a product of an even number of transpositions

−1 if σ is a product of an odd number of transpositions

One cannot write a permutation as a product of an even number of
transpositions and at the same time write it as a product of an odd
number of transpositions!
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 55 / 158

Parallel algorithms

Mathematical background: determinants

For computing the determinant of a matrix, we can use the famous Leibniz
formula:

Leibniz formula for the determinant

Let A = (ai ,j)1≤i ,j≤n be an (n × n)-matrix. We have

det(A) = ∑
σ∈Sn

sign(σ) n

∏
i=1

ai ,σ(i).

Recall: a matrix A is invertible if and only if det(A) ≠ 0.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 56 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Step 1: Inverting a lower triangular matrix.

A matrix is a lower triangular matrix, if (i) all entries above the main
diagonal are 0 and (ii) all entries on the main diagonal are non-zero.

Example: The following matrix is lower triangular:

⎛⎜⎜⎜⎝

−3 0 0 0
2 2 0 0
0 3 1 0

−4 7 1 2

⎞⎟⎟⎟⎠

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 57 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Consider an lower triangular (n × n)-matrix A = (B 0
C D

).
B and D are lower triangular (n

2
× n

2
)-matrices and C is a (n

2
× n

2
)-matrix.

We have A−1 = (B−1 0
−D−1CB−1 D−1

) (check it!).

This identity leads to a parallel algorithm for computing A−1 with running
time T (n) = T (n

2
) +O(log(n)) using n3 processors.

We get T (n) ∈ O(log2(n)): If T (n) ≤ T(n
2
) + c ⋅ log2(n) then

T (n) ≤ c ⋅ (log2(n))2 +T (1) ∈ O(log2(n)).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 58 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Step 2: Solve a particular system of linear equations.

Consider a system of linear equations of the form

x1 = c1
x2 = a2,1x1 + c2

x3 = a3,1x1 + a3,2x2 + c3

⋮

xn = an,1x1 + an,2x2 +⋯an,n−1xn−1 + cn

The xi are the indeterminates, the ci and ai ,j are integers.

Let A = (ai ,j)1≤i ,j≤n, where ai ,j = 0 for i ≤ j and let c = (c1, . . . , cn)T .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 59 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

The system of linear equations is equivalent to Ax + c = x , i.e.,(A − Id)x = −c , where Id is the (n × n) identity matrix.

We get x = (Id − A)−1c .
Since Id − A is a lower triangular matrix, we can compute (Id − A)−1 with
n3 processors in time O(log2(n)).
Hence, x can be computed with n3 processors in time O(log2(n)).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 60 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Step 3 (the main step): Compute the characteristic polynomial.

The characteristic polynomial of an (n × n)-matrix A = (ai ,j)1≤i ,j≤n is

det(x ⋅ Id −A) = xn − s1x
n−1 + s2x

n−2 −⋯ + (−1)nsn =
=

n

∏
i=1
(x − λi).

The λ1, . . . , λn ∈ C are the eigenvalues of A (λi = λj for i ≠ j is allowed).

The number of times a certain λi occurs in this list is the multiplicity
multA(λi) of the eigenvalue λi .

The coefficient s1 is the trace of A (the first equality can be deduced from
the Leibniz formula – do it!):

s1 = tr(A) = n

∑
i=1

ai ,i =
n

∑
i=1

λi

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 61 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

By substituting x = 0 in the characteristic polynomial we obtain

sn = (−1)n det(−A) = det(A) = n

∏
i=1

λi .

In general, we have for all 1 ≤ i ≤ n: sk = ∑
1≤i1<⋯<ik≤n

λi1λi2⋯λik .

Lemma 12

λm
i is an eigenvalue of Am with multAm(λm

i) =multA(λi).
Proof: excercise

We obtain tr(Am) = n

∑
i=1

λm
i .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 62 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Example: Let

A =
⎛⎜⎝
2 1 1
0 3 1
0 1 −1

⎞⎟⎠
We have

det(x ⋅ Id −A) = det
⎛⎜⎝
x − 2 −1 −1
0 x − 3 −1
0 −1 x + 1

⎞⎟⎠
= (x − 2) ⋅ det(x − 3 −1

−1 x + 1
)

= (x − 2) ⋅ ((x − 3)(x + 1) − 1)
= x3 − 4x2 + 8

We have det(A) = −8, tr(A) = 4, and the eigenvalues are 2, 1 +
√
5 and

1 −
√
5 (and all of them have multiplicity one).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 63 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Let f mk = ∑
1≤i1<⋯<ik≤n

j/∈{i1,...,ik}

λi1λi2⋯λikλ
m
j

We get f 0k = (n − k)sk , f m0 = tr(Am) and (for k ≥ 1)

sk ⋅ tr(Am) = ⎛⎝ ∑
1≤i1<⋯<ik≤n

λi1λi2⋯λik

⎞
⎠ ⋅

n

∑
j=1

λm
j

= ∑
1≤i1<⋯<ik≤n

j/∈{i1,...,ik}

λi1λi2⋯λikλ
m
j + ∑

1≤i1<⋯<ik≤n

j∈{i1,...,ik}

λi1λi2⋯λikλ
m
j

= f mk + f m+1k−1

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 64 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

From this we obtain

sk ⋅ tr(A0) − sk−1 ⋅ tr(A1) + sk−2 ⋅ tr(A2) −⋯
+ (−1)k−1s1 ⋅ tr(Ak−1) + (−1)k tr(Ak)

= (f 0k + f 1k−1) − (f 1k−1 + f 2k−2) +⋯
+ (−1)k−1(f k−11 + f k0) + (−1)k f k0

= f 0k = (n − k)sk
and therefore (recall that tr(A0) = n)

sk =
1

k
(sk−1tr(A1) − sk−2tr(A2) +⋯

−(−1)k−1s1tr(Ak−1) − (−1)k tr(Ak)) .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 65 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Therefore, we can compute the coefficients sk of the characteristic
polynomial as follows:

1 Compute all powers A1,A2,⋯,An in time O(log2(n)) using n4

processors (use prefix sum algorithm for input A,A, . . . ,A).

2 Compute tr(A1), . . . , tr(An) in time O(log(n)) using n2 processors.

3 Compute the si in time O(log2(n)) using n3 processors by solving a
system of linear equations of the form considered on Slide 59.

Remark: The last step is only possible of the characteristic p of the
underlying field is zero or larger than n. This ensures that 1

k
exists for all

1 ≤ k ≤ n.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 66 / 158

Parallel algorithms

Csansky’s algorithm for inverting matrices

Step 4: Inverting an arbitrary non-singular matrix.

Theorem of Cayley-Hamilton

Every square matrix satisfies it own characteristic equation:

An − s1 ⋅A
n−1 + s2 ⋅A

n−2 −⋯ + (−1)n−1sn−1 ⋅A + (−1)nsn ⋅ Id = 0
If A−1 exists (this is equivalent to sn ≠ 0) we have:

A−1 = (−1)n−1
sn

(An−1 − s1A
n−2 + s2A

n−3 −⋯+ (−1)n−1sn−1 ⋅ Id) .
Therefore we can compute A−1 in time O(log2(n)) using n4 processors by
(i) computing all coefficients sk and (ii) computing the above expression
for A−1 in time O(log(n)) using n2 processors.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 67 / 158

Randomized algorithms

Randomisierte algorithms

A randomized algorithm (or probabilistic algorithm) uses random decisions
(it tosses a coin).

Examples:

Quicksort with a randomly chosen pivot element

Quickselect for computing the median

One distinguishes the following types of randomized algorithms:

Las Vegas algorithms: They yield a correct result with probability one,
but the running time (or space) is a random variable.

Example: Quicksort with a randomly chosen pivot element has an
expected running time of O(n log n).
Monte Carlo algorithms: They can yield a faulty result with a small
error probability.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 68 / 158

Randomized algorithms

Probabilistic tests with polynomials

Let F be a field at let x1, . . . , xn variables.

With F[x1, . . . , xn] we denote the ring of all polynomials in the variables
x1, . . . , xn and with coefficients from F.

Let a1, . . . ,ak ∈ F, ei ,j ≥ 0 for 1 ≤ i ≤ k , 1 ≤ j ≤ n and

p(x1, . . . , xn) = k

∑
i=1

ai
n

∏
j=1

x
ei,j
j
∈ F[x1, . . . , xn].

The degree of p is deg(p) = max{ei ,1 + ei ,2 +⋯ + ei ,n ∣ 1 ≤ i ≤ k}.
We have deg(p ⋅ q) = deg(p) + deg(q).
Example: p = 2x21 x74 − 4x52 x3x

2
4 − x2x3x

3
4 + 5x3x

2
4 − 8.

