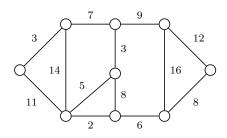
Exercise 5

Task 1

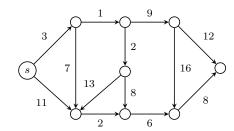

Which of the following pairs is a subset system, respectively matroid?

- (a) $(\{1,2,3\}, \{\emptyset, \{1\}, \{3\}, \{1,2\}\})$
- (b) $(\{1,2,3\}, \{\emptyset, \{1\}, \{2\}, \{3\}, \{2,3\}\})$
- (c) (E, U), where E is a finite set and $U = \{A \subseteq E \mid |A| \le k\}$ for a $k \in \mathbb{N}$.
- (d) (E, U), where E is a finite set, $\{E_i \mid 1 \leq i \leq k\}$ is a partition of E and

$$U = \{ A \subseteq E \mid |A \cap E_i| \le 1 \text{ for all } 1 \le i \le k \}.$$

Task 2

Compute a spanning subtree of maximal weight using Kruskal's algorithm for the following graph:



Task 3

- (a) Show that for each tree T = (V, E) with |V| > 0 we have |E| = |V| 1.
- (b) Show that every connected graph has a spanning subtree.

Task 4

Use Dijkstra's algorithm to compute all shortest paths starting at node s.

