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Important information

• Duration of the exam: 60 minutes.

• Tools: You are allowed to use a handwritten sheet of paper (size DIN A4). Both
sides of the sheet of paper can be handwritten.

• Write with an indelible pen. Do not write in red paint.

• Check the exam you have been given for completeness: 6 tasks on 8 pages.

• Enter your name and matriculation number in the appropriate fields on each sheet.

• Write your solutions in the spaces provided. If there is not enough space in a field,
use the back of the corresponding sheet and indicate this on the front. If there is
still not enough space, you can ask the supervisor for additional sheets of paper.
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Task 1. (6 Points)
Which of the following statements hold (f and g are arbitrary functions on N)?

1. (n− 1)2 ∈ o(n2)

2. O(n) = O(n2)

3. o(n) = o(2n)

4. f ∈ Θ(g) if and only if g ∈ Θ(f)

5. If f ∈ o(g) then also f ∈ O(g).

6. 2
√
n ∈ O(nlogn)

You do not have to prove your answers.

Solution:

1. not correct

2. not correct

3. correct

4. correct

5. correct

6. not correct
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Task 2. (7 Points)
Consider the following recursive sorting algorithm, where A is an array of n integers.
The function swap(A, i, j) swaps the elements at positions i and j in the array A.

1. function slow-sort(A[1 . . . n] : array of integers)
2. if n = 1 then return(A)
3. else
4. slow-sort(A[2 . . . n])
5. if A[1] > A[2] then
6. swap(A, 1, 2)
7. slow-sort(A[2 . . . n])
8. endif
9. return(A)

10. endif
11. endfunction

1. Explain, why this is a correct sorting algorithm.

2. Give a recursive equation for the worst-case running time of the algorithm.

3. Show that the worst-case running time of the algorithm is Ω(2n).

Solution:

1. By induction, after slow-sort(A[2 . . . n]) in line 4, the subarray of A from
position 2 to position n is sorted. In particular, the smallest element in the
array is at position 1 or 2. If A[1] ≤ A[2] then A is sorted and A is correctly
returned in line 9. If A[1] > A[2] then after swap(A, 1, 2), the smallest array
element is at position 1. Then, after slow-sort(A[2 . . . n]) in line 7, the array
is sorted and returned in line 9.

2. T (n) = 2 · T (n− 1) + c for a constant c.

3. We have T (n) ≥ 2 · T (n − 1) for n ≥ 2. By induction, we show that
T (n) ≥ 2n−1 for all n ≥ 1: For n = 1 we have T (n) = 1 ≥ 21−1. For
n > 1 we obtain inductively T (n) ≥ 2 · T (n− 1) ≥ 2 · 2n−2 = 2n−1.
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Task 3. (6 Points)
Compute a spanning subtree of maximal weight using Kruskal’s algorithm for the
following graph.

a b c

d e i

g h

8 5

9

9

7 6

54

10

3

Show the edge selected in each step or indicate if no edge is selected in a step.

Solution: Let T be current set of selected edges. Initially we have T = ∅

1. Select edge {g, h}: T = {{g, h}}

2. Select edge {a, d}: T = {{g, h}, {a, d}}

3. Select edge {d, e}: T = {{g, h}, {a, d}, {d, e}}

4. Select edge {a, b}: T = {{g, h}, {a, d}, {d, e}, {a, b}}

5. Edge {b, e} is not selected.

6. Select edge {c, i}: T = {{g, h}, {a, d}, {d, e}, {a, b}, {c, i}}

7. Select edge {b, c}: T = {{g, h}, {a, d}, {d, e}, {a, b}, {c, i}, {b, c}}

8. Select edge {h, i}: T = {{g, h}, {a, d}, {d, e}, {a, b}, {c, i}, {b, c}, {h, i}}

9. Edge {d, g} is not selected.

10. Edge {e, h} is not selected.
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Task 4. (8 Points)
Use Dijkstra’s algorithm to compute all shortest paths starting at node s in the graph
below. Show the values of the program variables B,R,U, p,D after each iteration of
the main while-loop of Dijkstra’s algorithm.

s a b

c

def

1 2

3

4

21

50

11

9

30

Solution:

1. After iteration 1:
B = {s}, R = {a, f}, U = {b, c, d, e}
p[a] = s, p[f ] = s, p[x] = nil for other nodes x
D[s] = 0, D[a] = 1, D[f ] = 50, D[x] =∞ for other nodes x

2. After iteration 2:
B = {s, a}, R = {b, d, f}, U = {c, e}
p[a] = s, p[f ] = a, p[b] = a, p[d] = a, p[s] = p[c] = p[e] = nil
D[s] = 0, D[a] = 1, D[f ] = 31, D[b] = 3, D[d] = 12, D[c] = D[e] =∞

