Universitat Siegen Algorithmics 1
Lehrstuhl Theoretische Informatik WS 2022/23
Markus Lohrey

Exercise 4

Task 1
Consider the following coding functions (slides 76 and 78):

ci(ay . ..a;) = a10a50 . .. a;—10a;1

and
cy(ay...ar) = ci(bin([logy(n)] —t))ay . . . a

for bitstrings a; ...a; € {0, 1}*.
For an input list of length n = 6 we get the following code of the sink paths after applying

Heapsort:
1001010011111010011100101001110010

For all sink paths ¢, is used. What is the input list?

Solution
Let f(t) := bin([logy(n)] — t). For n = 6 we have [logy(n)] = 3 and hence
t 1 2|13
f(t) 10 110
ci(f(t)) | 1001 [11] 01
Now we scan the string from left to right and search for the substrings of the last row. If
there is a match, the next ¢ bits encode a sink path. This yields

1001 0 1001 1 11 10 1001 1 1001 O 1001 1 1001 O.

We can assume that the sorted list is [1,2,3,4,5,6]. In order to obtain the list before
applying Heapsort, we need to do the operations in the opposite order, while scanning the
string (only the sink paths now) from right to left. Also we know that the elements were
exactly picked in the order 6,5,4,3,2,1. The last 3 sink paths correspond to the build-heap
procedure. Recall: 0 = left, 1 = right.

1. [2,1] = [1,2]

2. [3,2,1 — [1,2,3]

3. [4,2,3,1] — [2.4,3,1]

4. [5,4,3,1,2] — [3,4,5,1,2]

5. 6,4,5,1,2,3] — [3,4,6,1,2, 5]

6. [3,2.6,1,4,5]

7. [3,2,5,1,4,6] (this is the answer)

Task 2

Is there a comparison-based sorting algorithm and a number ¢ > 0 such that the following
holds: The proportion of all input lists of length n on which the algorithm makes at most
c-n comparisons is at least 2%

Solution
No: A binary tree of height h has at most 1 + 2 + 4 + -+ + 2" = 2" — 1 many nodes.
Hence, there exist at most 2¢"*! — 1 many lists, where the algorithm makes at most ¢ - n
many comparisons (height = number of comparisons needed; number of leaves < number
of nodes). This means, regardless of the algorithm, the proportion of these lists is at most
%,1_1 But we have
cn+l
! > i — 2(c+1)-n+1 — 92" >yl
n! -2 -

which is wrong for large enough n € N. We have 2¢™ € o(n!).
Task 3
Sort the following list via Radixsort.

331, 489, 635, 320, 759, 425, 185, 920]

Solution
In round i we sort the array with respect to the i-th digit (from the least to the most
significant) with Countingsort:

1. e xx0: 2 elements ([320,920])
e xx 1: 1 element ([331])
e x5 3 elements ([635,425, 185])
e xx9: 2 elements ([489, 759])
= [320, 920, 331, 635, 425, 185, 489, 759|

(1320, 920, 425))
e «3x: 2 elements ([331, 635])
e «5x: 1 element ([795])
e «8x: 2 elements ([185,489])
= [320, 920, 425, 331,635, 795, 185, 489

2. e x2x: 3 elements

o 1 % x:
o 3% k:
o 4 % x:
® 0% *:

o T x %:

e O x x:

1 element (
2 elements

2 elements
1 element (
1 element (

1 element (

185])
320, 331])
(425, 489])
[635])
[795])
[920])

[
(
(

= [185, 320, 331, 425, 489, 635, 795, 920]

Task 4

Sort the following list via Bucketsort.

[0.22,0.87,0.41,0.05,0.37,0.84,0.59, 0.28, 0.85, 0.33]

You can sort each bucket by using a blackbox (an arbitrary sorting algorithm).

Solution
Step 1: We create 10 buckets, since the array has length 10. This means, the elements are
sorted by their first decimal place in this case.

B0l | B[] | B[] B[3] B4] | B[5] | B[6] | B[7] B8] B9
[0.05] [0.22,0.28] | [0.37,0.33] | [0.41] | [0.59] [0.87,0.84,0.85]

Step 2: We sort each bucket by using an arbitrary sorting algorithm:
B[0] | BI[1] BI[2] B3] B[4] | BI[5] | B[6] | B[7] BI§] BI[9]
[0.05] [0.22,0.28] | [0.33,0.37] | [0.41] | [0.59] [0.84,0.85,0.87]

Step 3: Append the lists into a single list. This yields

Task 5

[0.05,0.22,0.28,0.33,0.37,0.41, 0.59, 0.84, 0.85, 0.87].

Show that the median of five numbers can be computed using six comparisons.

Solution
The idea is to find two elements of which we know that at least three other elements

are greater.

Such an element cannot be the median. After this we have three elements

remaining. We then have to find out which element among these is the smallest, which is
the median.

Let a,b, c,d, e be the five numbers.
have to be careful to discover this through comparisons.

e Compare a and b. Also compare ¢ and d. We now know that a < b and ¢ < d.

We assume WLOG that a < b < ¢ < d < e but we

e Compare the smaller elements of {a,b} and {c, d} which are a and ¢. We now know

that a < c.

median.

Since we know that b, ¢ and d are greater than a, it cannot be the

e Compare b and e, so we now know that b < e.

e Compare the smaller elements of {b,e} and {c,d} which are b and ¢. We now know
that b < c¢. Since we know that ¢, d and e are greater than b, it cannot be the median.

e We are now left with {c, d, e}. The smallest element among these three is the median.
We already know that ¢ < d, so d cannot be the median. We compare ¢ and e and
find out that ¢ < e. Therefore, ¢ is the smallest element of {c,d, e} and thus is the
median.

Task 6

Let (z1,91),-- ., (Tn,yn) be n points in the plane R?. Find a line g parallel to the z-axis in
time O(n), such that the sum of the distances between g and the points is minimal. Prove
that your line is indeed optimal.

Solution

The z-values can be ignored for this task.

If n is odd, then g is optimal, if it is passing through the median yeq: Assume that we
are moving g up by € > 0. Then for at least [5] many points with y; < ymeq the distance
to g is increasing by e. But only for at most |4 | many points with y; > ymea the distance
to g is decreasing by €. The same argument is true for shifting the line down.

If n is even, every line between the two medians is optimal.

Hence the problem can be solved in linear time by finding the median of the y-values.

Solution (Bonus - Overview Sorting Algorithms)
Countingsort, Radixsort and Bucketsort are not in the list, since they are not comparison
based. With certain assumptions, Radixsort and Bucketsort run in linear time.

Name Best Average Worst In-Place? | Stable? *
Mergesort | O(nlogn) | O(nlogn) | O(nlogn) No Yes
Quicksort | O(nlogn) | O(nlogn) O(n?) Yes No
Heapsort | O(nlogn) | O(nlogn) | O(nlogn) Yes No

Bubblesort O(n) O(n?) O(n?) Yes Yes

*This means that if Afi] = A[j] for i < j,
then in the sorted array the entry of A[i] is left of A[j].

