
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Algorithmics 1
WS 2022/23

Exercise 7

Task 1
Given the following Fibonacci heap:

7 17 24

23 21 18 30 46

52 38 35

41

26

39

Perform the following operations in that order:
delete-min, decrease-key(“52”, 9), decrease-key(“46”, 3), insert(42), delete-min,
decrease-key(“35”, 7)

Solution

1. delete-min: The node with key 7 gets deleted.

17 2423 21 18

30 4652 38

3541

2639

And we tidy the forest a bit.

17 2423

21 1830 46

52 38 35

41

26

39

1

2. decrease-key(“52”, 9): 9 moves up, 21 gets marked.

17 2423

1830 46

9

38 35

41

26

39

21

3. decrease-key(“46”, 3): 3 moves up, 24 cannot be marked.

17 2423

1830

39

38 35

41

26

39

21

4. insert(42): Inserting 42 as a new tree.

17 2423

1830

39

38 35

41

42

26

39

21

2

5. delete-min: Node with key 3 gets deleted and we tidy the forest.

17

24231830

9

38

3541

42

2639

21

6. decrease-key(“35”, 7): 7 moves up and 26 as well, since it is marked (but loses its
mark). 24 gets marked.

17

231830

26 9

38

7

41

42

24

39

21

Task 2
Find the optimal order to compute the following product (only the dimensions of the
matrices are given):

(2× 4) · (4× 6) · (6× 1) · (1× 10) · (10× 10)

Solution
We compute the number of multiplications of the product A1A2A3A4A5 by dynamic pro-
gramming.

Matrix products of length 2: 2 · 4 · 6 = 48 | 4 · 6 = 24 | 6 · 10 = 60 | 10 · 10 = 100

Matrix products of length 3 (2 + 1 or 1 + 2):
min(48 + 12, 24 + 8) = 32, hence A1(A2A3) is optimal | min(24 + 40, 60 + 240) = 64, hence
(A2A3)A4 is optimal | min(60 + 600, 100 + 60) = 160, hence A3(A4A5) is optimal

Matrix products of length 4 (3 + 1 or 2 + 2 or 1 + 3):
min(32 + 20, 48 + 60 + 120, 64 + 80) = 52, hence (A1(A2A3))A4 is optimal |
min(64 + 400, 24 + 100 + 40, 160 + 240) = 164, hence (A2A3)(A4A5) is optimal

Matrix product of length 5 (4 + 1 or 3 + 2 or 2 + 3 or 1 + 4):
min(52 + 200, 32 + 100 + 20, 48 + 160 + 120, 164 + 80) = 152

3

Hence, to compute the product A1A2A3A4A5, it is the best to compute it via the bracketing
(A1(A2A3))(A4A5), which takes 152 multiplications.

We can also encode these values in two tables. The table cost consists of the optimal
number of multiplications for each subproblem, where entry (i, j) is representing the cost
of the product Ai · · ·Aj and best[i, j] is the optimal cut-point for the bracketing:

i\j 1 2 3 4 5
1 0 48 32 52 152
2 - 0 24 64 164
3 - - 0 60 160
4 - - - 0 100
5 - - - - 0

i\j 1 2 3 4 5
1 - 1 1 3 3
2 - - 2 3 3
3 - - - 3 3
4 - - - - 4
5 - - - - -

cost[i, j] best[i, j]

Task 3
Let X = (x1, . . . , xm) and Y = (y1, . . . , yn) be two sequences. We say X is a subsequence
of Y if there are indices 1 ≤ i1 < i2 < · · · < im ≤ n such that for all 1 ≤ j ≤ m it holds
that xj = yij .
Use dynamic programming to implement an algorithm that runs in polynomial time which,
given two sequences X and Y , computes the length of the longest common subsequence of
X and Y .

Solution
Let c[i, j] be the length of a LCS of (x1, . . . , xi) and (y1, . . . , yj). We have

c[i, j] =


0 if i = 0 or j = 0,

c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj,

max(c[i− 1, j], c[i, j − 1]) if i, j > 0 and xi 6= yj.

