Exercise 3

Task 1 (Savitch's Theorem). Recall that Savitch's Theorem states that for all functions $s(n) \in \Omega(\log n)$ we have **NSPACE** $(s(n)) \subseteq$ **DSPACE** $(s^2(n))$.

Compute the running time of the algorithm (slide 35) used in the proof of this theorem, i.e., compute the time required in order to deterministically simulate a nondeterministic Turing machine with quadratic space increase.

Task 2. Compare the following pairs of complexity classes. Which of these classes is a subset of the other class? Give reasons for your answer.

- **NTIME** (n^2) and **DSPACE** (n^3)
- **DTIME** $(n^2 + 1)$ and **DTIME** $(3n^2 + \log^4 n)$

Task 3. Show that the function $f_1(n) = n^2$ is time and space constructible by describing appropriate Turing machines. Furthermore, construct Turing machines that show that $f_2(n) = 2^n$ and $f_3(n) = n!$ are space constructible.

Task 4. Let $f, g: \mathbb{N} \to \mathbb{N}$ be two time (resp. space) constructible functions. Which of the following statements is true? Justify your answers.

- The sum f + g is also time (resp. space) constructible.
- The product $f \cdot g$ is also time (resp. space) constructible.
- The composition $g \circ f$ is also time (resp. space) constructible.

Moreover, show that every polynomial $p(x) \in \mathbb{N}[x]$ with non-negative integer coefficients is both time constructible and space constructible.