We have deg(p) = 9 (due to x21 x
7
4).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 69 / 158

Randomized algorithms

Probabilistic tests with polynomials

Theorem 13

Let S ⊆ F finite and p(x1, . . . , xn) ∈ F[x1, . . . , xn] ∖ {0}, i.e., p is not the
zero polynomial.

The equation p(x1, . . . , xn) = 0 has at most deg(p) ⋅ ∣S ∣n−1 solutions in Sn.

Proof: Induction over n and deg(p).
Case 1: n = 1, i.e. p is a polynomial in a single variable (this includes the
case deg(p) = 0, where p ∈ F ∖ {0}).
A polynomial p in a single variable has at most deg(p) = deg(p) ⋅ ∣S ∣n−1
roots in S .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 70 / 158

Randomized algorithms

Probabilistic tests with polynomials

Case 2: deg(p) = 1, i.e. p has the form a + a1x1 +⋯+ anxn.

Since deg(p) ≠ 0, there is an i with ai ≠ 0. W.l.o.g. assume that a1 ≠ 0.

The equation p(x1, . . . , xn) = 0 is equivalent to x1 =
1

a1
(− a −

n

∑
i=2

aixi).
There are exactly ∣S ∣n−1 assignments for x2, . . . , xn with values from S .

Therefore, p = 0 has at most ∣S ∣n−1 = deg(p) ⋅ ∣S ∣n−1 solutions in Sn.

Case 3: deg(p) ≥ 2 and n ≥ 2.

Case 3.1: p is not irreducible, i.e., p = q ⋅ r with deg(q) < deg(p) and
deg(r) < deg(p).
Neither q nor r is the zero polynomial.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 71 / 158

Randomized algorithms

Probabilistic tests with polynomials

By induction, the equation q = 0 has at most deg(q) ⋅ ∣S ∣n−1 solutions in
Sn and the equation r = 0 has at most deg(r) ⋅ ∣S ∣n−1 solutions in Sn.

Since (a1, . . . ,an) ∈ Sn is a solution of q ⋅ r = 0 if and only if it is a solution
of q = 0 or a solution of r = 0, the equation p = 0 has at most

deg(q) ⋅ ∣S ∣n−1 + deg(r) ⋅ ∣S ∣n−1 = (deg(q) + deg(r)) ⋅ ∣S ∣n−1 = deg(p) ⋅ ∣S ∣n−1
solutions in Sn.

Fall 3.2: p is irreducible.

Let x = (x1, . . . , xn−1), i.e.,. p = p(x , xn).
For each s ∈ S we consider the polynomial p(x , s) ∈ F[x].
Claim: p(x , s) is not the zero polynomial.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 72 / 158

Randomized algorithms

Probabilistic tests with polynomials

In order to prove this claim, we assume that p(x , s) = 0.
Write p(x , xn) as a polynomial in the single variable xn and with
coefficients from F[x] (the set of these polynomials is F[x][xn]):

p(x , xn) = m

∑
k=0

tk(x) ⋅ xkn (2)

Let degxn(p) = m (the degree of p in the variable xn).

In our example p = 2x21 x74 − 4x52 x3x
2
4 − x2x3x

3
4 + 5x3x

2
4 − 8 we have

p = (2x21) ⋅ x74 + (−4x52 x3 + 5x3) ⋅ x24 + (−x2x3x34 − 8) ∈ F[x1, x2, x3][x4].
Polynomial division with remainder by xn − s yields

p(x , xn) = q(x , xn) ⋅ (xn − s) + r(x), (3)

where degxn(r) = 0.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 73 / 158

Randomized algorithms

Probabilistic tests with polynomials

To see this, note that

xkn = xkn − sk + sk

=
k

∑
i=1

s i−1x
k−(i−1)
n −

k

∑
i=1

s ixk−in + sk

= (k

∑
i=1

s i−1xk−in) ⋅ (xn − s) + sk

and apply this to all terms tk(x) ⋅ xkn in (2).

Setting xn = s in (3) yields r(x) = p(x , s) = 0.
Hence, we have p(x , xn) = q(x , xn) ⋅ (xn − s).
Contradiction to the irreducibility of p (deg(p) ≥ 2 is important here)!

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 74 / 158

Randomized algorithms

Probabilistic tests with polynomials

This proves the claim p(x , s) ≠ 0.
Since p(x , s) is not the zero polynomial we can use the induction
hypothesis for p(x , s):
Hence, p(x , s) = 0 has at most deg(p(x , s)) ⋅ ∣S ∣n−2 ≤ deg(p) ⋅ ∣S ∣n−2
solutions in Sn−1.

Since there are only ∣S ∣ different values for s, the equation p(x , xn) = 0 has
at most ∣S ∣ ⋅ deg(p) ⋅ ∣S ∣n−2 = deg(p) ⋅ ∣S ∣n−1 solutions in Sn.

This concludes the proof of Theorem 13.

In the following theorem we choose the tuple (s1, . . . , sn) ∈ Sn randomly
according to the uniform distribution.

This means that we assign the same probability 1/∣S ∣n to every tuple(s1, . . . , sn) ∈ Sn.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 75 / 158

Randomized algorithms

Probabilistic tests with polynomials

Theorem of Zippel and Schwartz

Let p(x1, . . . , xn) be a non-zero polynomial with coefficients from a field F,
and let S ⊆ F be finite.

If we choose (s1, . . . , sn) ∈ Sn randomly according to the uniform
distribution, then

Prob[p(s1, . . . , sn) = 0] ≤ deg(p)
∣S ∣ .

Proof: There are in total ∣S ∣n choices for (s1, . . . , sn), but by Theorem 13
at most deg(p) ⋅ ∣S ∣n−1 of these choices satisfy p(s1, . . . , sn) = 0.
Hence, we have Prob[p(s1, . . . , sn) = 0] ≤ deg(p) ⋅ ∣S ∣n−1

∣S ∣n = deg(p)
∣S ∣ .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 76 / 158

Randomized algorithms

Application: perfect matchings

Let G = (V ,E) be a finite undirected graph with node set V and edge set
E .

Formally, an edge e ∈ E is a set e = {u, v} with u, v ∈ V and u ≠ v .

A matching of G is a subset M ⊆ E such that e ∩ e′ = ∅ for all e, e′ ∈M
with e ≠ e′.

A matching M of G is a perfect matching, if ∣M ∣ = ∣V ∣/2. This means that
every node of G belongs to exactly one edge of M.

Obviously, a graph can only have a perfect matching if it has an even
number of nodes.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 77 / 158

Randomized algorithms

Application: perfect matchings

Example:

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 78 / 158

Randomized algorithms

Application: perfect matchings

Example: a matching, which is not perfect.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 78 / 158

Randomized algorithms

Application: perfect matchings

Example: a perfect matching

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 78 / 158

Randomized algorithms

Application: perfect matchings

We will develop a randomized NC-algorithm for testing, whether a given
graph has a perfect matching.

For this we will construct a polynomial, which is not the zero polynomial if
and only if G has a perfect matching.

Remark: There exist deterministic polynomial time algorithms for testing
whether a given graph has a perfect matching, but it is not known whether
there exists a deterministic NC-algorithm for this problem.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 79 / 158

Randomized algorithms

Application: perfect matchings

Let G = (V ,E) be an undirected graph with node set V = {1,2, . . . ,n}.
To every edge {u, v} ∈ E with u < v we assign a variable xu,v .

The Tutte matrix of G is the matrix TG = (Tu,v)1≤u,v≤n with

Tu,v =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xu,v falls {u, v} ∈ E and u < v
−xv ,u falls {u, v} ∈ E and u > v
0 sonst

.

We are interested in the determinant of TG that can be computed with
the Leibniz formula, see Slide 56.

Note: det(TG) is a polynomial with ∣E ∣ ≤ n2 variables having degree at
most n.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 80 / 158

Randomized algorithms

Application: perfect matchings

Example: Consider the following graph G :

1 2

3 4

Its Tutte matrix is

TG =
⎛⎜⎜⎜⎝

0 x1,2 x1,3 0
−x1,2 0 0 x2,4
−x1,3 0 0 x3,4
0 −x2,4 −x3,4 0

⎞⎟⎟⎟⎠
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 81 / 158

Randomized algorithms

Application: perfect matchings

Tutte’s theorem

G has a perfect matching if and only if det(TG) is not the zero polynomial.

We postpone the proof of Tutte’s theorem.

Caution: we cannot not use the Leibniz formula for computing the
polynomial det(TG) efficiently (in polynomial time), since this involves a
sum over all σ ∈ Sn (n! many summands).

