
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Berechenbarkeit und Logik
WS 2025/2026

Übungsblatt 7

Aufgabe 1. Welche der folgenden Probleme sind in P? Welche sind in NP?

(a) Das Wortproblem für reguläre Sprachen.

(b) Das Wortproblem für kontextfreie Sprachen.

(c) Das Wortproblem für kontextsensitive Sprachen.

(d) Das Erfüllbarkeitsproblem für aussagenlogische Formeln (Sat).

(e) Das spezielle Halteproblem.

Lösung.

(a) Das Problem ist in P und somit auch in NP; siehe nächste Teilaufgabe.

(b) Das Problem ist in P und somit auch in NP. Ein polynomialzeit Algorithmus für
diese Problem geht etwa auf Cocke-Younger-Kasami zurück.

(c) Das Problem ist vollständig für die Komplexitätsklasse PSPACE, die aus jenen
Problemen besteht, die in polynomiellem Platz gelöst werden können. Zwar gilt

P ⊆ NP ⊆ PSPACE,

aber es ist über keine dieser Inklusionen bekannt, ob sie strikt ist. Insbesondere
wissen wir also nicht, ob das Problem in NP oder gar in P liegt.

(d) Das Problem ist NP-vollständig und somit in NP. Ob das Problem in P liegt, und
somit P = NP gilt, ist nicht bekannt.

(e) Das Problem ist unentscheidbar. Daher liegt es weder in P noch in NP.

Aufgabe 2. Beweisen Sie die folgenden Abschlusseigenschaften, wobei A,B,L ⊆ Σ∗.

(a) Sind A und B in P (bzw. NP), dann auch A ∪B und A ∩B.

(b) Sind A und B in P (bzw. NP), dann auch A ·B = {uv ∈ Σ∗ | u ∈ A, v ∈ B}.

(c) Ist L in NP, dann auch L∗ = {w ∈ Σ∗ | w = u1 · · ·un mit u1, . . . , un ∈ L}.

Aufgabe 3. Zeigen Sie: Die Variante des Problems SubsetSum (siehe Folie 186), bei
der die zu erreichende Summe t ∈ N als Teil der Eingabe unär kodiert ist, liegt in P.
Hinweis: Betrachten Sie für t, w1, . . . , wn alle Instanzen s, w1, . . . , wk mit s ≤ t und k ≤ n.

1

Lösung. Zur Lösung der unären Variante des Problems SubsetSum konstruieren wir
eine Tabelle T , die für jedes Paar (s, k) mit 0 ≤ s ≤ t und 0 ≤ k ≤ n einen Wahrheitswert
enthält. Dabei gibt der Wert T (s, k) an, ob die Instanz s, w1, . . . , wk eine Lösung besitzt,
also ob es eine Menge von Indizes I ⊆ {1, . . . , k} mit s =

∑
i∈I wi gibt.

Wir füllen nun die Tabelle T nun Zeile für Zeile aus. Die erste Zeile der Tabelle initial-
isieren wir durch T (0, k)← 1 für alle 0 ≤ k ≤ n, da hier stets die Indexmenge I = ∅ eine
gültige Wahl ist. Für 1 ≤ s ≤ t setezen wir zunächst T (s, 0)← 0, da die einzige zulässige
Indexmenge I = ∅ die Summe

∑
i∈I wi = 0 ̸= s liefert. Für 1 ≤ k ≤ n bestimmen wir

dann T (s, k) wie folgt. Ist T (s, k − 1) = 1, so setzen wir T (s, k) ← 1, da eine gültige
Wahl der Indexmenge I für (s, k − 1) auch eine gültige Wahl für (s, k) darstellt. Hierbei
wird der Wert wk für die Summe nicht benötigt. Andernfalls, wenn also der Wert wk für
die Summe benötigt wird, setzen wir dementsprechend T (s, k)← T (s− wk, k − 1) oder,
falls dies nicht sinnvoll ist, da wk = 0 oder wk > s gilt, dann setzen wir T (s, k)← 0.
Am Ende der Berechnung geben wir den Wert T (t, n) aus. Für jedem Schritt benötigen
wir höchstens zwei Tabellenabfragen sowei eine Subtraktion und und zwei Vergleiche. Da
die Tabelle T nur polynomiell viele Einträge besitzt und die auftretenden Zahlen poly-
nomiell beschränkt werden können, lässt sich die gesamte Berechnung in polynomieller
Zeit durchführen. (Dabei habe wir benutzt, dass die Eingabe in dieser Variante min-
destens die Länge t+ n hat.)

