Test Exam for "Algorithms I"

WS 2021/22 / February 4, 2022

First name: \qquad

Second name: \qquad
Matriculation numberr:

task	max. points	points achieved
1	6	
2	6	
3	6	
4	6	
4	8	
5	8	
6	4	
$\boldsymbol{\Sigma}$	36	

Important information

- Duration of the exam: 60 minutes. The exam take places on February 24, 2022, (today) from 12 noon to 1 pm German time (duration: 1 hour) in the form of a take home exam.
- Your solutions must be hand written. Please write clearly! You do not have to print out the exam questions. You can write your solution on your own sheets of paper.
- Please write on each sheet of paper your name and your matriculation number. Every solution must be clearly marked with the corresponding number of the exam question.
- You have to scan or take photos of your solutions. We prefer to receive a single PDF file and we recommend to use the free Adobe Scan App. Alternatively, you can also write your solutions directly with a tablet and send us a PDF.
- Your solutions must arrive no later than by 1:20 pm German time on February 24, 2022, (today) at one of the following email addresses:
(a)
(b)
(c)
(d)
- Together with your solutions you have to send us the filled and signed declaration of independent performance for the exam.
- You can use all kinds of support (technical tools, lecture notes, books etc.) for the exam except for the help of other persons.
- In case of technical problems we will be available by phone via one of the following numbers:
(a)
(b)
(c)

Note that we cannot guarantee to be always available.

Task 1. (6 Points)
Which of the following statements are correct?

1. $n+\log (n) \in o(n)$
2. $n \in \mathcal{O}(n+\log (n+1))$
3. $n^{n} \in o\left(2^{n \log n}\right)$
4. $\cos (n)+2 \in \Theta(\sin (n)+2)$

You do not have to prove your answers.

Task 2. (6 Points)
Use the Master Theorem to determine the asymptotic growth of the following functions:

1. $T_{1}(n)=4 \cdot T_{1}(n / 2)+n^{3}$
2. $T_{2}(n)=16 \cdot T_{2}(n / 4)+n^{2}$
3. $T_{3}(n)=28 \cdot T_{3}(n / 3)+n^{3}$
4. $T_{4}(n)=200 \cdot T_{4}(n / 100)+n$

You do not have to compute the values of logarithms (e.g., just write $\log _{2} 3$ instead of $1,58496 \cdots)$.
\square

Task 3. (6 Points)
Consider the array A with the following entries:

Use the Build Heap procedure in order to transform it into a heap. Show the array after each call of reheap.

Task 4. (6 Points)
Compute a spanning subtree of minimal weight using Kruskal's algorithm for the following graph.

Show the edge selected in each step or indicate if no edge is selected in a step.
\square

Task 5. (8 Points)
Assume the following 4 integer matrices are given:

- (10×2)-matrix A_{1}
- (2×3)-matrix A_{2}
- (3×8)-matrix A_{3}
- (8×10)-matrix A_{4}

In which way would you compute the product $A_{1} A_{2} A_{3} A_{4}$ so that the total number of integer multiplications is minimized?
\square

Task 6. (4 Points)
Let G be the following directed graph:

- Determine the corresponding adjacency matrix of G.
- Compute the adjacency matrix of G^{+}(the transitive closure of G).
\square

