Exercise 4

Task 1. A cycle in a directed graph is a path v_0, \ldots, v_n , such that $v_0 = v_n$ and $v_i \neq v_j$ for all other nodes v_i and v_j . A directed graph is called *acyclic*, if it does not contain a cycle. Consider the problem ACYCLIC defined as follows.

Input: A directed graph *G*. **Question:** Is *G* acyclic?

Does the problem ACYCLIC belong to NL?

Task 2. Show that the theorem of Immerman and Szelepcsényi (slide 51) is equivalent to $\mathbf{NL} = \mathbf{coNL}$ by giving a suitable padding argument.

Task 3. Consider the complexity classes

$$\mathbf{EXP} = \bigcup_{k \in \mathbb{N}} \mathbf{DTIME}(2^{n^k}) \text{ and } \mathbf{NEXP} = \bigcup_{k \in \mathbb{N}} \mathbf{NTIME}(2^{n^k}).$$

Prove that $\mathbf{P} = \mathbf{NP}$ implies $\mathbf{EXP} = \mathbf{NEXP}$ using the padding technique.

Task 4. Let $L \subsetneq \Sigma^*$ be any language and let $f(n) = n^k$. Show that

 $\mathsf{Pad}_f(L) \leq_m^{\log} L.$