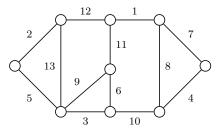
Exercise 5

Task 1

Does the algorithm "Median of the Medians" run in linear time, if one uses blocks of three or blocks of nine?


Task 2

Which of the following pairs is a subset system, respectively matroid?

- (a) $(\{1,2,3\}, \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2,3\}\})$
- (b) $(\{1, 2, 3\}, \{\emptyset, \{1\}, \{2\}, \{3\}, \{2, 3\}\})$
- (c) (E, U), where E is a finite set and $U = \{A \subseteq E \mid |A| \le k\}$ for a $k \in \mathbb{N}$.
- (d) (E, U), where E is a finite subset of a vector space (for instance \mathbb{R}^2) and U consists of all linearly independent subsets of E.

Task 3

Compute a spanning subtree of maximal weight using Kruskal's algorithm for the following graph:

How does the result change, when you want to compute a spanning subtree of minimal weight?

Task 4

- (a) Show that for each tree T = (V, E) with |V| > 0 we have |E| = |V| 1.
- (b) Show that every finite connected graph has a spanning subtree.