Exercise 1

Task 1

Prove or disprove the following statements:
(a) $n \log n \in \mathcal{O}(\sqrt{n} \cdot n)$

Solution

True: We know that $\log (n) \leq \sqrt{n}$ for all $n \in \mathbb{N}$ with $n \geq 1$, so $n \log (n) \leq \sqrt{n} \cdot n$. Therefore, $n \log (n) \in \mathcal{O}(\sqrt{n} \cdot n)$ since for $c=1$ and for all $n \geq n_{0}=1$ it holds that $n \log (n) \leq c \cdot \sqrt{n} \cdot n$.
(b) $n^{k+1} \in \mathcal{O}\left(n^{k}\right), k \in \mathbb{N}$

Solution

False: Let $n_{0} \in \mathbb{N}, c>0$ and assume that for all $n \geq n_{0}$ it holds that $n^{k+1} \leq c \cdot n^{k}$, especially for $n=c+n_{0}+1 \geq n_{0}$ we have that $\left(c+n_{0}+1\right)^{k+1} \leq c \cdot\left(c+n_{0}+1\right)^{k}$. It follows that $c+n_{0}+1 \leq c$ which is a contradiction.
(c) $n^{n} \in \Omega\left(5^{n}\right)$

Solution

True: We have $n^{n} \in \Omega\left(5^{n}\right) \Leftrightarrow 5^{n} \in \mathcal{O}\left(n^{n}\right)$. We choose $c=1$ and $n_{0}=5$, then clearly we have $5^{n} \leq c \cdot 5^{n} \leq c \cdot n^{n}$ for all $n \geq n_{0}$.
(d) $n-\log n \in o(n)$

Solution

False: Let $c=\frac{1}{2}$ and let $n_{0} \in \mathbb{N}$. Then $n-\log (n) \leq c n$ means $n \leq 2 \log (n)$, which is false for any $n \geq 1$.
(e) $k+\ell \cdot(-1)^{n} \in \Theta(1), k, \ell \in \mathbb{N}, k>\ell$

Solution

True: We have $0<k-\ell \leq k+\ell(-1)^{n} \leq k+\ell$ for any $n \in \mathbb{N}$. Hence $k+\ell(-1)^{n} \leq c \cdot 1$ with $c=k+\ell$, which implies $k+\ell(-1)^{n} \in \mathcal{O}(1)$, and $1 \leq c \cdot\left(k+\ell(-1)^{n}\right)$ with $c=1$, which implies $1 \in \mathcal{O}\left(k+\ell(-1)^{n}\right)$.
(f) $n^{3} \in \omega\left(n^{2} \sin (n!)\right)$

Solution

True: We have $n^{3} \in \omega\left(n^{2} \sin (n!)\right) \Leftrightarrow n^{2} \sin (n!) \in o\left(n^{3}\right)$. Since $|\sin (x)| \leq 1 \forall x \in \mathbb{N}$, we have $n^{2} \sin (n!) \leq n^{2} \leq c \cdot n^{3}$. For any $c>0$ the inequality $n^{2} \leq c \cdot n^{3}$ indeed holds, if n_{0} is large enough: We have $1 \leq c \cdot n$ (assuming $n>0$), which means we can pick $n_{0}=\lceil 1 / c\rceil$.

Alternatively we can use \lim (or \lim sup or $\lim \mathrm{inf}$) to prove these statements. For instance

$$
\lim _{n \rightarrow \infty} \frac{n-\log (n)}{n}=1>0,
$$

hence we know $n-\log (n) \notin o(n)$.