Aufgabe 4. Beweisen Sie die folgenden Aussagen.

(a) Die Relation ≤p ist reflexiv und transitiv.

(b) Genau dann gilt L ∈ P, wenn L ≤p {ε}.

Lösung.

(a) Seien A ⊆ Σ∗, B ⊆ Γ∗ und C ⊆ ∆∗ Sprachen mit A ≤p B und B ≤p C. Nach
Definition der Relation ≤p existieren also totale, in polynomieller Zeit berechenbare
Funktionen f : Σ∗ → Γ∗ und g : Γ∗ → ∆∗, sodass für alle x ∈ Σ∗ und y ∈ Γ∗ gilt:

x ∈ A ⇐⇒ f(x) ∈ B und y ∈ B ⇐⇒ g(y) ∈ C.

Die Komposition h = g ◦ f : Σ∗ → ∆∗ ist dann eine totale Funktion mit

x ∈ A ⇐⇒ f(x) ∈ B ⇐⇒ h(x) = g(f(x)) ∈ C.

Es verbleibt zu zeigen, dass die Komposition h = g ◦ f ebenfalls in polynomieller
Zeit berechenbar ist. Seien dazu Pf (n) und Pg(n) Polynome, sowie Mf und Mg

Turningmaschinen, welche die Funktionen f bzw. g auf Eingaben der Länge n in
höchstens Pf (n) bzw. Pg(n) Schritten berechnen. Wir nehmen an, dass dabei der
Schreib-Lese-Kopf am Ende der Berechnung jeweils wieder am Anfang des Ein-
Ausgabe-Bandes der Turingmaschine steht. Wir können zudem annehmen, dass
beide Polynome monoton wachsende Funktionen in n ≥ 0 sind: Ersetzen wir die
Koeffizienten eines Polynoms P (n) durch ihren jeweiligen Absolutbetrag, dann er-
halten wir nämlich ein solches Polynom Q(n) mit P (n) ≤ Q(n) für alle n ∈ N.

2

Unsere Turingmaschine Mh arbeitet nun wie folgt. Auf Eingabe x ∈ Σ∗ simulieren
wir zuerst Mf auf der Eingabe und anschließend Mg auf der Ausgabe von Mf . Es
ist leicht einzusehen, dass diese Maschine dann in der Tat h berechnet. Die dafür
benotigte Zeit t(x) (d.h., die Anzahl der Berechnungschritte der Maschine Mh auf
Eingabe von x ∈ Σ∗) lässt sich dann durch

t(x) ≤ Pf (|x|) + Pg(|f(x)|)

abschätzen. Da die Berechnung von f(x) ∈ Γ∗ in höchstens Pf (|x|) Schritten erfolgt,
gilt zudem |f(x)| ≤ Pf (|x|) + |x|. Wegen der Monotonie von Pg(n) liefert dies nun

t(x) ≤ Pf (|x|) + Pg(Pf (|x|) + |x|) = Ph(|x|)

für das Polynom Ph(n) := Pf (n) + Pg(Pf (n) + n).

(b) Da {ε} ∈ P gilt, folgt aus L ≤p {ε} stets, dass auch L ∈ P gilt. Wir nehmen nun
umegekehrt an, dass die Sprache L ⊆ Σ∗ in P liegt. Sei a ∈ Σ beliebig, aber fest.
Die Funktion f : Σ∗ → Σ∗ mit f(x) = ε falls x ∈ L, sowie f(x) = a falls x ̸∈ L ist
total und in polynomieller Zeit berechenbar. Letzteres liegt daran, dass wir wegen
L ∈ P die Fälle x ∈ L und x ̸∈ L in polynomieller Zeit entscheiden können.
Nach Konstruktion gilt für alle x ∈ Σ∗ nun x ∈ L genau dann, wenn f(x) ∈ {ε}.
Also liefert die Funkion f die gewünschte Reduktion, d.h. es gilt L ≤p {ε}.

