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Exercise 5

Task 1
Does the algorithm ”Median of the Medians” run in linear time, if one uses blocks of three
or blocks of nine?

Solution

e blocks of 3: T(n) < T(%) +T(%)+c-n
The number of comparisons T'(3*) (recursive step) is obtained like on slide 101.

We cannot use Master Theorem I, so it is not clear, whether T'(n) € O(n) or not.

e blocks of 9: T(n) < T(3) +T(H2)+c-n
The number of comparisons T'(12) (recursive step) is obtained like on slide 101.

Master Theorem II implies T'(n) € O(n), since (3 + 13) < 1.

Task 2
Which of the following pairs is a subset system, respectively matroid?
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(d U), where E is a finite subset of a vector space (for instance R?) and U consists of

all hnearly independent subsets of F.

Solution

Let F be a finite set and U C 2F.

A pair (E,U) is a subset system, if ) € U and A C B € U implies A € U.

A subset system (F,U) is a matroid, if for all A, B € U with |A| < |B| there is an element
x € B\ A such that AU {z} € U.

(a) This is not a subset system, because {1,2,3} € U but {1,2} ¢ U.

(b) This is a subset system. The exchange property for |}| < |A| for all A € U is trivial,
so we have three cases to check, since [{1}],[{2}], {3} < [{2,3}|. For {1} and {2,3}
there is no « € {2,3} \ {1} = {2,3} such that {1} U {z} € U, since {1,2} ¢ U and
{1,3} ¢ U. Therefore, this is not a matroid.
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(c) This is a subset system:

e ) € U because ) C E and |)| =0 < k.

e Let BeU,s0 BC Fand |B| <k. Let AC B C E. Then |A| < |B|, hence
|A| < k and therefore A € U.

This is a matroid: Let A, B € U with |A| < |B|. Since |B| < k we have |A| < k, so
for every x € E it holds by definition that AU {z} € U. Choose any y € B\ A # 0,
hence AU{y} € U.

(d) This is a subset system, since () is a linearly indipendent set and subsets of linearly
indipendent sets are linearly indipendent. It is also a matriod: The exchange property
follows from the exchange lemma of Steinitz (linear algebra).

Task 3
Compute a spanning subtree of maximal weight using Kruskal’s algorithm for the following
graph:

How does the result change, when you want to compute a spanning subtree of minimal
weight?

Solution
We first sort the edges by their weights in decreasing order. To illustrate better what it
yields, we show the graph one more time:

Kruskal’s algorithm now takes greedily any heavy edge into the set F', such that (V, F) has
no cycles (V is just the vertex set from the original graph).
In the end the spanning subtree has the following edges: F' = {ey, €2, €3, €4, €4, €7, €5, €9}



To compute a spanning subtree of minimal weight, we need to sort the edges in reversed
order. After going through all the steps, we obtain (details: see exercise session)

Hence, the graph is (V, F"), where F' = {e}, ea, €3, €4, €5, €6, €7, €10}

Task 4

(a)
(b)

Show that for each tree T = (V, E) with |V| > 0 we have |E| = |V| — 1.

Show that every finite connected graph has a spanning subtree.

Solution

(a)

We do an induction on |V|. In case |V| =1 it is clear that |E| = 0. Now let |[V| > 1.
Since T has no cycles, there is a leaf in 7', meaning there is a v € V' with |vg| = 1,
where vy = {{v,u} € V? | {v,u} € E}. So |vg| = 1 means that v borders only
one edge, which means that the node u with {v,u} € F is the parent node of v. Let
T = (V' E') with V' \ {v} and E' = E \ vg. This is a tree, since it is connected,
because T is connected and v is a leaf, and it also has no cycles, since £/ C E and
T has no cycles. Furthermore, |V'| = |[V| — 1, so by induction hypothesis we obtain
|E'| = |V'| —1. We have now proven that |E| = |E'|+1 = |V'|-1+1= |V'| = |V|-1.

Let G = (V,E) be a connected graph. If G is a tree, G is a spanning tree of G.
Otherwise, choose an edge e € E that is on a cycle in G and let E' = E'\ {e}. Now
G' = (V, E') is still connected and E' C E. We set G = G’ and iterate the above step.
This algorithm terminates because G is finite and we remove one edge in each step.
Repeatedly removing edges on cycles in a finite graph eventually leads to a graph that
has no cycles and is therefore a (spanning) subtree.



