Universitat Siegen Berechenbarkeit und Logik
Lehrstuhl Theoretische Informatik WS 2025/2026
Markus Lohrey

Ubungsblatt 7

Aufgabe 1. Welche der folgenden Probleme sind in P? Welche sind in NP?
(a) Das Wortproblem fiir regulére Sprachen.
(b) Das Wortproblem fiir kontextfreie Sprachen.

)
)
(c) Das Wortproblem fiir kontextsensitive Sprachen.
(d) Das Erfiillbarkeitsproblem fiir aussagenlogische Formeln (SAT).
(e) Das spezielle Halteproblem.

Losung.

(a) Das Problem ist in P und somit auch in NP; siehe néchste Teilaufgabe.

(b) Das Problem ist in P und somit auch in NP. Ein polynomialzeit Algorithmus fiir
diese Problem geht etwa auf Cocke-Younger-Kasami zuriick.

(c) Das Problem ist vollstindig fiir die Komplexitéatsklasse PSPACE, die aus jenen
Problemen besteht, die in polynomiellem Platz gelost werden konnen. Zwar gilt

P C NP C PSPACE,

aber es ist iiber keine dieser Inklusionen bekannt, ob sie strikt ist. Insbesondere
wissen wir also nicht, ob das Problem in NP oder gar in P liegt.

(d) Das Problem ist NP-vollstandig und somit in NP. Ob das Problem in P liegt, und
somit P = NP gilt, ist nicht bekannt.

(e) Das Problem ist unentscheidbar. Daher liegt es weder in P noch in NP.
Aufgabe 2. Beweisen Sie die folgenden Abschlusseigenschaften, wobei A, B, L C ¥*.

(a) Sind A und B in P (bzw. NP), dann auch AU B und AN B.

(b) Sind A und B in P (bzw. NP), dann auch A- B = {uwwv € ¥* |u € A,v € B}.

(c) Ist L in NP, dann auch L* = {w € ¥* | w = uy - - - u,, mit uy,...,u, € L}.

Aufgabe 3. Zeigen Sie: Die Variante des Problems SUBSETSUM (siche Folie 186), bei
der die zu erreichende Summe ¢ € N als Teil der Eingabe unér kodiert ist, liegt in P.

Hinweis: Betrachten Sie fiir ¢, wq, . .., w, alle Instanzen s, wq,...,w, mit s < tund k < n.
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Losung. Zur Losung der undren Variante des Problems SUBSETSUM konstruieren wir
eine Tabelle T', die fiir jedes Paar (s, k) mit 0 < s <t und 0 < k < n einen Wahrheitswert
enthélt. Dabei gibt der Wert T'(s, k) an, ob die Instanz s, wy, ..., wy eine Losung besitzt,
also ob es eine Menge von Indizes I C {1,...,k} mit s =), , w; gibt.

Wir fiillen nun die Tabelle T" nun Zeile fiir Zeile aus. Die erste Zeile der Tabelle initial-
isieren wir durch 7'(0, k) < 1 fiir alle 0 < k < n, da hier stets die Indexmenge I = () eine
giiltige Wahl ist. Fiir 1 < s < ¢ setezen wir zunéchst T'(s,0) < 0, da die einzige zuldssige
Indexmenge I = () die Summe )., w; = 0 # s liefert. Fiir 1 < k < n bestimmen wir
dann T'(s, k) wie folgt. Ist T'(s,k — 1) = 1, so setzen wir T'(s, k) < 1, da eine giiltige
Wahl der Indexmenge I fiir (s,k — 1) auch eine giiltige Wahl fiir (s, k) darstellt. Hierbei
wird der Wert wy, fiir die Summe nicht benétigt. Andernfalls, wenn also der Wert wy, fiir
die Summe benétigt wird, setzen wir dementsprechend T'(s, k) < T'(s — wg, k — 1) oder,
falls dies nicht sinnvoll ist, da wy = 0 oder wy, > s gilt, dann setzen wir T'(s, k) < 0.
Am Ende der Berechnung geben wir den Wert T'(¢,n) aus. Fiir jedem Schritt benotigen
wir hochstens zwei Tabellenabfragen sowei eine Subtraktion und und zwei Vergleiche. Da
die Tabelle T" nur polynomiell viele Eintrage besitzt und die auftretenden Zahlen poly-
nomiell beschrankt werden kénnen, lésst sich die gesamte Berechnung in polynomieller
Zeit durchfithren. (Dabei habe wir benutzt, dass die Eingabe in dieser Variante min-
destens die Lénge t 4+ n hat.)