Aufgabe 5. Wir betrachten das Problem k-Colorability, bei dem auf Eingabe eines
ungerichteten Graphen G = (V,E) entschieden werdern soll, ob dieser k-färbbar ist:

Existiert χ : V → {1, . . . , k}, sodass χ(u) ̸= χ(v) für alle {u, v} ∈ E?

(a) Zeigen Sie für alle k ≥ 1, dass k-Colorability ≤p (k + 1)-Colorability.

(b) Zeigen Sie, dass das Problem 2-Colorability in P liegt.

(c) Was können Sie hieraus für das Problem 3-Colorability folgern?

Lösung.

(a) Eine Reduktion k-Colorability ≤p (k + 1)-Colorability ist etwa durch die
Abbildung gegeben, die jedem Graphen G = (V,E) den Graphen G′ = (V ′, E ′)
zuordnet mit V ′ = V ∪ {u}, wobei u ̸∈ V , und E ′ = E ∪ {{u, v} | v ∈ V }. Es wird
also ein neuer Knoten u hinzugefügt und mit jedem anderen Knoten verbunden.
Diese Abbildung ist (bei geeigneter Codierung) in polynomieller Zeit berechenbar.
Ist der Graph G dabei k-färbbar, so ist der resultierende Graph (k + 1)-färbbar,
denn wir können eine gültige Färbung χ : V → {1, . . . , k} von G stets zu einer
gültigen Färbung χ′ : V ′ → {1, . . . , k+1} von G′ fortsetzen. Dazu setzen wir einfach
χ′(v) = χ(v) für alle v ∈ V und χ′(u) = k+1. Sei umgekehrt χ′ : V ′ → {1, . . . , k+1}
eine gültige Färbung von G′. Bis auf vertauschen der Farben können wir dann
annehemen, dass χ′(u) = k+ 1 gilt. Wegen {u, v} ∈ E ′ muss χ′(v) ̸= χ′(u) = k+ 1
für alle v ∈ V gelten. Also ist χ : V → {1, . . . , k} mit χ(v) = χ′(v) eine gültige
Färbung von G mit k Farben.

3

(b) Es genügt 2-Färbbarkeit für nicht-leere zusammenhängende Graphen in polynomieller
Zeit zu entscheiden, denn ein Graph ist k-färbbar genau dann, wenn jede seiner
Zusammenhangskomponenten k-färbbar ist und diese Zusammenhangskomponen-
ten lassen sich (bei geeigneter Codierung) in polynomieller Zeit bestimmen.

Ein nicht-leerer zusammenhängender Graph G = (V,E) besitzt aber entweder keine
gültige Färbung mit 2 Farben, oder genau zwei solche Färbungen, wobei die eine
dann jeweils aus der anderen durch Vertauschung der beiden Farben entsteht. Ist
nämlich die Farbe χ(u) eines Knotens u ∈ V festgelegt, dann verbleiben für alle
Nachbarknoten v ∈ V (d.h. mit {u, v} ∈ E) nur die jeweils andere Farbe. Wir
können also mittels Breiten- oder Tiefen-Suche (ausgehend von einem beliebigen
Startknoten) versuchen, den Graphen gültig mit zwei Farben zu färben. Stoßen wir
dabei auf eine bereits gefärbten Knoten, dem nun die andere Farbe zugewiesen wer-
den soll, dann können wir schließen, dass der Graph nicht 2-färbbar ist. Andernfalls
erhalten wir nach polynomiell vielen Schritten eine gültige Färbung.

(c) Aus den vorherigen Aufgabenteilen ist bekannst, dass 2-Colorability ∈ P gilt
und, dass 2-Colorability ≤p 3-Colorability gilt. Über 3-Colorability
lässt sich daraus keine weitere Aussage ableiten. Anschaulich: Wir haben lediglich
gezeigt, dass das “leichtere” von zwei Problemen in der Tat “leicht” ist.

Tatsächlich ist das Problem k-Colorability für alle k ≥ 3 NP-vollständig.

4