We iniciate the table with 0 at position c[i, j], where i or j is 0. Wlog. let n < m. In
the first step, we compute c[i, 1] for i = 1, . . . , n and c[1, j] for j = 1, . . . ,m. In step k we
compute c[i, k] for i = k, . . . , n and c[k, j] for j = k, . . . ,m. After min(n,m) = n steps we
filled in exactly the whole table and we know the value c[n,m]. The algorithm works in
time O(n ·m) ⊆ O(m2).
Example: X = (1, 2, 4), Y = (2, 3, 4, 6). The goal is the value c[3, 4].

i\j 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 1 1 1 1
3 0 1 1 2 2

Since 3 < 4, we can also just fill in the table row by row.

4

Task 4
Construct an optimal binary search tree for the following elements v with probability
(weight) γ(v).

v 1 2 3 4 5 6
γ(v) 0.25 0.1 0.2 0.15 0.25 0.05

Solution
To compute a BST with smallest weighted inner path length, we use dynamic program-
ming. Let cost[i, j] be the weighted inner path length of the optimal BST for the node set
{i, . . . , j} with root r[i, j].
i\j 1 2 3 4 5 6
1 0.25 0.45 0.95 1.3 1.95 2.1
2 0 0.1 0.4 0.7 1.35 1.5
3 - 0 0.2 0.5 1.05 1.2
4 - - 0 0.15 0.55 0.65
5 - - - 0 0.25 0.35
6 - - - - 0 0.05

i\j 1 2 3 4 5 6
1 1 1 1 3 3 3
2 - 2 3 3 4 5
3 - - 3 3 4 5
4 - - - 4 5 5
5 - - - - 5 5
6 - - - - - 6

cost[i, j] r[i, j]
Initialize cost[i, i − 1] = 0, cost[i, i] = γ(i) and r[i, i] = i. In the next step, the node with
the highest weight (probability) has to be the root node, hence we can fill in the tables at
position (i, i + 1). The trick in the following steps is now to pick a root, where the sum
of the optimal costs of the BST for the left and the right subtree plus the total weight
Γ[i, j] = γ(i) + · · · + γ(j) is minimal (for the minimization we can ignore Γ of course).
Among the optimal roots, we pick the one with the largest key (by convention).

BST of size 3: For instance (3, 5); 0.55 + 0.6 (3) vs. 0.2 + 0.25 + 0.6 (4) vs. 0.5 + 0.6 (5).
Hence, node 4 is at the top. For the other 3 values ((1, 3), (3, 5) and (4, 6)), we do the
same. In the following examples we ignore Γ[i, j].

BST of size 4: For instance (2, 5); 1.15 (2) vs. 0.1 + 0.55 (3) vs. 0.4 + 0.25 (4) vs. 0.7 (5).
Hence, node 4 is at the top (root 3 and 4 are equally good, but we choose 4 as convention
tells us). The values (1, 4) and (3, 6) are obtained similarly.

We skip the example for BSTs of size 5 and jump directly to size 6.

We have 1.5 (1) vs. 1.45 (2) vs. 1.1 (3) vs. 1.3 (4) vs. 1.35 (5) vs. 1.95 (6). Clearly node
3 wins. The optimal BST has weighted inner path length of 1.1 + 1 = 2.1 and looks like
this:

1

2

3

4

5

6

5

Task 5
Assume we want to construct an optimal binary search tree using the following greedy
algorithm: Choose an element v for which γ(v) is maximal as the root node and then
continue recursively. Show that this approach does not always yield an optimal binary
search tree.

Solution
Choose γ1 = 1

3
− ε, γ2 = 1

3
and γ3 = 1

3
+ ε. The greedy algorithm yields a chain (3− 2− 1)

with a weighted inner path length of(
1

3
+ ε

)
· 1 +

1

3
· 2 +

(
1

3
− ε
)
· 3 = 2− 2ε.

It is better to take the tree with root v = 2 (and left child 1, right child 3). We obtain a
weighted inner path length of

1

3
· 1 +

(
1

3
− ε+

1

3
+ ε

)
· 2 =

5

3
< 2− 2ε

for all 0 < ε < 1
6
.

6

