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Exercise 5

Task 1
Does the algorithm ”Median of the Medians” run in linear time, if one uses blocks of three
or blocks of nine?

Solution

• blocks of 3: T (n) ≤ T (n
3
) + T (2n

3
) + c · n

The number of comparisons T (2n
3

) (recursive step) is obtained like on slide 101.

We cannot use Master Theorem II, so it is not clear, whether T (n) ∈ O(n) or not.

• blocks of 9: T (n) ≤ T (n
9
) + T (13n

18
) + c · n

The number of comparisons T (13n
18

) (recursive step) is obtained like on slide 101.

Master Theorem II implies T (n) ∈ O(n), since (1
9

+ 13
18

) < 1.

Task 2
Which of the following pairs is a subset system, respectively matroid?

(a) ({1, 2, 3},
{
∅, {1}, {2}, {3}, {1, 2, 3}

}
)

(b) ({1, 2, 3},
{
∅, {1}, {2}, {3}, {2, 3}

}
)

(c) (E,U), where E is a finite set and U = {A ⊆ E | |A| ≤ k} for a k ∈ N.

(d) (E,U), where E is a finite subset of a vector space (for instance R2) and U consists of
all linearly independent subsets of E.

Solution
Let E be a finite set and U ⊆ 2E.
A pair (E,U) is a subset system, if ∅ ∈ U and A ⊆ B ∈ U implies A ∈ U .
A subset system (E,U) is a matroid, if for all A,B ∈ U with |A| < |B| there is an element
x ∈ B \ A such that A ∪ {x} ∈ U .

(a) This is not a subset system, because {1, 2, 3} ∈ U but {1, 2} /∈ U .

(b) This is a subset system. The exchange property for |∅| < |A| for all A ∈ U is trivial,
so we have three cases to check, since |{1}|, |{2}|, |{3}| < |{2, 3}|. For {1} and {2, 3}
there is no x ∈ {2, 3} \ {1} = {2, 3} such that {1} ∪ {x} ∈ U , since {1, 2} /∈ U and
{1, 3} /∈ U . Therefore, this is not a matroid.
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(c) This is a subset system:

• ∅ ∈ U because ∅ ⊆ E and |∅| = 0 ≤ k.

• Let B ∈ U , so B ⊆ E and |B| ≤ k. Let A ⊆ B ⊆ E. Then |A| ≤ |B|, hence
|A| ≤ k and therefore A ∈ U .

This is a matroid: Let A,B ∈ U with |A| < |B|. Since |B| ≤ k we have |A| < k, so
for every x ∈ E it holds by definition that A ∪ {x} ∈ U . Choose any y ∈ B \ A 6= ∅,
hence A ∪ {y} ∈ U .

(d) This is a subset system, since ∅ is a linearly indipendent set and subsets of linearly
indipendent sets are linearly indipendent. It is also a matriod: The exchange property
follows from the exchange lemma of Steinitz (linear algebra).

Task 3
Compute a spanning subtree of maximal weight using Kruskal’s algorithm for the following
graph:
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How does the result change, when you want to compute a spanning subtree of minimal
weight?

Solution
We first sort the edges by their weights in decreasing order. To illustrate better what it
yields, we show the graph one more time:
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Kruskal’s algorithm now takes greedily any heavy edge into the set F , such that (V, F ) has
no cycles (V is just the vertex set from the original graph).
In the end the spanning subtree has the following edges: F = {e1, e2, e3, e4, e6, e7, e8, e9}.
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To compute a spanning subtree of minimal weight, we need to sort the edges in reversed
order. After going through all the steps, we obtain (details: see exercise session)
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Hence, the graph is (V, F ′), where F ′ = {e1, e2, e3, e4, e5, e6, e7, e10}.

Task 4

(a) Show that for each tree T = (V,E) with |V | > 0 we have |E| = |V | − 1.

(b) Show that every finite connected graph has a spanning subtree.

Solution

(a) We do an induction on |V |. In case |V | = 1 it is clear that |E| = 0. Now let |V | > 1.
Since T has no cycles, there is a leaf in T , meaning there is a v ∈ V with |vE| = 1,
where vE = {{v, u} ∈ V 2 | {v, u} ∈ E}. So |vE| = 1 means that v borders only
one edge, which means that the node u with {v, u} ∈ E is the parent node of v. Let
T ′ = (V ′, E ′) with V ′ \ {v} and E ′ = E \ vE. This is a tree, since it is connected,
because T is connected and v is a leaf, and it also has no cycles, since E ′ ⊆ E and
T has no cycles. Furthermore, |V ′| = |V | − 1, so by induction hypothesis we obtain
|E ′| = |V ′|−1. We have now proven that |E| = |E ′|+1 = |V ′|−1+1 = |V ′| = |V |−1.

(b) Let G = (V,E) be a connected graph. If G is a tree, G is a spanning tree of G.
Otherwise, choose an edge e ∈ E that is on a cycle in G and let E ′ = E \ {e}. Now
G′ = (V,E ′) is still connected and E ′ ⊂ E. We set G = G′ and iterate the above step.
This algorithm terminates because G is finite and we remove one edge in each step.
Repeatedly removing edges on cycles in a finite graph eventually leads to a graph that
has no cycles and is therefore a (spanning) subtree.
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