Instead, we will test probabilistically whether det(TG) is the zero
polynomial.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 82 / 158

Randomized algorithms

Application: perfect matchings

Example: Let us compute the determinant of the Tutte matrix from
Slide 81:

det(TG) = det

⎛⎜⎜⎜⎝

0 x1,2 x1,3 0
−x1,2 0 0 x2,4
−x1,3 0 0 x3,4
0 −x2,4 −x3,4 0

⎞⎟⎟⎟⎠
= x1,2 det

⎛⎜⎝
x1,2 x1,3 0
0 0 x3,4

−x2,4 −x3,4 0

⎞⎟⎠ − x1,3 det
⎛⎜⎝
x1,2 x1,3 0
0 0 x2,4

−x2,4 −x3,4 0

⎞⎟⎠
= −x1,2x3,4 det(x1,2 x1,3

−x2,4 −x3,4
) + x1,3x2,4 det(x1,2 x1,3

−x2,4 −x3,4
)

= 2(x21,2x23,4 − x1,2x1,3x2,4x3,4)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 83 / 158

Randomized algorithms

Application: perfect matchings

Theorem 14

There is a randomized NC-algorithm (that needs time (log(n))O(1) with
nO(1) processors) with the following properties:

The input is a finite undirected graph G .

If G has no perfect matching, then the algorithm rejects G with
probability 1.

If G has a perfect matching, then the algorithm accepts G with
probability ≥ 1/2.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 84 / 158

Randomized algorithms

Application: perfect matchings

Proof of Theorem 14:

The algorithm works as follows on a graph G = (V ,E) with ∣V ∣ = n:
Construct the Tutte matrix TG in time O(1) using n2 processors.

Choose randomly (uniform distribution) a tuple(a1,a2, . . . ,am) ∈ {1, . . . ,2n}m, where m = ∣E ∣ is the number of
variables in TG .

Compute D = det(TG)(a1, . . . ,am) = det(TG(a1, . . . ,am)) in NC
using Csansky’s algorithm.

If D ≠ 0 then accept, otherwise reject.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 85 / 158

Randomized algorithms

Application: perfect matchings

If G has no perfect matching then by Tutte’s theorem we have
det(TG) = 0. Hence, the algorithm will reject with probability 1.

If G has a perfect matching, then by Tutte’s theorem det(TG) is not the
zero polynomial.

The theorem of Zippel and Schwartz (with S = {1, . . . ,2n}) implies

Prob[algorithm rejects G] ≤ 1

2n
deg(det(TG)) ≤ n

2n
= 1

2

In other words:

Prob[algorithm accepts G] ≥ 1

2

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 86 / 158

Randomized algorithms

Application: perfect matchings

Remark (probability amplification): The probability 1
2
in Theorem 14 can

be increased to 1 − 1
2k

by repeating the algorithm k times (with
independent random choices in each repetition):

If the algorithm accepts G in one of the k repetitions, then the overall
algorithm accepts G .

If the algorithm rejects G in all k repetitions, then the overall
algorithm rejects G .

If G has no perfect matching, then the algorithm will reject G in each of
the k repetitions with probability 1.

Hence, the overall algorithm will reject G with probability 1.

If G has a perfect matching, then in each of the k repetitions the
algorithm will reject G with probability ≤ 1/2.
Hence, the probability that the overall algorithm rejects G is ≤ 1

2k
.

Therefore, the overall algorithm accepts G with probability ≥ 1 − 1
2k
.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 87 / 158

Randomized algorithms

Application: perfect matchings

It remains to prove Tutte’s theorem:

G = ({1, . . . ,n},E) has a perfect matching ⇔ det(TG) ≠ 0.
Recall that TG = (Tu,v)1≤u,v≤n with

Tu,v =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xu,v falls {u, v} ∈ E and u < v
−xv ,u falls {u, v} ∈ E and u > v
0 sonst

.

Additional background on permutations (recall slides 54–55):

Let σ ∶ [1,n] → [1,n] be a permutation. We can write σ uniquely as a
product of disjoint cycles (the order of the cycles is arbitrary).

Sei En = {σ ∈ Sn ∣ σ only contains cycles of even length}.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 88 / 158

Randomized algorithms

Application: perfect matchings

Example: Consider the permutation σ ∶ [1,8] → [1,8] with
a 1 2 3 4 5 6 7 8

σ(a) 5 4 7 2 3 8 1 6

Then σ looks as follows

1 5

37

2

4

6

8

We also write σ = (1,5,3,7)(2,4)(6, 8) = (6,8)(2,4)(1,5, 3, 7) = ⋯.

We have σ ∈ En, since all cycles have even length.

Note: every transposition τ consists of a cycle of length two and n − 2
cylces of length one (fix points). Thus, τ ∈ En if and only if n = 2.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 89 / 158

Randomized algorithms

Application: perfect matchings

Recall Leibniz’ formula: det(TG) = ∑
σ∈Sn

sign(σ) n

∏
i=1

Ti ,σ(i).

Lemma 15

det(TG) = ∑
σ∈En

sign(σ) n

∏
i=1

Ti ,σ(i)

Proof: We show

∑
σ∈Sn∖En

sign(σ) n

∏
i=1

Ti ,σ(i) = 0.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 90 / 158

Randomized algorithms

Application: perfect matchings

If σ ∈ Sn contains a fix point (i.e., σ(j) = j for some j ∈ [1,n] — such a
permutation belongs to Sn ∖ En) then ∏n

i=1Ti ,σ(i) = 0 (since Tj ,σ(j) = 0).

Therefore we only have to consider permutations from Sn ∖ En that do not
have a fix point.

Let Un = {σ ∈ Sn ∖ En ∣ ∀i ∈ [1,n] ∶ σ(i) ≠ i}.
It remains to show: ∑

σ∈Un

sign(σ) n

∏
i=1

Ti ,σ(i) = 0.

Let σ = σ1σ2⋯σk ∈ Un, where the σi are pairwise disjoint cycles.

W.l.o.g. σ1 = (a0,a1, . . . ,aℓ−1) has an odd length ℓ ≥ 3.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 91 / 158

Randomized algorithms

Application: perfect matchings

Let τ = σ−11 σ2⋯σk = (aℓ−1, . . . ,a1,a0)σ2⋯σk ∈ Un.

For all 0 ≤ i ≤ ℓ − 1 (where i + 1 should be understood as i + 1 mod ℓ) we
have:

Tai ,σ(ai) = Tai ,ai+1 = −Tai+1,ai
= −Tai+1,τ(ai+1)

We therefore obtain

ℓ−1

∏
i=0

Tai ,σ(ai) = (−1)ℓ
ℓ−1

∏
i=0

Tai+1,τ(ai+1) = −
ℓ−1

∏
i=0

Tai ,τ(ai)

This implies
n

∏
i=1

Ti ,σ(i) = −
n

∏
i=1

Ti ,τ(i).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 92 / 158

Randomized algorithms

Application: perfect matchings

We claim that sign(σ) = sign(τ), from which we get

sign(σ) n

∏
i=1

Ti ,σ(i) = −sign(τ) n

∏
i=1

Ti ,τ(i).

We have στ = σ1σ2⋯σkσ
−1
1 σ2⋯σk = (σ2⋯σk)2.

Since every permutation of the form ρ2 is a product of an even number of
transpositions, we get 1 = sign(στ) = sign(σ) ⋅ sign(τ).
The latter implies sign(σ) = sign(τ).
We now can extend the pairing between σ and τ to all permutations from
Un, which finally shows

∑
σ∈Un

sign(σ) n

∏
i=1

Ti ,σ(i) = 0.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 93 / 158

Randomized algorithms

Application: perfect matchings

For this we define on the set Un an involution g ∶ Un → Un

(g(ρ) ≠ ρ and g2(ρ) = ρ for all ρ ∈ Un):

Let σ = σ1σ2⋯σk ∈ Un, where the σi are pairwise disjoint cycles.

Take the unique cycle σj of odd length, which contains the minimum of all
elements from [1,n] appearing on a cycle σi of odd length.

Define g(σ) = σ1⋯σj−1σ
−1
j σj+1⋯σk .

We have g(σ) ≠ σ (since the cycle σj has length ≥ 3) and g2(σ) = σ.
Moreover, the argument from the previous slide yields

∀σ ∈ Un ∶ sign(σ) n

∏
i=1

Ti ,σ(i) = −sign(g(σ)) n

∏
i=1

Ti ,g(σ)(i).

