Exercise 4

Task 1

Consider the following coding functions (slides 76 and 78):

$$
c_{1}\left(a_{1} \ldots a_{t}\right)=a_{1} 0 a_{2} 0 \ldots a_{t-1} 0 a_{t} 1
$$

and

$$
c_{2}^{\prime}\left(a_{1} \ldots a_{t}\right)=c_{1}\left(\operatorname{bin}\left(\left\lceil\log _{2}(n)\right\rceil-t\right)\right) a_{1} \ldots a_{t}
$$

for bitstrings $a_{1} \ldots a_{t} \in\{0,1\}^{*}$.
For an input list of length $n=6$ we get the following code of the sink paths after applying Heapsort:

$$
1001010011111010011100101001110010
$$

For all sink paths c_{2}^{\prime} is used. What is the input list?

Task 2

Is there a comparison-based sorting algorithm and a number $c>0$ such that the following holds: The proportion of all input lists of length n on which the algorithm makes at most $c \cdot n$ comparisons is at least $\frac{1}{2^{n}}$.

Task 3

Sort the following list via Radixsort.

$$
[331,489,635,320,759,425,185,920]
$$

Task 4

Sort the following list via Bucketsort.

$$
[0.22,0.87,0.41,0.05,0.37,0.84,0.59,0.28,0.85,0.33]
$$

You can sort each bucket by using a blackbox (an arbitrary sorting algorithm).

Task 5

Show that the median of five numbers can be computed using six comparisons.

Task 6

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be n points in the plane \mathbb{R}^{2}. Find a line g parallel to the x-axis in time $\mathcal{O}(n)$, such that the sum of the distances between g and the points is minimal. Prove that your line is indeed optimal.

