Exercise 6

Task 1

Let F_n be the *n*-th Fibonacci number $(F_1 = F_2 = 1 \text{ and } F_{n+1} = F_n + F_{n-1})$. Show that

$$\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$$

and

$$\sum_{i=1}^{2n+1} (-1)^{i-1} F_i = F_{2n} + 1.$$

Task 2

Given the following Fibonacci heap:

Perform the following operations in that order:

delete-min, decrease-key("52",9), decrease-key("46",3), insert(42), delete-min, decrease-key("35",7)

Task 3

Show Theorem 17 from the lecture: For all $k\geq 0$ we have

$$F_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}$$

In Task 1 we used $F_0 = 0$ and $F_1 = 1$, but here we use $F_0 = F_1 = 1!$

Task 4

Prove or disprove: The height of a Fibonacci heap of size n is at most $O(\log n)$.