This prove the lemma.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 94 / 158

Randomized algorithms

Application: perfect matchings

Example: For n = 5 the mapping g ∶ U5 → U5 looks as follows:

(1,2,3)(4,5) ↔ (1,3,2)(4,5)
(1,2,4)(3,5) ↔ (1,4,2)(3,5)
(1,2,5)(3,4) ↔ (1,5,2)(3,4)
(1,3,4)(2,5) ↔ (1,4,3)(2,5)
(1,3,5)(2,4) ↔ (1,5,3)(2,4)
(1,4,5)(2,3) ↔ (1,5,4)(2,3)
(2,3,4)(1,5) ↔ (2,4,3)(1,5)
(2,3,5)(1,4) ↔ (2,5,3)(1,4)
(2,4,5)(1,3) ↔ (2,5,4)(1,3)
(3,4,5)(1,2) ↔ (3,5,4)(1,2)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 95 / 158

Randomized algorithms

Application: perfect matchings

We can conclude the proof of Tutte’s theorem:

(1) Assume that det(TG) is not the zero polynomial.

By Lemma 15 there exists σ ∈ En such that
n

∏
i=1

Ti ,σ(i) ≠ 0.

Hence, we have {i , σ(i)} ∈ E for all 1 ≤ i ≤ n.

We obtain a perfect matching for G by selecting every second edge on
each cycle in σ.

Example:

1 5

37

2

4

6

8

A permutation σ ∈ E8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 96 / 158

Randomized algorithms

Application: perfect matchings

We can conclude the proof of Tutte’s theorem:

(1) Assume that det(TG) is not the zero polynomial.

By Lemma 15 there exists σ ∈ En such that
n

∏
i=1

Ti ,σ(i) ≠ 0.

Hence, we have {i , σ(i)} ∈ E for all 1 ≤ i ≤ n.

We obtain a perfect matching for G by selecting every second edge on
each cycle in σ.

Example:

1 5

37

2

4

6

8

A permutation σ ∈ E8

A perfecte matching obtained by selecting
every second edge on each cycle

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 96 / 158

Randomized algorithms

Application: perfect matchings

(2) Assume that G has a perfect matching M ⊆ E .

We assign values to the variables xu,v ({u, v} ∈ E , u < v):
xu,v =

⎧⎪⎪⎨⎪⎪⎩
1 if {u, v} ∈M
0 otherwise

Substituting these values into the Tutte matrix TG yields a matrix that
contains in each row as well as in each column exactly one non-zero entry
(either 1 or −1); a so-called permutation matrix.

Leibniz’ formula implies that this matrix has a non-zero determinant.

Therefore, det(TG) cannot be the zero polynomial.

This concludes the proof of Tutte’s theorem.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 97 / 158

Randomized algorithms

Pattern matching with fingerprints

Let Σ be a finite alphabet.

Let T = a1a2⋯an be a text and P = b1b2⋯bm be a pattern
(ai ,bj ∈ Σ, m ≤ n).

Goal: find all occurrences of P in T , i.e., all positions 1 ≤ i ≤ n −m + 1
such that

T [i , i +m − 1] ∶= aiai+1⋯ai+m−1 = P .

The algorithm of Knuth, Morris and Pratt solves this problem in
(sequential) running time O(m + n).
Here, we want to develop a randomized parallel algorithm.

For the following we assume that Σ = {0,1}.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 98 / 158

Randomized algorithms

Pattern matching with fingerprints

Example: All occurrences of the pattern 0110 in the following text:

0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 99 / 158

Randomized algorithms

Pattern matching with fingerprints

Define f ∶ Σ→ Z
2×2 by

f (0) = (1 0
1 1
) f (1) = (1 1

0 1
)

We extend f to a homomorphism f ∶ Σ∗ → Z
2×2:

f (a1a2⋯ak) = f (a1)f (a2)⋯f (ak) for all a1, . . . ,ak ∈ Σ
In particular, f (ε) = (1 0

0 1
).

Lemma 16

The following hold:

The homomorphism f ist injective (if u ≠ v then f (u) ≠ f (v)).
If f (w) = (a1 a2

a3 a4
) and ∣w ∣ = ℓ then ai ≤ 2ℓ for all 1 ≤ i ≤ 4.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 100 / 158

Randomized algorithms

Pattern matching with fingerprints

Proof: We have

(1 0
1 1
)(a1 a2

a3 a4
) = (a1 a2

a1 + a3 a2 + a4
) (4)

and

(1 1
0 1
)(a1 a2

a3 a4
) = (a1 + a3 a2 + a4

a3 a4
) (5)

(A) If w ∈ {0,1}∗ and f (w) = (a1 a2
a3 a4

) then a1,a4 > 0, a2,a3 ≥ 0.

Proof of (A): Induction over ∣w ∣.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 101 / 158

Randomized algorithms

Pattern matching with fingerprints

(B) If w ≠ ε then f (w) ≠ f (ε) = (1 0
0 1
).

Proof of (B):

If w = 0u and f (u) = (a1 a2
a3 a4

) then f (w) = (a1 a2
a1 + a3 a2 + a4

).
If f (w) = f (ε) then we obtain a1 = a2 = a3 = 0, which contradicts a1 > 0
(see (A)).

For w = 1u we can argue analogously.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 102 / 158

Randomized algorithms

Pattern matching with fingerprints

(C) f (0u) ≠ f (1v) for all u, v ∈ {0,1}∗.
Proof von (C): Let f (u) = (a1 a2

a3 a4
) and f (v) = (b1 b2

b3 b4
).

If f (0u) = f (1v) then we obtain:

(a1 a2
a1 + a3 a2 + a4

) = (b1 + b3 b2 + b4
b3 b4

)
Therefore:

a1 = b1 + b3, a1 + a3 = b3
a2 = b2 + b4, a2 + a4 = b4
b1 + a3 = 0, i.e. a3 = b1 = 0, a contradiction with b1 > 0
a4 + b2 = 0, i.e. a4 = b2 = 0, a contradiction with a4 > 0

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 103 / 158

Randomized algorithms

Pattern matching with fingerprints

Now we are in the position to finish the proof of Lemma 16.

Assume that u, v ∈ {0,1}∗, u ≠ v and f (u) = f (v).
We will deduce a contradiction.

The matrices f (0) and f (1) are invertible (det(f (0)) = det(f (1)) = 1).
Therefore every matrix f (x) is invertible.
Case 1: u = vw with w ≠ ε.
We get f (v)f (w) = f (u) = f (v), i.e., f (w) = Id2 = f (ε).
This contradicts (B).

Case 2: v = uw with w ≠ ε: analogously
Case 3: There exist u′, v ′,w with u = w0u′ and v = w1v ′.

We get f (w)f (0u′) = f (w)f (1v ′), i.e., f (0u′) = f (1v ′).
This contradicts (C).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 158

Randomized algorithms

Pattern matching with fingerprints

Case 4: There exist u′v ′,w with u = w1u′ and v = w0v ′:
analogously

This proves the first statement of the lemma.

The second statement can be shown by induction on ∣w ∣:
If w = ε then f (w) = (1 0

0 1
) and ai ≤ 1 = 20 for 1 ≤ i ≤ 4.

Assume that w = au for a ∈ {0,1} and f (u) = (b1 b2
b3 b4

) with bi ≤ 2∣u∣ for
1 ≤ i ≤ 4.

If f (w) = (a1 a2
a3 a4

) then (4) and (5) yield ai ≤ 2 ⋅ 2∣u∣ = 2∣u∣+1 = 2∣w ∣ for
1 ≤ i ≤ 4.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 105 / 158

Randomized algorithms

Pattern matching with fingerprints

First idea for pattern matching: compare f (P) with f (T [i , i +m − 1]) for
all 1 ≤ i ≤ n −m + 1.

Problem: f (P) can have entries of size Fm+1 ((m + 1)-th Fibonacci
number), which need Ω(m) bits. Therefore, the comparison of f (P) and
f (T [i , i +m − 1]) needs time Ω(m), and we gain nothing compared to a
direct comparison of P and T [i , i +m − 1].
Solution: Compute modulo a sufficiently large prime number.

For a word w ∈ {0,1}∗ and a prime number p let

fp(w) = (a1 mod p a2 mod p
a3 mod p a4 mod p

) ,wobei f (w) = (a1 a2
a3 a4

)
The matrix fp(w) is called the fingerprint of the string w (with respect to
the prime number p).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 106 / 158

Randomized algorithms

Pattern matching with fingerprints

Example: Compute the fingerprint of the string 01101 with respect to the
prime 3:

We have

f (01101) = (1 0
1 1
)(1 1

0 1
)(1 1

0 1
)(1 0

1 1
)(1 1

0 1
)

= (1 1
1 2
)(2 1

1 1
)(1 1

0 1
)

= (3 2
4 3
)(1 1

0 1
)

= (3 5
4 7
)

Hence, we get f3(01101) = (0 2
1 1
).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 107 / 158

Randomized algorithms

Pattern matching with fingerprints

Let p be a prime number and let X ,Y ∈ {0,1}∗ two strings.