Aufgabe 4. Beweisen Sie die folgenden Aussagen.
(a) Die Relation <, ist reflexiv und transitiv.
(b) Genau dann gilt L € P, wenn L <, {e}.

Losung.

(a) Seien A C ¥*, B C I'" und C € A* Sprachen mit A <, B und B <, C. Nach
Definition der Relation <, existieren also totale, in polynomieller Zeit berechenbare
Funktionen f: ¥* — I'* und ¢g: I'* — A*, sodass fiir alle x € ¥X* und y € I'* gilt:

re€A < f(x)eB und yeB < g(y) €C.
Die Komposition h = go f: ¥* — A* ist dann eine totale Funktion mit
r€A <<= f(x)eB < h(z)=g(f(x)) e C.

Es verbleibt zu zeigen, dass die Komposition h = g o f ebenfalls in polynomieller
Zeit berechenbar ist. Seien dazu Pr(n) und P;(n) Polynome, sowie My und M,
Turningmaschinen, welche die Funktionen f bzw. g auf Eingaben der Lange n in
hochstens Py(n) bzw. P,(n) Schritten berechnen. Wir nehmen an, dass dabei der
Schreib-Lese-Kopf am Ende der Berechnung jeweils wieder am Anfang des Ein-
Ausgabe-Bandes der Turingmaschine steht. Wir kénnen zudem annehmen, dass
beide Polynome monoton wachsende Funktionen in n > 0 sind: Ersetzen wir die
Koeffizienten eines Polynoms P(n) durch ihren jeweiligen Absolutbetrag, dann er-
halten wir ndmlich ein solches Polynom Q(n) mit P(n) < Q(n) fiir alle n € N.
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Unsere Turingmaschine M), arbeitet nun wie folgt. Auf Eingabe z € ¥* simulieren
wir zuerst My auf der Eingabe und anschliefsend M, auf der Ausgabe von M;. Es
ist leicht einzusehen, dass diese Maschine dann in der Tat h berechnet. Die dafiir
benotigte Zeit t(x) (d.h., die Anzahl der Berechnungschritte der Maschine M}, auf
Eingabe von x € ¥*) ldsst sich dann durch

t(z) < Pr(|a]) + By([f()])

abschétzen. Da die Berechnung von f(x) € I'* in hochstens Py(|x|) Schritten erfolgt,
gilt zudem |f(z)| < P(|x|) + |z|. Wegen der Monotonie von P,(n) liefert dies nun

t(z) < Pr(|a]) + Py(Pr(|z]) + [2]) = Pu(l2])
fir das Polynom Pj,(n) := P¢(n) + P,(Pf(n) + n).

(b) Da {e} € P gilt, folgt aus L <, {¢} stets, dass auch L € P gilt. Wir nehmen nun
umegekehrt an, dass die Sprache L C ¥* in P liegt. Sei a € ¥ beliebig, aber fest.
Die Funktion f: ¥* — ¥* mit f(z) = ¢ falls x € L, sowie f(z) = a falls z ¢ L ist
total und in polynomieller Zeit berechenbar. Letzteres liegt daran, dass wir wegen
L € P die Félle x € L und = ¢ L in polynomieller Zeit entscheiden kénnen.

Nach Konstruktion gilt fiir alle z € ¥* nun x € L genau dann, wenn f(z) € {e}.
Also liefert die Funkion f die gewiinschte Reduktion, d.h. es gilt L <, {e}.

