Exercise 2

Task 1

Sort the array $[4,19,8,1,18,7,11,13]$ using Mergesort.

Solution

mergesort(1, 8), $m=4$

- mergesort(1, 4), $m=2$
$-\operatorname{mergesort}(1,2), m=1, \operatorname{merge}(1,1,2),[4,19]$
$-\operatorname{mergesort}(3,4), m=3$, merge($3,3,4$), $[1,8]$
- merge(1, 2, 4), [1, 4, 8, 19]
- mergesort(5,8), $m=6$
$-\operatorname{mergesort}(5,6), m=5$, merge($5,5,6$), $[7,18]$
$-\operatorname{mergesort}(7,8), m=7$, merge $(7,7,8),[11,13]$
- merge($5,6,8$), $[7,11,13,18]$
merge(1, 4, 8), $[1,4,7,8,11,13,18,19]$
Using the array-box representation (as dicussed in the exercise session) is also sufficient.

Task 2

Calculate $1295 \cdot 4077$ using the algorithm of Karatsuba. You do not have to use base 2.

Solution

For base b we have

$$
r s=A C b^{n}+(A-B)(D-C) b^{\frac{n}{2}}+(B D+A C) b^{\frac{n}{2}}+B D .
$$

$b=10, n=2^{2}=4, r=1295=A|B, A=12, B=95, s=4077=C| D, C=40$, $D=77$

$$
\begin{aligned}
r s & =(12 \cdot 40) \cdot 10^{4}+(12-95)(77-40) \cdot 10^{2}+(95 \cdot 77+12 \cdot 40) \cdot 10^{2}+95 \cdot 77 \\
& =480 \cdot 10^{4}-3071 \cdot 10^{2}+(7315+480) \cdot 10^{2}+7315 \\
& =5279715
\end{aligned}
$$

The second $=$ makes use of the following 3 calculations:
(a) $12 \cdot 40, n=2, A=1, B=2, C=4, D=0$

$$
\begin{aligned}
12 \cdot 40 & =(1 \cdot 4) \cdot 10^{2}+(1-2)(0-4) \cdot 10^{1}+(2 \cdot 0+1 \cdot 4) \cdot 10^{1}+2 \cdot 0 \\
& =400+40+40=480
\end{aligned}
$$

(b) $(12-95)(77-40)=-83 \cdot 37, n=2, A=8, B=3, C=3, D=7$

$$
\begin{aligned}
83 \cdot 37 & =(8 \cdot 3) \cdot 10^{2}+(8-3)(7-3) \cdot 10^{1}+(3 \cdot 7+8 \cdot 3) \cdot 10^{1}+3 \cdot 7 \\
& =2400+200+450+21=3071
\end{aligned}
$$

(c) $95 \cdot 77, n=2, A=9, B=5, C=7, D=7$

$$
\begin{aligned}
95 \cdot 77 & =(9 \cdot 7) \cdot 10^{2}+(9-5)(7-7) \cdot 10^{1}+(5 \cdot 7+9 \cdot 7) \cdot 10^{1}+5 \cdot 7 \\
& =6300+980+35=7315
\end{aligned}
$$

Task 3

Use the algorithm of Strassen to calculate the following matrix product:

$$
\left(\begin{array}{cc}
1 & -4 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 8 \\
-5 & 1
\end{array}\right)
$$

Solution

- $M_{1}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)=(-4-2)(-5+1)=24$
- $M_{2}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right)=(1+2)(0+1)=3$
- $M_{3}=\left(A_{11}-A_{21}\right)\left(B_{11}+B_{12}\right)=(1-3)(0+8)=-16$
- $M_{4}=\left(A_{11}+A_{12}\right) B_{22}=(1+(-4)) \cdot 1=-3$
- $M_{5}=A_{11}\left(B_{12}-B_{22}\right)=1(8-1)=7$
- $M_{6}=A_{22}\left(B_{21}-B_{11}\right)=2(-5-0)=-10$
- $M_{7}=\left(A_{21}+A_{22}\right) B_{11}=(3+2) \cdot 0=0$
- $C_{11}=M_{1}+M_{2}-M_{4}+M_{6}=24+3-(-3)+(-10)=20$
- $C_{12}=M_{4}+M_{5}=-3+7=4$
- $C_{21}=M_{6}+M_{7}=-10+0=-10$
- $C_{22}=M_{2}-M_{3}+M_{5}-M_{7}=3-(-16)+7-0=26$