We say that p is bad for (X ,Y) if
X ≠ Y (and hence f (X) ≠ f (Y)) and
fp(X) = fp(Y).

For k ∈ N let Primes(k) the set of all prime numbers p with 2 ≤ p ≤ k and
π(k) = ∣Primes(k)∣.
The following facts hold:

k
ln(k) ≤ π(k) ≤ 1.2551 ⋅ k

ln(k) (ln x is the logarithm of x to the base

e = 2.71828 . . .)
If k ≥ 29 and u ≤ 2k , then the number of different prime factors of u
is at most π(k).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 108 / 158

Randomized algorithms

Pattern matching with fingerprints

Lemma 17

Let X1,Y1, . . . ,Xt ,Yt be strings of length m with m sufficiently large and
let M ≥ 1.
For a randomly chosen prime p ∈ Primes(M) (uniform distribution) we
have:

Prob[∃1 ≤ i ≤ t ∶ p is bad for (Xi ,Yi)] ≤ π(4 ⋅m ⋅ t)
π(M)

Proof: For 1 ≤ i ≤ t let

f (Xi) = (ai ,1 ai ,2
ai ,3 ai ,4

) and f (Yi) = (bi ,1 bi ,2
bi ,3 bi ,4

) .
All ai ,j and bi ,j belong to [0,2m] by Lemma 16.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 109 / 158

Randomized algorithms

Pattern matching with fingerprints

We have:

∃1 ≤ i ≤ t ∶ p is bad for (Xi ,Yi)
⇐⇒

∃1 ≤ i ≤ t ∶ f (Xi) ≠ f (Yi) and fp(Xi) = fp(Yi)
Ô⇒

p divides the product ∏{∣ai ,j − bi ,j ∣ ∣ 1 ≤ i ≤ t,1 ≤ j ≤ 4,ai ,j ≠ bi ,j}
Ô⇒

p divides a number u ≤ 24⋅t⋅m

Since the number of different prime factors of u ≤ 24⋅t⋅m is at most
π(4 ⋅m ⋅ t) (if 4 ⋅m ⋅ t ≥ 29) we have

Prob[∃1 ≤ i ≤ t ∶ p is bad for (Xi ,Yi)] ≤ π(4 ⋅m ⋅ t)
π(M) .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 110 / 158

Randomized algorithms

Pattern matching with fingerprints

Lemma 18

Let X1,Y1, . . . ,Xt ,Yt be strings of length m with m sufficiently large.

Fix a constant k ≥ 1 and let M = m ⋅ tk .

For a randomly chosen prime p ∈ Primes(M) we have

Prob[∃1 ≤ i ≤ t ∶ p is bad for (Xi ,Yi)] ≤ O (1

tk−1
)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 111 / 158

Randomized algorithms

Pattern matching with fingerprints

Proof: We have π(4 ⋅m ⋅ t) ≤ 1.2551 ⋅ 4⋅m⋅t
ln(m⋅t) = 5.0204 ⋅ m⋅t

ln(m⋅t) and

π(M) = π(m ⋅ tk) ≥ m ⋅ tk

ln(m ⋅ tk) =
m ⋅ tk

ln(m) + k ⋅ ln(t) .
With Lemma 17 we get:

Prob[∃1 ≤ i ≤ t ∶ p is bad for (Xi ,Yi)]
≤ 5.0204 ⋅

m ⋅ t ⋅ (ln(m) + k ln(t))
ln(m ⋅ t) ⋅m ⋅ tk

≤ 5.0204 ⋅ k ⋅
1

tk−1

≤ O(1

tk−1
) (since k is a constant).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 112 / 158

Randomized algorithms

Pattern matching with fingerprints

Recall: T = a1a2⋯an (the text) and P = b1b2⋯bm (the pattern)

Assumption: On a single processor an arithmetic operation on integers
with O(log(n)) bits needs constant time.

For a prime number p ≤ nO(1) we can compute with n processors in time
O(log(n)) all finger prints fp(T [i , i +m − 1]) (1 ≤ i ≤ n −m + 1):

For this we use the prefix sum algorithm to compute all products

Ri = fp(T [1, i]) = fp(a1)fp(a2)⋯fp(ai)
(1 ≤ i ≤ n) in time O(log(n)) using n processors.

Since we compute module a prime number of size nO(1), all numbers that
occur during the computation have O(log(n)) bits.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 113 / 158

Randomized algorithms

Pattern matching with fingerprints

Let Ri = (a b
c d

) with 0 ≤ a,b, c ,d ≤ p − 1.

Then the inverse matrix R−1i (in the field Fp) can be computed using the
formula

R−1i =
1

det(Ri) (
d −b
−c a

) = 1

ad − bc
(d −b
−c a

)
Since det(f (0)) = det(f (1)) = 1 and det(A ⋅B) = det(A) ⋅ det(B) we have
det(f (w)) = 1 for all w ∈ {0,1}∗.
Hence, det(fp(w)) = 1 for all w ∈ {0,1}∗, in particular det(Ri) = 1.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 114 / 158

Randomized algorithms

Pattern matching with fingerprints

Finally compute we compute in time O(1) using n processors the
fingerprint of all T [i , i +m − 1]:

fp(T [i , i +m − 1])
= fp(ai)fp(ai+1)⋯fp(ai+m−1)
= fp(ai−1)−1⋯fp(a2)−1fp(a1)−1fp(a1)fp(a2)⋯fp(ai+m−1)
= (fp(a1)fp(a2)⋯fp(ai−1))−1fp(a1)fp(a2)⋯fp(ai+m−1)
= R−1i−1 ⋅ Ri+m−1

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 115 / 158

Randomized algorithms

Pattern matching with fingerprints

Theorem 19

Fix a constant k . Using O(n) processors we can compute in time
O(log(n)) an array MATCH[1, . . . ,n] with the following properties:

If T [i , i +m − 1] = P , then MATCH[i] = 1 with probability 1.

The probability that there exists an i with MATCH[i] = 1 and
T [i , i +m − 1] ≠ P is bounded by O (1

nk
).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 116 / 158

Randomized algorithms

Pattern matching with fingerprints

Proof:

1 Let M = m ⋅ nk+1 ≤ nk+2.
2 Choose randomly a prime number p ∈ {1, . . . ,M}.
3 Compute fp(P) in time O(log(m)) using m ≤ n processors.

4 For 1 ≤ i ≤ n −m + 1 compute in parallel all fingerprints
Li ∶= fp(T [i , i +m − 1]) using the algorithm from Slide 113.

5 For all 1 ≤ i ≤ n −m + 1 set in parallel MATCH[i] = 1 if and only if
Li = fp(P).

By Lemma 18 (applied with t = n −m + 1, Xi = T [i , i +m − 1] and Yi = P),
the probability that an entry MATCH[i] is incorrectly set to 1 is bounded
by O (1

nk
).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 117 / 158

Streaming algorithms

Streaming algorithms

A streaming algorithm receives a sequence S = (a1,a2, . . . ,aℓ)
(a so called stream) of element from some universe of size n.

At time t the algorithm only has direct access to at and its internal
memory state.

In particular: no direct access to the previous values a1,a2, . . . ,at−1 unless
the algorithm explicitly stores these values.

Goal: Compute important statistical data without storing all values from
the stream.

Often, a good approximation of such statistical data suffices.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 118 / 158

Streaming algorithms

Streaming algorithms

Let S = (a1,a2, . . . ,aℓ) be a stream of elements ai ∈ {1, . . . ,n}.
For 1 ≤ i ≤ n let mi(S) = ∣{t ∣ 1 ≤ t ≤ ℓ,at = i}∣ be the number of
occurrences of i in the stream S .

For k ≥ 0 we define the Fk -norm (or the k-th moment) of S as

Fk(S) = n

∑
i=1

mi(S)k

Note that:

F0(S) is the number of different elements that appear in S

(00 = 0 and m0 = 1 for m ≥ 1).
F1(S) = ℓ is the length of the stream (not really interesting).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 119 / 158

Streaming algorithms

Streaming algorithms

Goal: Space efficient algorithm for computing F0(S).
A naive solution can do this by storing n bits:

For each 1 ≤ i ≤ n we store a bit si which is initially zero and set to
one, once the data value i appears in the stream.

At the end we output ∑n
i=1 si .

