Exercise 6

Task 1

Which of the following pairs (E, U) is a subset system or a matroid, respectively?

- 1. $E = \{1, 2, 3\}$ and $U = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2, 3\}\}.$
- 2. $E = \{1, 2, 3\}$ and $U = \{\emptyset, \{1\}, \{2\}, \{3\}, \{2, 3\}\}.$
- 3. *E* is a finite set and $U = \{A \subseteq E \mid |A| \leq k\}$ for some $k \in \mathbb{N}$.
- 4. E is a finite subset of \mathbb{R}^2 and U consists of all linearly independent subsets of E.

Task 2

Let T = (V, E) be a finite tree (slide 121) with $|V| \ge 1$. Prove the following statements.

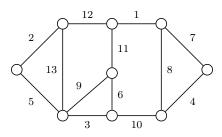
- 1. There exists a vertex $v \in V$ with at most one neighbour, i.e., $\{v, u_1\}, \{v, u_2\} \in E$ implies $u_1 = u_2$. In other words, every finite non-empty tree T has a leaf.
- 2. The equality |V| |E| = 1 holds.

Task 3

Show that every finite connected graph G = (V, E) has a spanning subtree (slide 122). Moreover, use the equality from Task 2 to conclude that G has a circuit if $|E| \ge |V| \ge 1$.

Task 4

Compute a spanning subtree of maximal weight for the following edge-weighted graph using Kruskal's algorithm (slide 126).



How does the result change, when you compute a spanning subtree of minimal weight?