Aufgabe 5. Wir betrachten das Problem k-COLORABILITY, bei dem auf Eingabe eines
ungerichteten Graphen G = (V| F) entschieden werdern soll, ob dieser k-farbbar ist:

Ezistiert x: V. — {1,...,k}, sodass x(u) # x(v) fir alle {u,v} € E?
(a) Zeigen Sie fiir alle k > 1, dass k-COLORABILITY <,, (k + 1)-COLORABILITY.
(b) Zeigen Sie, dass das Problem 2-COLORABILITY in P liegt.
(c) Was konnen Sie hieraus fiir das Problem 3-COLORABILITY folgern?
Losung.

(a) Eine Reduktion k-COLORABILITY <, (k + 1)-COLORABILITY ist etwa durch die
Abbildung gegeben, die jedem Graphen G' = (V| E) den Graphen G’ = (V' E')
zuordnet mit V' =V U{u}, wobei u ¢ V, und E' = EU {{u,v} | v € V}. Es wird
also ein neuer Knoten u hinzugefiigt und mit jedem anderen Knoten verbunden.

Diese Abbildung ist (bei geeigneter Codierung) in polynomieller Zeit berechenbar.
Ist der Graph G dabei k-farbbar, so ist der resultierende Graph (k + 1)-farbbar,
denn wir konnen eine giiltige Féarbung x: V' — {1,...,k} von G stets zu einer
giiltigen Farbung x': V' — {1,...,k+1} von G’ fortsetzen. Dazu setzen wir einfach
X'(v) = x(v) fir allev € V und x/(u) = k+1. Sei umgekehrt x': V' — {1,... k+1}
eine giiltige Farbung von G’. Bis auf vertauschen der Farben kénnen wir dann
annehemen, dass x'(u) = k + 1 gilt. Wegen {u,v} € E' muss x'(v) # x'(uv) =k +1
fir alle v € V gelten. Also ist x: V — {1,...,k} mit x(v) = x/(v) eine giiltige
Farbung von G mit k Farben.



(b) Es gentigt 2-Farbbarkeit fiir nicht-leere zusammenhéngende Graphen in polynomieller
Zeit zu entscheiden, denn ein Graph ist k-farbbar genau dann, wenn jede seiner
Zusammenhangskomponenten k-farbbar ist und diese Zusammenhangskomponen-
ten lassen sich (bei geeigneter Codierung) in polynomieller Zeit bestimmen.

Ein nicht-leerer zusammenhéngender Graph G = (V, F) besitzt aber entweder keine
giiltige Farbung mit 2 Farben, oder genau zwei solche Farbungen, wobei die eine
dann jeweils aus der anderen durch Vertauschung der beiden Farben entsteht. Ist
namlich die Farbe x(u) eines Knotens u € V festgelegt, dann verbleiben fiir alle
Nachbarknoten v € V (d.h. mit {u,v} € E) nur die jeweils andere Farbe. Wir
konnen also mittels Breiten- oder Tiefen-Suche (ausgehend von einem beliebigen
Startknoten) versuchen, den Graphen giiltig mit zwei Farben zu farben. Stofen wir
dabei auf eine bereits gefarbten Knoten, dem nun die andere Farbe zugewiesen wer-
den soll, dann kénnen wir schliefsen, dass der Graph nicht 2-farbbar ist. Andernfalls
erhalten wir nach polynomiell vielen Schritten eine giiltige Farbung.

(c) Aus den vorherigen Aufgabenteilen ist bekannst, dass 2-COLORABILITY € P gilt
und, dass 2-COLORABILITY <, 3-COLORABILITY gilt. Uber 3-COLORABILITY
lasst sich daraus keine weitere Aussage ableiten. Anschaulich: Wir haben lediglich
gezeigt, dass das “leichtere” von zwei Problemen in der Tat “leicht” ist.

Tatséchlich ist das Problem k-COLORABILITY fiir alle £ > 3 NP-vollstandig.