Can we do better, i.e., compute F0(S) with o(n) space?
Depends on what we want:

The exact value F0(S) cannot be computed in space o(n) — even if
we allow randomized streaming algorithms with an error probability of
< 1/2. À randomized communication complexity

But: a good approximation of F0(S) can be computed in space
O(log n) with a randomized streaming algorithm with a small error
probability. À algorithm of Alon, Matias and Szegedy (AMS)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 120 / 158

Streaming algorithms

Pairwise independent hash functions

Main tool of the AMS-algorithm: pairwise independent hashing.

Family of pairwise independent hash functions

Let A and B be finite sets, ∣A∣ ≥ 2.
A set H ⊆ {h ∣ h ∶ A→ B} is a family of pairwise independent hash
functions if the following holds for all a1,a2 ∈ A with a1 ≠ a2 and all
b1,b2 ∈ B :

If we choose a mapping h ∈ H uniformly at random
(every h ∈ H is chosen with probability 1/∣H∣) then

Prob[h(a1) = b1 ∧ h(a2) = b2] = 1/∣B ∣2.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 121 / 158

Streaming algorithms

Pairwise independent hash functions

Let H ⊆ {h ∣ h ∶ A→ B} be a family of pairwise independent hash functions
and choose a mapping h ∈ H uniformly at random. We have:

Prob[h(a) = b] = 1/∣B ∣ for all fixed a ∈ A and b ∈ B .

Take an a′ ∈ A with a ≠ a′ (recall that ∣A∣ ≥ 2). Then we have

Prob[h(a) = b] = Prob [⋁
c∈B
(h(a) = b ∧ h(a′) = c)]

= ∑
c∈B

Prob[h(a) = b ∧ h(a′) = c]
= ∣B ∣
∣B ∣2

= 1/∣B ∣
Hence, for a fixed a ∈ A the value h(a) is uniformly distributed over
the set B .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 122 / 158

Streaming algorithms

Pairwise independent hash functions

We get for a1 ≠ a2 the pairwise independence property:

Prob[h(a1) = b1 ∧ h(a2) = b2] = Prob[h(a1) = b1] ⋅ Prob[h(a2) = b2].
For all a1 ≠ a2 we have Prob[h(a1) = h(a2)] = 1/∣B ∣:

Prob[h(a1) = h(a2)] = Prob [⋁
b∈B
(h(a1) = b ∧ h(a2) = b)]

= ∑
b∈B

Prob [h(a1) = b ∧ h(a2) = b]
= 1/∣B ∣

One says that H is a universal family of hash functions.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 123 / 158

Streaming algorithms

Pairwise independent hash functions

We now construct a family of pairwise independent hash functions on the
finite field Fp ({0,1, . . . ,p − 1} with addition and multiplication modulo p)
for a prime number p.

For x , y ∈ Fp define the mapping hx ,y ∶ Fp → Fp by

hx ,y(a) = (ax + y)mod p for a ∈ Fp.

Let Hp = {hx ,y ∣ x , y ∈ Fp}.
Theorem 20

Hp is a family of pairwise independent hash functions on Fp.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 124 / 158

Streaming algorithms

Pairwise independent hash functions

Proof: First notice that ∣Hp ∣ = p2:
If ax1 + y1 = ax2 + y2 mod p for all a ∈ Fp then we must have x1 = x2
(otherwise a = (y2 − y1)/(x1 − x2)) and hence y1 = y2.

Hence, (x1, y1) ≠ (x2, y2) implies hx1,y1 ≠ hx2,y2

Next, let us fix a1,a2,b1,b2 ∈ Fp with a1 ≠ a2.

Then the system

a1x + y = b1 mod p

a2x + y = b2 mod p

has a unique solution (x , y) ∈ Fp × Fp.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 125 / 158

Streaming algorithms

Pairwise independent hash functions

To see this, note that the system is equivalent to

(a1 1
a2 1

)(x
y
) = (b1

b2
) (in Fp)

and that

det(a1 1
a2 1

) = a1 − a2 ≠ 0

Hence, the unique solution is

(x
y
) = (a1 1

a2 1
)−1 (b1

b2
) .

Therefore, there is a unique hx ,y ∈ Hp such that

hx ,y(a1) = b1 ∧ hx ,y(a2) = b2.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 126 / 158

Streaming algorithms

Pairwise independent hash functions

Thus: If x , y ∈ Fp are chosen uniformly at random, then

Prob[hx ,y(a1) = b1 ∧ hx ,y(a2) = b2] = 1/p2.
Remark: The above proof works for every finite field instead of Fp.

For every prime number p and every m ≥ 1 there exists a unique finite field
Fpm with pm elements (this is not the ring of integers modulo pm unless
m = 1).
For the AMS algorithm it is convenient to take a finite field F2m .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 127 / 158

Streaming algorithms

Mathematical background: (pairwise) independence

Let X be a random variable, which takes values from a finite set A ⊆ R.
For every a ∈ A, Prob[X = a] is the probability that X takes the value a.

Independent and pairwise independent random variables

Let X1,X2, . . . ,Xn be random variables.

X1,X2, . . . ,Xn are independent if:

Prob [n

⋀
i=1

Xi = ai] = n

∏
i=1

Prob[Xi = ai].
X1,X2, . . . ,Xn are pairwise independent if for all 1 ≤ i , j ≤ n with i ≠ j :

Prob[Xi = a ∧ Xj = b] = Prob[Xi = a] ⋅ Prob[Xj = b].

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 128 / 158

Streaming algorithms

Mathematical background: expected value, variance

Expected value and variance

The expected value of X is E [X] = ∑a∈AProb[X = a] ⋅ a.
The variance of X is Var[X] = E [(X − E [X])2].
Linearity of expectation

For random variables X and Y and a ∈ R we have:

E [X + Y] = E [X] + E [Y]
E [aX] = a ⋅ E [X]

In particular we get

Var[X] = E [(X − E [X])2]
= E [X 2 − 2E [X]X + E [X]2]
= E [X 2] − 2E [X]2 + E [X]2 = E [X 2] − E [X]2.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 129 / 158

Streaming algorithms

Mathematical background: expected value, variance

In general, E [X ⋅Y] = E [X] ⋅ E [Y] does not hold.
Lemma 21

If X1,X2, . . . ,Xn are independent random variables then

E [n

∏
i=1

Xi] = n

∏
i=1

E [Xi].

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 130 / 158

Streaming algorithms

Mathematical background: expected value, variance

Let X1,X2, . . . ,Xn be random variables.

Linearity of expectation implies E [∑n
i=1Xi] = ∑n

i=1 E [Xi].
In general, Var[∑n

i=1Xi] = ∑n
i=1Var[Xi] is wrong.

Lemma 22

If X1,X2, . . . ,Xn are pairwise independent random variables then

Var [n

∑
i=1

Xi] = n

∑
i=1

Var[Xi].

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 131 / 158

Streaming algorithms

Mathematical background: expected value, variance

If X is a random variable and f ∶ R→ R is a function, then one can define
the random variable f (X):

Prob[f (X) = a] = Prob[X ∈ f −1(a)] = ∑
b∈f −1(a)

Prob[X = b]

If X1, . . . ,Xn are (pairwise) independent, then also f (X1), . . . , f (Xn) are
(pairwise) independent.

Jensen’s inequality (see Algorithms I) can be stated as

E [f (X)] ≥ f (E [X])
for f a convex function.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 132 / 158

Streaming algorithms

Mathematical background: Markov’s inequality

Markov’s inequality

Let X be a non-negative random variable. For any real number t > 0, we
have

Prob[X ≥ t] ≤ E [X]
t

.

Proof: Fix t > 0 and define the random variable I by

I =
⎧⎪⎪⎨⎪⎪⎩
1 if X ≥ t
0 if X < t

Since X ≥ 0 we have I ≤ X /t.
Hence, with linearity of expectation, we get

Prob[X ≥ t] = E [I] ≤ E [X /t] = E [X]
t

.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 133 / 158

Streaming algorithms

Mathematical background: Chebyshev’s inequality

Chebyshev’s inequality

Let X be a random variable. For any real number t > 0, we have

Prob[∣X − E [X]∣ ≥ t] ≤ Var[X]
t2

.

Proof: Since t > 0 we have

Prob[∣X − E [X]∣ ≥ t] = Prob[(X − E [X])2 ≥ t2].
Since (X − E [X])2 is a non-negative random variable, we can use
Markov’s inequality to get

Prob[(X − E [X])2 ≥ t2] ≤ E [(X − E [X])2]
t2

= Var[X]
t2

.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 134 / 158

Streaming algorithms

Mathematical background: Chernoff bound

A Bernoulli random variable X is a random variable that only takes the
two values 0 and 1.