3. After iteration 3:
B = {s, a, b}, R = {c, d, f}, U = {e}
p[a] = s, p[f ] = a, p[b] = a, p[c] = b, p[d] = a, p[s] = p[e] = nil
D[s] = 0, D[a] = 1, D[f ] = 31, D[b] = 3, D[c] = 6, D[d] = 12, D[e] =∞

4. After iteration 4:
B = {s, a, b, c}, R = {d, e, f}, U = ∅
p[a] = s, p[f ] = a, p[b] = a, p[c] = b, p[d] = c, p[e] = c, p[s] = nil
D[s] = 0, D[a] = 1, D[f ] = 31, D[b] = 3, D[c] = 6, D[d] = 10, D[e] = 15

5. After iteration 5:
B = {s, a, b, c, d}, R = {e, f}, U = ∅
p[a] = s, p[f ] = a, p[b] = a, p[c] = b, p[d] = c, p[e] = d, p[s] = nil
D[s] = 0, D[a] = 1, D[f ] = 31, D[b] = 3, D[c] = 6, D[d] = 10, D[e] = 12,

6. After iteration 6:
B = {s, a, b, c, d, e}, R = {f}, U = ∅
p[a] = s, p[f ] = e, p[b] = a, p[c] = b, p[d] = c, p[e] = d, p[s] = nil
D[s] = 0, D[a] = 1, D[f ] = 13, D[b] = 3, D[c] = 6, D[d] = 10, D[e] = 12,
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7. After iteration 7:
B = {s, a, b, c, d, e, f}, R = ∅, U = ∅
p[a] = s, p[f ] = e, p[b] = a, p[c] = b, p[d] = c, p[e] = d, p[s] = nil
D[s] = 0, D[a] = 1, D[f ] = 13, D[b] = 3, D[c] = 6, D[d] = 10, D[e] = 12,

In table form (Step 0 is optional):

Node s a b c d e f
Step 0 0 ∞ ∞ ∞ ∞ ∞ ∞
p(x) nil nil nil nil nil nil nil

Step 1 0 1 ∞ ∞ ∞ ∞ 50
p(x) nil s nil nil nil nil s

Step 2 0 1 3 ∞ 12 ∞ 31
p(x) nil s a nil a nil a

Step 3 0 1 3 6 12 ∞ 31
p(x) nil s a b a nil a

Step 4 0 1 3 6 10 15 31
p(x) nil s a b c c a

Step 5 0 1 3 6 10 12 31
p(x) nil s a b c d a

Step 6 0 1 3 6 10 12 13
p(x) nil s a b c d e

Step 7 0 1 3 6 10 12 13
p(x) nil s a b c d e

The distances are bold for tree nodes B, normal for boundary nodes R and ∞
for unknown nodes U .

Seite 5 von 8



Exam Algorithms I
Name:

23.02.2023
Matriculation number:

Task 5. (8 Points)
The following Fibonacci heap is given:

7 17 24

21

22

18 46

52 38 35

26

39

23

Perform the following operations in that order:

1. delete-min

2. decrease-key(node with key 52, 9)

3. decrease-key(node with key 35, 16)

4. delete-min

Solution:

1. delete-min (in two steps)

23 17 2421

22

18

4652 38

35

2639

23

17 24

21

22

18

46

52

38

35

2639

2. decrease-key(node with key 52, 9)

23

17 24

22

18

46

9

38

35

2621 39
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Solution:

3. decrease-key(node with key 35, 16)

23

17 24

22

18 26

46

9

38

16

21 39

4. delete-min (in two steps)

23

17 24

22

18 26

4638

16

21 39

23

17

24

22

18

26 4638

16

21 39
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Task 6. (5 Points)
Four matrices A1, A2, A3, A4 are given and the goal is to compute the product A1A2A3A4.
The dimensions of the matrices are as follows:

• A1: 10× 10

• A2: 10× 1

• A3: 1× 6

• A4: 6× 5

Find the optimal bracketing so that the number of scalar multiplications is minimized.

Solution:

• cost for A1A2 (10× 1): 100

• cost for A2A3 (10× 6): 60

• cost for A3A4 (1× 5): 30

• optimal cost for A1A2A3 (10× 6): min(100 + 60, 60 + 600) = 160, which is
realized by (A1A2)A3

• optimal cost for A2A3A4 (10 × 5): min(60 + 300, 30 + 50) = 80, which is
realized by A2(A3A4)

• optimal cost for A1A2A3A4 (10×5): min(160+300, 100+30+50, 80+500) =
180, which is realized by (A1A2)(A3A4).
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