Exercise 5

Task 1

Does the algorithm "Median of the Medians" run in linear time, if one uses blocks of three or blocks of nine?

Task 2

Which of the following pairs is a subset system, respectively matroid?
(a) $(\{1,2,3\},\{\emptyset,\{1\},\{2\},\{3\},\{1,2,3\}\})$
(b) $(\{1,2,3\},\{\emptyset,\{1\},\{2\},\{3\},\{2,3\}\})$
(c) (E, U), where E is a finite set and $U=\{A \subseteq E| | A \mid \leq k\}$ for a $k \in \mathbb{N}$.
(d) (E, U), where E is a finite subset of a vector space (for instance \mathbb{R}^{2}) and U consists of all linearly independent subsets of E.

Task 3

Compute a spanning subtree of maximal weight using Kruskal's algorithm for the following graph:

How does the result change, when you want to compute a spanning subtree of minimal weight?

Task 4

(a) Show that for each tree $T=(V, E)$ with $|V|>0$ we have $|E|=|V|-1$.
(b) Show that every finite connected graph has a spanning subtree.