Note: E [X] = Prob[X = 1]
Chernoff bound

Let X1,X2, . . . ,Xk be independent Bernoulli random variables with the
same distribution: Prob[Xi = 1] = p for all 1 ≤ i ≤ k .
For every 0 < δ < 1 we have:

Prob [k

∑
i=1

Xi ≥ (1 + δ)pk] ≤ e−δ
2pk/3

Prob [k

∑
i=1

Xi ≤ (1 − δ)pk] ≤ e−δ
2pk/2 ≤ e−δ2pk/3

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 135 / 158

Streaming algorithms

Mathematical background: Chernoff bound

Proof: We only prove the first inequality.

Let t > 0 be arbitrary. With µ ∶= pk = E [∑k
i=1Xi] we get (with exp(x) = ex)

Prob [k

∑
i=1

Xi ≥ (1 + δ)µ] = Prob [exp (t k

∑
i=1

Xi) ≥ exp(t(1 + δ)µ)]

≤
E[exp (∑k

i=1 tXi)]
exp(t(1 + δ)µ) (Markov’s inequality)

=
E[∏k

i=1 e
tXi]

et(1+δ)µ

= ∏k
i=1 E[etXi]
et(1+δ)µ

(X1, . . . ,Xk independent)

= ∏k
i=1((1 − p) + pet)

et(1+δ)µ

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 136 / 158

Streaming algorithms

Mathematical background: Chernoff bound

= ∏k
i=1(1 + p(et − 1))

et(1+δ)µ

≤ ∏k
i=1 e

p(et−1)

et(1+δ)µ
(1 + y ≤ ey for all y)

≤ e(e
t−1)µ

et(1+δ)µ

Setting t = ln(1 + δ) > 0 yields

e(e
t−1)µ

et(1+δ)µ
= eδµ

(1 + δ)(1+δ)µ = (
eδ

(1 + δ)(1+δ))
µ

Finally, one can show the following for 0 < δ < 1:
eδ

(1 + δ)(1+δ) ≤ e−δ
2/3.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 137 / 158

Streaming algorithms

The AMS algorithm

Fix the universe {0,1}m (bit strings of length m) of size n = 2m.
We identify elements of {0,1}m with elements of the field F2m .

For u ∈ {0,1}m define ρ(u) = max{k ∣ u = 0kv for some v ∈ {0,1}m−k}.
Note that ρ(u) ≤ m = log2 n.
The AMS algorithm

randomly choose h = hx ,y ∈ Hn

initialize z ∶= 0
for every new data value u ∈ {0,1}m in the stream set
z ∶= max{z , ρ(h(u))}
return 2z+1/2

Each of the numbers x , y , z fits into m = log2 n bits.

The AMS algorithm therefore needs space O(log n).
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 138 / 158

Streaming algorithms

Analysis of the AMS algorithm

Let S = (u1,u2, . . . ,uℓ) be the input stream with u1, . . . ,uℓ ∈ {0,1}m .
Let A = {u1,u2, . . . ,uℓ} ⊆ {0,1}m be the corresponding set.

The goal is to approximate the size of A.

In the following h denotes the randomly chosen hash function and zf the
final value of z computed by the AMS algorithm.

Note that zf = max{ρ(h(u)) ∣ u ∈ A}.
For 0 ≤ r ≤ m and u ∈ {0,1}m we define the random variable Xr ,u by

Xr ,u =
⎧⎪⎪⎨⎪⎪⎩
1 if ρ(h(u)) ≥ r
0 if ρ(h(u)) ≤ r − 1

Let Yr = ∑u∈AXr ,u.

Note that Yr > 0 if and only if zf ≥ r .
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 139 / 158

Streaming algorithms

Analysis of the AMS algorithm

Since for every u ∈ {0,1}m , h(u) is uniformly distributed over {0,1}m
(i.e., Prob[h(u) = v] = 1/2m for every v ∈ {0,1}m) we have

E [Xr ,u] = Prob[ρ(h(u)) ≥ r]
= Prob[a randomly chosen v ∈ {0,1}m starts with 0r]
= 2m−r

2m
= 1

2r
.

Linearity of expectation yields

E [Yr] = ∑
u∈A

E [Xr ,u] = ∣A∣
2r

.

Claim: For every 0 ≤ r ≤ m the random variables Xr ,u (u ∈ {0,1}m) are
pairwise independent.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 140 / 158

Streaming algorithms

Analysis of the AMS algorithm

Proof of the claim: Let u, v ∈ {0,1}m with u ≠ v and a,b ∈ {0,1}.
With L1 = {w ∈ {0,1}m ∣ ρ(w) ≥ r} and L0 = {0,1}m ∖ L1 we get

Prob[Xr ,u = a ∧ Xr ,v = b] = Prob[h(u) ∈ La ∧ h(v) ∈ Lb]
= Prob [⋁

x∈La
⋁
y∈Lb
(h(u) = x ∧ h(v) = y)]

= ∑
x∈La
∑
y∈Lb

Prob[h(u) = x ∧ h(v) = y]
= ∑

x∈La
∑
y∈Lb

Prob[h(u) = x] ⋅ Prob[h(v) = y]
= ∑

x∈La
Prob[h(u) = x] ⋅ ∑

y∈Lb
Prob[h(v) = y]

= Prob[Xr ,u = a] ⋅ Prob[Xr ,v = b]

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 141 / 158

Streaming algorithms

Analysis of the AMS algorithm

The claim implies

Var[Yr] = ∑
u∈A

Var[Xr ,u] ≤ ∑
u∈A

E [X 2
r ,u] = ∑

u∈A
E [Xr ,u] = ∣A∣

2r
.

Applying Markov’s inequality yields

Prob[Yr > 0] = Prob[Yr ≥ 1] ≤ E [Yr] = ∣A∣
2r

.

Chebyshev’s inequality gives

Prob[Yr = 0] ≤ Prob[∣Yr − E [Yr]∣ ≥ ∣A∣/2r]
≤ Var[Yr](∣A∣/2r)2
≤ 2r

∣A∣ .
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 142 / 158

Streaming algorithms

Analysis of the AMS algorithm

Recall that the AMS-algorithm outputs the value 2zf +1/2.

Let a ≥ 0 be the smallest integer such that 2a+1/2 ≥ 3∣A∣.
Let us first assume that a ≤m. Then Ya is defined and we get

Prob[2zf +1/2 ≥ 3∣A∣] = Prob[zf ≥ a]
= Prob[Ya > 0]
≤ ∣A∣

2a
≤
√
2

3
.

If a > m then 2m+1/2 < 3∣A∣ and we get

Prob[2zf +1/2 ≥ 3∣A∣] ≤ Prob[2zf +1/2 > 2m+1/2] = 0
since the AMS-algorithm always produces a value zf ≤ m.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 143 / 158

Streaming algorithms

Analysis of the AMS algorithm

Let b ≥ 0 be the largest integer such that 2b+1/2 ≤ ∣A∣/3.
We can assume that 21/2 ≤ ∣A∣/3 so that b indeed exists
(the case ∣A∣ < 3√2, i.e., ∣A∣ ≤ 4 is not really interesting).

We must have b + 1 ≤ m: b ≥ m yields 2m+1/2 ≤ ∣A∣/3, i.e., ∣A∣ > 2m which
cannot be the case.

Hence, Yb+1 exists and we get

Prob[2zf +1/2 ≤ ∣A∣/3] = Prob[zf ≤ b]
= Prob[¬(zf ≥ b + 1)]
= Prob[Yb+1 = 0]
≤ 2b+1

∣A∣ ≤
√
2

3
.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 144 / 158

Streaming algorithms

Analysis of the AMS algorithm

Note that
√
2
3
≈ 0.4714.

We have

Prob[∣A∣/3 < 2zf +1/2 < 3∣A∣]
= 1 −Prob[∣A∣/3 ≥ 2zf +1/2 ∨ 2zf +1/2 ≥ 3∣A∣]
= 1 − (Prob[∣A∣/3 ≥ 2zf +1/2] + Prob[2zf +1/2 ≥ 3∣A∣])
≥ 1 −

2
√
2

3
≥ 0.0571

We proved the following result:

Theorem 23

With probability at least 0.0571 the AMS algorithm computes a value α

with ∣A∣/3 < α < 3∣A∣.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 145 / 158

Streaming algorithms

Probability amplification for the AMS algorithm

Let us fix now an arbitrary (small) ǫ > 0.

We show how to reduce the above error probability 2 ⋅ 0.4714 to ǫ.