Task 2

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(n) \in \Theta(n)$. Prove or disprove the following statements:
(a) $f(n)^{k} \in \Theta\left(n^{k}\right)$ for all $k \in \mathbb{N}, k \geq 1$

Solution

True: From $f(n) \in \Theta(n)$ it follows that:
(1) $f(n) \in \mathcal{O}(n)$, so there exist $n_{0} \in \mathbb{N}, c>0$ such that for all $n \geq n_{0}$ we have $f(n) \leq c \cdot n$, which implies that $f(n)^{k} \leq(c \cdot n)^{k}=c^{k} \cdot n^{k}$, therefore $f(n)^{k} \in \mathcal{O}\left(n^{k}\right)$.
(2) $n \in \mathcal{O}(f(n))$, so there exist $n_{0} \in \mathbb{N}, c>0$ such that for all $n \geq n_{0}$ we have $n \leq$ $c \cdot f(n)$, which implies that $n^{k} \leq(c \cdot f(n))^{k}=c^{k} \cdot f(n)^{k}$, therefore $n^{k} \in \mathcal{O}\left(f(n)^{k}\right)$.

We therefore obtain that $f(n)^{k} \in \Theta\left(n^{k}\right)$.
(b) $3^{f(n)} \in \Theta\left(3^{n}\right)$

Solution

False: Let $f(n)=3 n$, so $f(n) \in \Theta(n)$. Assume that the statement is true so we have $3^{3 n}=9^{n} \in \Theta\left(3^{n}\right)$, so $9^{n} \in \mathcal{O}\left(3^{n}\right)$. This means there exist $n_{0} \in \mathbb{N}, c>0$ such that for every $n \geq n_{0}$ we have $9^{n} \leq c \cdot 3^{n}$. This implies $\left(\frac{9}{3}\right)^{n} \leq c$. But since 3^{n} is not a bouned function, this yields a contradiction.

Task 3

Use the Master Theorem to determine the asymptotic growth of the following functions:
(a) $T_{1}(n)=99 \cdot T_{1}\left(\frac{n}{100}\right)+24 n$

Solution

$a=99, b=100, c=1$. Since $a=99<100=b^{c}$, case 1 applies:

$$
T_{1}(n) \in \Theta\left(n^{c}\right)=\Theta(n) .
$$

(b) $T_{2}(n)=10 \cdot T_{2}\left(\frac{n}{3}\right)+1000 n^{2}$

Solution

$a=10, b=3, c=2$. Since $a=10>9=b^{c}$, case 3 applies:

$$
T_{2}(n) \in \Theta\left(n^{\frac{\log (a)}{\log (b)}}\right)=\Theta\left(n^{\frac{\log (10)}{\log (3)}}\right) .
$$

(c) $T_{3}(n)=16 \cdot T_{3}\left(\frac{n}{2}\right)+n^{4}$

Solution

$a=16, b=2, c=4$. Since $a=16=2^{4}=b^{c}$, case 2 applies:

$$
T_{3}(n) \in \Theta\left(n^{c} \log (n)\right)=\Theta\left(n^{4} \log (n)\right)
$$

(d) $T_{4}(n)=16 \cdot T_{4}\left(\frac{n}{2}\right)+n^{3}$

Solution

$a=16, b=2, c=3$. Since $a=16>8=b^{c}$, case 3 applies:

$$
T_{4}(n) \in \Theta\left(n^{\frac{\log (a)}{\log (b)}}\right)=\Theta\left(n^{\frac{\log (16)}{\log (2)}}\right)=\Theta\left(n^{4}\right)
$$

Task 4

Give a recursive equation for the running time of the algorithm for f. Use the Master Theorem I to compute the running time of the algorithm.

```
function \(f(n\) : integer)
    let \(m\) be the smallest number of the form \(3^{k}\) with \(3^{k} \geq n\);
    if \(m=1\) then print (goodbye)
    else
        for \(i=1\) to \(m^{2}\) do
            print(hello)
            endfor
            \(m:=m / 3\);
            for \(i=1\) to 8 do
            \(f(m)\)
            endfor
    endif
endfunction
```


Solution

The recursive function is $T(n)=8 \cdot T(n / 3)+\mathcal{O}\left(n^{2}\right)$.
We have $a=8, b=3$ and $c=2$. Since $a=8<3^{2}=b^{c}$, the Master theorem I yields $T(n) \in \Theta\left(n^{2}\right)$.