Hence we have

$$
\left(\begin{array}{cc}
1 & -4 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 8 \\
-5 & 1
\end{array}\right)=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{cc}
20 & 4 \\
-10 & 26
\end{array}\right)
$$

Task 4

Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically faster than Strassen's algorithm. His algorithm will use the divide-and-conquer method, dividing each matrix into pieces of size $n / 8 \times n / 8$, and the divide and combine steps together will take $\Theta\left(n^{2}\right)$ time. He needs to determine how many subproblems his algorithm has to create in order to beat Strassen's algorithm. If his algorithm creates a subproblems then the recurrence for the running time $T(n)$ becomes $a T(n / 8)+\Theta\left(n^{2}\right)$. What is the largest integer value for a for which Professor Caesar's algorithm would be asymptotically faster than Strassen's algorithm?

Solution

Solution
Strassen's algorithm has a running time of $\Theta\left(n^{\frac{\log (7)}{\log (2)}}\right)=\Theta\left(n^{2.807 \ldots .}\right)$. Using the Master Theorem for Caesar's algorithm, we have $b^{c}=8^{2}=2^{6}=64$. Depending on a, it has the following running time:

- $\Theta\left(n^{2}\right)$ if $a<64$ (which is better than Strassen's algorithm),
- $\Theta\left(n^{2} \log n\right)$ if $a=64$ (which is also better than Strassen's algorithm)
- $\Theta\left(n^{\frac{\log (a)}{\log (8)}}\right)$ if $a>64$. In this case, we want that $\frac{\log (a)}{\log (8)}<\frac{\log (7)}{\log (2)}$.

Therefore, $\frac{\log (a)}{\log (7)}<\frac{\log (8)}{\log (2)}=3$ and thus $a<7^{3}=343(65 \leq a \leq 342)$.
Hence, the largest integer for a is 342 .

Task 5

Show that a binary tree with N leaves has at least height $\log _{2}(N)$.

Solution

The set of binary trees \mathcal{T} is defined as follows: ()$\in T$ is a binary tree, and if $t_{1}, t_{2} \in T$, then $\left(t_{1}, t_{2}\right) \in \mathcal{T}$. The height $h: \mathcal{T} \rightarrow \mathbb{N}$ is defined as: $h()=1, h\left(t_{1}, t_{2}\right)=1+\max \left\{h\left(t_{1}\right), h\left(t_{2}\right)\right\}$. The number of leaves $\ell: \mathcal{T} \rightarrow \mathbb{N}$ is defined as $\ell()=1$ and $\ell\left(t_{1}, t_{2}\right)=\ell\left(t_{1}\right)+\ell\left(t_{2}\right)$. We now want to show that for each $t \in \mathcal{T}$ it holds that $h(t) \geq \log _{2}(\ell(t))$.

- For $t=()$ we have $h(t)=1 \geq 0=\log _{2}(1)=\log _{2}(\ell(t))$.
- For $t=\left(t_{1}, t_{2}\right)$ we have

$$
\begin{aligned}
h(t) & =1+\max \left\{h\left(t_{1}\right), h\left(t_{2}\right)\right\} \\
& \geq 1+\max \left\{\log _{2}\left(\ell\left(t_{1}\right)\right), \log _{2}\left(\ell\left(t_{2}\right)\right)\right\} \\
& =1+\log _{2}\left(\max \left\{\ell\left(t_{1}\right), \ell\left(t_{2}\right)\right\}\right) \\
& =\log _{2}\left(2 \max \left\{\ell\left(t_{1}\right), \ell\left(t_{2}\right)\right\}\right) \\
& \geq \log _{2}\left(\ell\left(t_{1}\right)+\ell\left(t_{2}\right)\right) \\
& =\log _{2}(\ell(t))
\end{aligned}
$$

We made use of the following statements: For all $x, y \geq 0$:

- $\max \{\log (x), \log (y)\}=\log (\max \{x, y\})$. This is true, because \log is monotone.
- $2 \max \{x, y\} \geq x+y$. If $x \leq y$, then $x+y \leq y+y=2 y=2 \max \{x, y\}$. The case $y<x$ is similar.