We run k (odd) many independent copies of the AMS algorithm on
the input stream.

In other words: each copy of the algorithm randomly chooses its own
hash function and these choices are made independent from each
other.

Let αi be the output of the i -th copy of the algorithm.

At the end we output the median α̂ of α1, . . . , αk .

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 146 / 158

Streaming algorithms

Probability amplification for the AMS algorithm

Let us analyze the error:

Define a Bernoulli random variable Fi :

Fi =
⎧⎪⎪⎨⎪⎪⎩
1 if αi ≥ 3∣A∣
0 else

Note: Prob[Fi = 1] = Prob[Fj = 1] for all 1 ≤ i , j ≤ k .
Let p = Prob[Fi = 1].
Our previous analysis yields p ≤

√
2
3
< 1/2.

Let δ = 1
2p
− 1 ≥ 3

2
√
2
− 1 and note that 0 < δ < 1.

Also note: If α̂ ≥ 3∣A∣ then ∑k
i=1 Fi ≥ k/2.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 147 / 158

Streaming algorithms

Probability amplification for the AMS algorithm

With the first Chernoff bound we get (note that (1 + δ)p = 1/2):
Prob[α̂ ≥ 3∣A∣] ≤ Prob [k

∑
i=1

Fi ≥ k/2]
= Prob [k

∑
i=1

Fi ≥ (1 + δ)pk]
≤ e−δ

2pk/3

For k ≥ 3
δ2p

⋅ ln(2/ǫ) = 3p

(1/2−p)2 ⋅ ln(2/ǫ) ∈ Θ(log(1/ǫ)) we get

Prob[α̂ ≥ 3∣A∣] ≤ e− ln(2/ǫ) = ǫ/2.
Analogously, the second Chernoff bound yields Prob[α̂ ≤ ∣A∣/3] ≤ ǫ/2.
In total: Prob[∣A∣/3 < α̂ < 3∣A∣] ≥ 1 − ǫ.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 148 / 158

Asymptotic analysis of data structures

Average height of search trees

We want to show that the average height of a binary search tree with node
set {1, . . . ,n} is O(log n).
Let Bn be the set of all binary search trees with node set {1, . . . ,n}.
(B0 only contains the empty tree ∅ and we define height(∅) = −∞).

We generate a search tree B ∈ Bn using the following random experiment:

Choose randomly (uniform distribution) a permutation[π1, π2, . . . , πn] of [1,2, . . . ,n].
Each of the n! permutations is chosen with probability 1/n!.
Built a search by inserting the elements 1, . . . ,n in the order
π1, π2, . . . , πn into the search tree.

Note: different permutations can lead to the same search tree.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 149 / 158

Asymptotic analysis of data structures

Average height of search trees

Example:

[1,2,3] leads to
3

2

1

with probability 1/6.

[1,3,2] leads to
2

3

1

with probability 1/6.
[2,1,3] and [2,3,1] both lead to 2

1 3

with probability 1/3.

[3,2,1] leads to
3

2

1

with probability 1/6.

[3,1,2] leads to
2

1

3

with probability 1/6.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 150 / 158

Asymptotic analysis of data structures

Average height of search trees

The following random experiment yields for every search tree the same
probability as the experiment from the previous slide:

If n ≥ 2, choose randomly (using the uniform distribution) an element
i ∈ {1, . . . ,n}.
Every element is chosen with probability 1/n.
Then produce recursively (using the same experiment) a search tree
L ∈ Bi−1 (resp., R ∈ Bn−i).

Replace in R every node j by i + j .

The full search tree has root i and left (right) subtree L (R).

Note: this random experiment does not yield the uniform distribution on
all search trees on the nodes 1, . . . ,n.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 151 / 158

Asymptotic analysis of data structures

Average height of search trees

Example:

[1,8]

Prob[B] = 1/8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 152 / 158

Asymptotic analysis of data structures

Average height of search trees

Example:

5

[1,4] [6,8]

Prob[B] = 1/8 ⋅ 1/4 ⋅ 1/3

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 152 / 158

Asymptotic analysis of data structures

Average height of search trees

Example:

5

2 6

1 [3,4] [7,8]

Prob[B] = 1/8 ⋅ 1/4 ⋅ 1/3 ⋅ 1/2 ⋅ 1/2

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 152 / 158

Asymptotic analysis of data structures

Average height of search trees

Example:

5

2 6

1 4

3

7

8

Prob[B] = 1/8 ⋅ 1/4 ⋅ 1/3 ⋅ 1/2 ⋅ 1/2 = 1/384

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 152 / 158

Asymptotic analysis of data structures

Average height of search trees

We define the following random variables:

Hn is the height of a randomly generated search tree B ∈ Bn.

Xn = 2Hn

Theorem 24

For the expected value

E [Hn] = ∑
B∈Bn

Prob[B] ⋅ height(B)
we have E [Hn] ≤ 3 ⋅ log2(n).
Proof: We first show that E [Xn] is bounded by a polynomial p(n).
Let B be a search tree with root i ∈ [1,n] and left (right) subtree L (R).

We obtain height(B) = 1 +max{height(L),height(R)} and hence:

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 153 / 158

Asymptotic analysis of data structures

Average height of search trees

E [Xn] = ∑
B∈Bn

Prob[B] ⋅ 2height(B)

=
n

∑
i=1
∑

L∈Bi−1
∑

R∈Bn−i

1

n
Prob(L)Prob(R)21+max{height(L),height(R)}

= 2

n

n

∑
i=1
∑

L∈Bi−1
∑

R∈Bn−i
Prob(L)Prob(R)max{2height(L),2height(R)}

≤ 2

n

n

∑
i=1
∑

L∈Bi−1
∑

R∈Bn−i
Prob(L)Prob(R)(2height(L) + 2height(R))

= 2

n

n

∑
i=1
(∑
L∈Bi−1

∑
R∈Bn−i

Prob(L)Prob(R)2height(L) +

∑
R∈Bn−i

∑
L∈Bi−1

Prob(L)Prob(R)2height(R))

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 154 / 158

Asymptotic analysis of data structures

Average height of search trees

= 2

n

n

∑
i=1
(∑
L∈Bi−1

Prob(L)2height(L) + ∑
R∈Bn−i

Prob(R)2height(R))

= 2

n

n

∑
i=1
(E [Xi−1] + E [Xn−i]) = 4

n

n−1

∑
i=0

E [Xi]

Claim 1: ∑n−1
i=0 (i+33) = (n+34) for n ≥ 1.

Proof by induction on n:

n = 1: ∑0
i=0 (i+33) = (33) = 1 = (1+34).

If n ≥ 2, then
n−1

∑
i=0
(i + 3

3
) = n−2

∑
i=0
(i + 3

3
) + (n + 2

3
) = (n + 2

4
) + (n + 2

3
) = (n + 3

4
).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 155 / 158

Asymptotic analysis of data structures

Average height of search trees

In the last equality we use the formula

(n
k
) + (n

k − 1
) = (n + 1

k
).

Claim 2: E [Xn] ≤ 1
4
(n+3

3
).

Proof by induction on n:

n = 0: E [X0] = 2−∞ = 0 ≤ 1
4
(3
3
)

n = 1: E [X1] = 20 = 1 = 1
4
(4
3
)

Now assume that n ≥ 2:

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 156 / 158

Asymptotic analysis of data structures

Average height of search trees

E [Xn] ≤ 4

n

n−1

∑
i=0

E [Xi]
≤ 4

n

n−1

∑
i=0

1

4
(i + 3

3
)

= 1

n

n−1

∑
i=0
(i + 3

3
)

= 1

n
(n + 3

4
)

= 1

n

(n + 3)!
4!(n − 1)!

= 1

4

(n + 3)!
3!n!

= 1

4
(n + 3

3
)

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 157 / 158

Asymptotic analysis of data structures

Average height of search trees

Moreover, 1
4
(n+3

3
) = (n+3)⋅(n+2)⋅(n+1)

4⋅3⋅2 ≤ n3 for n ≥ 1 and hence E [Xn] ≤ n3.
The function x ↦ 2x ist convex.

With Jensen’s inequality (see Algorithms I or Slide 132) we get

2E[Hn] ≤ E [2Hn] = E [Xn] ≤ n3.
We finally obtain E [Hn] ≤ 3 log2(n).
Remark: If we assume the uniform distribution on all search trees (every
binary search tree has the same probability) then the average height is
Θ(√n).

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 158 / 158

	Number-theoretic algorithms
	Fast Fourier transformation (FFT)

	Parallel algorithms
	Randomized algorithms
	Streaming algorithms
	Asymptotic analysis of data structures

