Exam for "Algorithms I" WS 2022/23 / February 23, 2023

First name:

Second name:

Matriculation number:

task	max. points	points achieved
1	6	
2	7	
3	6	
4	8	
5	8	
6	5	
Σ	40	

Important information

- Duration of the exam: **60 minutes**.
- Tools: You are allowed to use a handwritten sheet of paper (size DIN A4). Both sides of the sheet of paper can be handwritten.
- Write with an indelible pen. Do not write in red paint.
- Check the exam you have been given for completeness: 6 tasks on 7 pages.
- Enter your name and matriculation number in the appropriate fields on each sheet.
- Write your solutions in the spaces provided. If there is not enough space in a field, use the back of the corresponding sheet and indicate this on the front. If there is still not enough space, you can ask the supervisor for additional sheets of paper.

Task 1. (6 Points)

Which of the following statements hold $(f \text{ and } g \text{ are arbitrary functions on } \mathbb{N})$?

1. $(n-1)^2 \in o(n^2)$

2.
$$\mathcal{O}(n) = \mathcal{O}(n^2)$$

- 3. o(n) = o(2n)
- 4. $f \in \Theta(g)$ if and only if $g \in \Theta(f)$
- 5. If $f \in o(g)$ then also $f \in \mathcal{O}(g)$.
- 6. $2^{\sqrt{n}} \in \mathcal{O}(n^{\log n})$

You do not have to prove your answers.

Task 2. (7 Points)

Consider the following recursive sorting algorithm, where A is an array of n integers. The function $\operatorname{swap}(A, i, j)$ swaps the elements at positions i and j in the array A.

- 1. **function** slow-sort(A[1...n] : array of integers)
- 2. if n = 1 then $\operatorname{return}(A)$
- 3. else
- 4. slow-sort(A[2...n])
- 5. **if** A[1] > A[2] **then**
- $6. \qquad \operatorname{swap}(A, 1, 2)$
- 7. slow-sort(A[2...n])
- 8. endif
- 9. $\operatorname{return}(A)$
- 10. **endif**
- 11. endfunction
- 1. Explain, why this is a correct sorting algorithm.
- 2. Give a recursive equation for the worst-case running time of the algorithm.
- 3. Show that the worst-case running time of the algorithm is $\Omega(2^n)$.

Task 3. (6 Points)

Compute a spanning subtree of maximal weight using Kruskal's algorithm for the following graph.

Show the edge selected in each step or indicate if no edge is selected in a step.

Task 4. (8 Points)

Use Dijkstra's algorithm to compute all shortest paths starting at node s in the graph below. Show the values of the program variables B, R, U, p, D after each iteration of the main **while**-loop of Dijkstra's algorithm.

Matr

Task 5. (8 Points)

The following Fibonacci heap is given:

Perform the following operations in that order:

- $1. \ {\rm delete-min}$
- 2. decrease-key(node with key 52, 9)
- 3. decrease-key(node with key 35, 16)
- 4. delete-min

Task 6. (5 Points)

Four matrices A_1, A_2, A_3, A_4 are given and the goal is to compute the product $A_1A_2A_3A_4$. The dimensions of the matrices are as follows:

- $A_1: 10 \times 10$
- $A_2: 10 \times 1$
- $A_3: 1 \times 6$
- $A_4: 6 \times 5$

Find the optimal bracketing so that the number of scalar multiplications is minimized.