Exam for "Algorithms I" WS 2024/25 / February 17, 2025

First name:

Second name:

Matriculation number:

task	max. points	points achieved
1	7	
2	5	
3	6	
4	5	
5	7	
6	6	
7	6	
Σ	42	

Important information

- Duration of the exam: **60 minutes**.
- Tools: You are allowed to use a handwritten sheet of paper (size DIN A4). Both sides of the sheet of paper can be handwritten.
- Write with an indelible pen. Do not write in red paint.
- Check the exam you have been given for completeness: 7 tasks on 9 pages.
- Enter your name and matriculation number in the appropriate fields on each sheet.
- Write your solutions in the spaces provided. If there is not enough space in a field, use the back of the corresponding sheet and indicate this on the front. If there is still not enough space, you can ask the supervisor for additional sheets of paper.
- Please write clearly. Illegible answers are invalid.
- Any attempt to cheat will result in immediate exclusion and failure. There will be no advance warning.
- All electronic devices must be switched off before the exam or at the latest now.

Task 1. (7 Points)

• Which of the following statements hold? You do not have to prove your answers.

(1) $n^n \in \Omega(n!)$ (2) $3^{2n} \in \mathcal{O}(2^{3n})$ (3) $\frac{1}{n} \log n \in o(1)$

Solution:

(1) correct

(2) not correct

- (3) correct
- Using the Master Theorems, determine the asymptotic growth (in Θ -notation) of the functions f and g subject to the following recursions.

(4)
$$f(n) = 4 f(n/2) + n^2$$
 (5) $g(n) = 9 g(n/3) + n\sqrt{n}$

Solution: Both functions can be analyzed with the Master Theorem I as our functions f and g are of the general form $t(n) = a t(n/b) + n^c$.

(4) Here, a = 4, b = 2 and $\log_b a = 2 = c$. Hence, $f(n) \in \Theta(n^2 \log n)$.

(5) Here, a = 9, b = 3 and $\log_b a = 2 > c = 3/2$. Hence, $g(n) \in \Theta(n^2)$.

Task 2. (5 Points)

Recall that the height of a tree is the number of edges along a longest path from the root of the tree to a leaf. Prove that, for every $h \in \mathbb{N}$, there are at least 2^h distinct binary trees of height h.

Solution: Alternative 1 (assuming binary trees are ordered). There are exactly 2^h binary trees of heighh h with one leaf. Indeed, every one of the h edges along the path from the root to the leaf can point either towards the left or right child. Since there are h such choices, there are 2^h such trees.

Alternative 2. The statement is clearly true for h = 0. For h > 0, the claim follows by induction. For one subtree of the root, choose the subtree to either be empty or to consist of a single leaf. Then choose any of the at least 2^{h-1} binary trees of height h-1 for the other subtree of the root. There are at least $2 \cdot 2^{h-1} = 2^h$ such choices, each leading to a distinct binary tree of height h. Task 3. (6 Points)

• Write down the pseudocode for the procedure **counting-sort**.

Solution: See slides.

• Sort the following array of numbers using Radix Sort (in base 10).

[568, 416, 538, 857, 976, 462, 389, 543]

Write down the new array after each call to **counting-sort**.

Solution: After the 1. call to counting-sort we obtain

[462, 543, 416, 976, 857, 568, 538, 389].

After the 2. call to **counting-sort** we obtain

[416, 538, 543, 857, 462, 568, 976, 389].

After the 3. call to **counting-sort** we obtain

[389, 416, 462, 538, 543, 568, 857, 976].

Task 4. (5 Points)

Compute a spanning subtree of *minimal* weight using Kruskal's algorithm for the following graph. Show the edge selected in each step or indicate if no edge is selected.

Solution: Let T be current set of selected edges. Initially we have $T = \emptyset$.

- 1. Select $\{d, f\}$: $T = \{\{d, f\}\}$
- 2. Select $\{b, d\}$: $T = \{\{b, d\}, \{d, f\}\}$
- 3. Select $\{b, c\}$: $T = \{\{b, c\}, \{b, d\}, \{d, f\}\}$
- 4. Select $\{c, e\}$: $T = \{\{b, c\}, \{b, d\}, \{c, e\}, \{d, f\}\}$
- 5. Don't select $\{b, e\}$.
- 6. Don't select $\{e, f\}$.
- 7. Don't select $\{d, e\}$.
- 8. Select $\{a, b\}$: $T = \{\{a, b\}, \{b, c\}, \{b, d\}, \{c, e\}, \{d, f\}\}$
- 9. Don't select $\{a, c\}$.

Task 5. (7 Points)

Use Dijkstra's algorithm to compute all shortest paths starting at node s in the graph below. Show the values of the program variables B, R, U, p, D after each iteration of the main **while**-loop of Dijkstra's algorithm.

Solution: In table form: the distances are **bold** for tree nodes B, normal for boundary nodes R and ∞ for unknown nodes U. (Step 0 is optional.)

Node		s	a	b	c	d	e	f
Step 0	D(x)	0	∞	∞	∞	∞	∞	8
	p(x)	nil	nil	nil	nil	nil	nil	nil
Step 1	D(x)	0	4	∞	∞	∞	7	∞
	p(x)	nil	s	nil	nil	nil	s	nil
Step 2	D(x)	0	4	13	∞	∞	5	∞
	p(x)	nil	s	a	nil	nil	a	nil
Step 3	D(x)	0	4	13	∞	8	5	10
	p(x)	nil	s	a	nil	e	a	e
Step 4	D(x)	0	4	11	∞	8	5	10
	p(x)	nil	s	d	nil	e	a	e
Step 5	D(x)	0	4	11	∞	8	5	10
	p(x)	nil	s	d	nil	e	a	e
Step 6	D(x)	0	4	11	13	8	5	10
	p(x)	nil	s	d	b	e	a	e
Step 7	D(x)	0	4	11	13	8	5	10
	p(x)	nil	s	d	b	e	a	e

Solution:

17.02.2025

Task 6. (6 Points)

The following Fibonacci heap is given.

Perform the following sequence of operations on the above Fibonacci heap.

- (1) **decrease-key** (node with key 100, 12)
- (2) delete-min
- (3) delete-min

Task 7. (6 Points)

Let us consider directed graphs G = (V, E) on the vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and the property that i < j for every edge from v_i to v_j in G. On input of such a graph G, we want to compute the number of distinct paths from v_1 to v_n .

• Give a brief description of a dynamic programming solution for this problem.

Solution: Initialize an array $P[1 \dots n]$ with all values set to 0. (Eventually P[i] will hold the number of distinct paths from v_1 to v_i .) Set $P[1] \leftarrow 1$. Then, for each edge from v_i to v_j in lexicorphic order of the pair (i, j), set $P[j] \leftarrow P[j] + P[i]$. Finally, return the value P[n].

• Compute the number of distinct paths from v_1 to v_7 in the following graph.

Solution: The resulting array P is given in the follow table.

i	1	2	3	4	5	6	7
P[i]	1	1	1	3	4	8	12

As such, there are 12 disctinct paths from v_1 to v_7 in the given graph.