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Important information

• Duration of the exam: 60 minutes.

• Tools: You are allowed to use a sheet of paper (size DIN A4). Both sides can be
written on by hand (no printed paper).

• Write with an indelible pen. Do not write in red paint.

• Check the exam you have been given for completeness: 6 tasks on 6 pages.

• Enter your name and matriculation number in the appropriate fields on each sheet.

• Write your solutions in the spaces provided. If there is not enough space in a field,
use the back of the corresponding sheet and indicate this on the front. If there is
still not enough space, you can ask the supervisor for additional sheets of paper.
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Task 1. (4 Points)

Which of the following statements hold for all functions f : N→ N (and g : N→ N)?
If a statement is not correct, provide a counterexample in form of concrete functions
f and g.

1. If f ∈ O(g) then f ∈ o(g).

2. f ∈ O(g) or g ∈ O(f).

3. f ∈ O(f 2)

4. f ∈ o(f 2)

No proof is required for correct statements.

Solution:

1. not correct: take for instance f(n) = n and g(n) = 2n

2. not correct: take for instance f(n) = n and g(2n) = dlog(n)e for even and
g(2n + 1) = n2 for odd n.

3. correct since f(n) ≤ f(n)2

4. not correct: take for instance f(n) = 1 for all n.
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Task 2. (6 Points)

Consider the following pseudo code for a recursive function f .

function f(n : integer)
let m be the smallest number of the form 3k with 3k ≥ n;
if m = 1 then print(goodbye)
else

for i = 1 to m2 do
print(hello)

endfor
m := m/3;
for i = 1 to 8 do
f(m)

endfor
endif

endfunction

1. Give a recursive equation for the running time of the algorithm for f .

2. Use the Master Theorem I to compute the running time of the algorithm.

Solution:

1. T (n) = 8 · T (n/3) +O(n2)

2. We have a = 8, b = 3 and c = 2. Since a = 8 < 32 = bc, the Master theorem
I yields T (n) ∈ Θ(n2).
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Task 3. (8 Points)

• Write down the the pseudo code for the procedure build-heap from heapsort.

• Consider the following array of numbers:

[8, 2, 4, 18, 3, 20, 21, 1]

Use the procedure build-heap from the lecture in order to transform the array
into a max-heap. Write down the sequence of swap(i, j) operations and the new
array after each swap (note that i and j are array indices, i.e., numbers from
{1, . . . , 8}).
• Draw the tree structure that corresponds to the heap that you have computed

in the previous point.

Solution:

• See slides

• Step 1: swap(3, 7). The new array is

[8, 2, 21, 18, 3, 20, 4, 1]

Step 2: swap(2, 4). The new array is

[8, 18, 21, 2, 3, 20, 4, 1]

Step 3: swap(1, 3). The new array is

[21, 18, 8, 2, 3, 20, 4, 1]

Step 4: swap(3, 6). The new array is

[21, 18, 20, 2, 3, 8, 4, 1]

• The max-heap is:

21

18 20

8 42

1

3
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Task 4. (6 Points)

Compute a spanning subtree of minimal weight using Kruskal’s algorithm for the
following graph.
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Show the edge selected in each step or indicate if no edge is selected in a step.

Solution: Let T be the current set of selected edges. Initially we have T = ∅.

1. Select edge {d, e}.
T = {{d, e}}.

2. Select edge {a, g}.
T = {{d, e}, {a, g}}.

3. Select edge {b, g}.
T = {{d, e}, {a, g}, {b, g}}.

4. Edge {a, b} is not selected.

5. Select edge {b, c}.

T = {{d, e}, {a, g}, {b, g}, {b, c}}.

6. Select edge {d, h}.

T = {{d, e}, {a, g}, {b, g}, {b, c}, {d, h}}.

7. Edge {e, h} is not selected.

8. Select edge {c, h}.

T = {{d, e}, {a, g}, {b, g}, {b, c}, {d, h}, {c, h}}.

9. Edge {c, d} is not selected.

10. Select edge {f, h}.

T = {{d, e}, {a, g}, {b, g}, {b, c}, {d, h}, {c, h}, {f, h}}.

11. Edge {e, f} is not selected.

12. Edge {f, g} is not selected.
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Task 5. (8 Points)

Use Dijkstra’s algorithm to compute all shortest paths starting at node s in the
following graph.

s
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Show the values of the program variables B,R,U, p,D after each iteration of the main
while-loop of Dijkstra’s algorithm.

Solution:

1. After iteration 1:
B = {s}, R = {a, d, e}, U = {b, c}
p[a] = p[d] = p[e] = s, p[b] = p[c] = nil
D[s] = 0, D[a] = 3, D[d] = 14, D[e] = 12, D[b] = D[c] =∞

2. After iteration 2:
B = {s, a}, R = {b, d, e}, U = {c}
p[a] = p[d] = p[e] = s, p[b] = a, p[c] = nil
D[s] = 0, D[a] = 3, D[b] = 4, D[d] = 14, D[e] = 12, D[c] =∞

3. After iteration 3:
B = {s, a, b}, R = {c, d, e}, U = ∅
p[a] = p[d] = s, p[b] = a, p[c] = b, p[e] = b
D[s] = 0, D[a] = 3, D[b] = 4, D[c] = 6 , D[d] = 14, D[e] = 11

4. After iteration 4:
B = {s, a, b, c}, R = {d, e}, U = ∅
p[a] = p[d] = s, p[b] = a, p[c] = b, p[e] = c
D[s] = 0, D[a] = 3, D[b] = 4, D[c] = 6 , D[d] = 14, D[e] = 8

5. After iteration 5:
B = {s, a, b, c, e}, R = {d}, U = ∅
p[a] = s, p[b] = a, p[c] = b, p[d] = e, p[e] = c
D[s] = 0, D[a] = 3, D[b] = 4, D[c] = 6 , D[d] = 10, D[e] = 8

6. After iteration 6:
B = {s, a, b, c, d, e}, R = ∅, U = ∅
p[a] = s, p[b] = a, p[c] = b, p[d] = e, p[e] = c
D[s] = 0, D[a] = 3, D[b] = 4, D[c] = 6 , D[d] = 10, D[e] = 8
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It suffices to use the table representation (if it is clear what B,R,U, p and D are).

Node s a b c d e
Step 0 0 3 ∞ ∞ 14 12
p(x) nil s nil nil s s

Step 1 0 3 4 ∞ 14 12
p(x) nil s a nil s s

Step 2 0 3 4 6 14 11
p(x) nil s a b s b

Step 3 0 3 4 6 14 8
p(x) nil s a b s c

Step 4 0 3 4 6 10 8
p(x) nil s a b e c

Step 5 0 3 4 6 10 8
p(x) nil s a b e c
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Task 6. (8 Points)

• Write down Warshall’s algorithm (pseudo code suffices).

• Write down the adjacency matrix A for the following directed graph:

1

2 3 4

5 6

7

8

• Compute the transitive closure of A. It suffices to give the final result.

Solution:

• See slides

• We have

A =



0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0


• We have

A∗ =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
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