Exercise 6

Task 1

We generalize the definition on slide 121 in the following way: Let $\mathcal{H} \subseteq \{h \mid h : A \to B\}$ be a family of hash functions. We call \mathcal{H} a family of k-wise independent hash functions, if for all $a_1, \ldots, a_k \in A$ (pairwise different) and $b_1, \ldots, b_k \in B$ we have

$$\operatorname{Prob}[\bigwedge_{i=1}^{k} h(a_i) = b_i] = 1/|B|^k$$

for a randomly chosen $h \in \mathcal{H}$ (uniform distribution). Show that

$$\mathcal{H} = \{ h_x : \mathbb{F}_p \to \mathbb{F}_p \mid h_x(a) = \sum_{i=0}^{k-1} x_i a^i, x = (x_0, \dots, x_{k-1}) \in \mathbb{F}_p^k \}$$

is such a k-wise independent family if $k \leq p$.

Task 2 (AMS algorithm)

Consider the stream S = (101, 011, 010, 111, 011, 101, 000, 001) and the corresponding set A. Approximate the cardinality of A by using the hash functions $h_{x,y}(u) = xu + y$ over \mathbb{F}_{2^3} with

- 1. x = 101 and y = 001,
- 2. x = 100 and y = 101.

Hint: You can use that + over the field \mathbb{F}_{2^3} works like a bitwise XOR and $x \cdot u$ is given by the following table:

u	000	001	010	011	100	101	110	111
$100 \cdot u$	000	100	011	111	110	010	101	001
$101 \cdot u$	000	101	001	100	010	111	011	110

Task 3 (Average height of binary search trees)

- (a) Write down all binary search trees (BSTs) with 4 nodes.
- (b) Compute the average height of a BST with 4 nodes (uniform distribution).
- (c) Compute the expected value $E[H_4]$ (slide 153).