Übungsblatt 1

Aufgabe 1. Wahr oder falsch?

- (a) Es gibt überabzählbar unendlich viele Wörter über einem endlichen Alphabet.
- (b) Es gibt abzählbar unendlich viele berechenbare Funktionen $f \colon \mathbb{N}^k \to \mathbb{N}$.
- (c) Es gibt überabzählbar unendlich viele Funktionen $f \colon \mathbb{N}^k \to \mathbb{N}$.

Aufgabe 2. Sei $M = (Q, \Sigma, \Sigma \cup \{\Box\}, \delta, z_0, \Box, \{z_2\})$ die Turingmaschine über $\Sigma = \{0, 1\}$ mit Zustandsmenge $Q = \{z_0, z_1, z_2\}$ und den folgenden Transitionen:

$$\delta(z_0, 0) = (z_0, 0, R)
\delta(z_1, 0) = (z_1, 0, L)
\delta(z_0, 1) = (z_0, 1, R)
\delta(z_1, 1) = (z_1, 1, L)
\delta(z_0, \square) = (z_1, 0, L)
\delta(z_1, \square) = (z_2, \square, R).$$

- (a) Untersuchen Sie, wie sich die Turingmaschine auf den Eingaben 10, 11 und 110 verhält. Wie verhält sie sich allgemein bei Eingaben $w \in 1\{0,1\}^* \cup \{0\}$?
- (b) Wie verändert sich das Verhalten, wenn man die Transition $\delta(z_0, \square) = (z_1, 0, L)$ durch die Transition $\delta(z_0, \square) = (z_1, 1, L)$ ersetzt?
- (c) Ändern Sie M so ab, dass sie die Funktion f(n) = 4n + 1 berechnet.

Aufgabe 3. Geben Sie eine Zwei-Band-Turingmaschine an, die bei Eingabe $w \in \{a, b\}^*$ zunächst das Wort ww auf das erste Band schreibt, dann den Lesekopf auf das erste Zeichen von ww bewegt und schließlich in einen Endzustand übergeht.

Aufgabe 4. Geben Sie Turingmaschinen M_i an, welche die Funktionen $\pi_i \colon \mathbb{N}^2 \to \mathbb{N}$ mit

$$\pi_i(n_1, n_2) = n_i \quad (i = 1, 2)$$

berechnen.