Exercise 7

Task 1

Given the following Fibonacci heap:

Perform the following operations in that order:
delete-min, decrease-key (" 52 ", 9), decrease-key ("46", 3), insert(42), delete-min, decrease-key ("35", 7)

Task 2

Find the optimal order to compute the following product (only the dimensions of the matrices are given):

$$
(2 \times 4) \cdot(4 \times 6) \cdot(6 \times 1) \cdot(1 \times 10) \cdot(10 \times 10)
$$

Task 3

Let $X=\left(x_{1}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ be two sequences. We say X is a subsequence of Y if there are indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that for all $1 \leq j \leq m$ it holds that $x_{j}=y_{i_{j}}$.
Use dynamic programming to implement an algorithm that runs in polynomial time which, given two sequences X and Y, computes the length of the longest common subsequence of X and Y.

Task 4

Construct an optimal binary search tree for the following elements v with probability (weight) $\gamma(v)$.

v	1	2	3	4	5	6
$\gamma(v)$	0.25	0.1	0.2	0.15	0.25	0.05

Task 5

Assume we want to construct an optimal binary search tree using the following greedy algorithm: Choose an element v for which $\gamma(v)$ is maximal as the root node and then continue recursively. Show that this approach does not always yield an optimal binary search tree.

