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Lecture Organization

Under https://www.eti.uni-siegen.de/ti/lehre/ws2526/bul/
index.html?lang=de you can find updated lecture slides, exercise sheets,
announcements, etc.

Recommended Literature:

Uwe Schöning, Theoretische Informatik – kurz gefasst, Spektrum
Akademischer Verlag (5th Edition): The section on computability
closely follows this book in content.

Uwe Schöning, Logic for Computer Scientists, Springer: The section
on logic closely follows this book in content.

Alexander Asteroth, Christel Baier, Theoretische Informatik, Pearson
Studium: This book is structured somewhat differently from the
lecture, but still serves as a very good supplement for the lecture
parts on computability and propositional logic.

Alexander Thumm organizes the exercises.
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Computability: what we need from FSA

In the lecture Formal Languages and Automata, we learned about the
model of Turing machines at the end.

Both deterministic and non-deterministic Turing machines accept
exactly the Chomsky Type-0 languages, see FSA, slides 348 and 352.
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Computability: Motivation

After answering the question of which languages are machine-acceptable,
we address the question of which functions are computable.

We consider the following types of functions:

(multi-argument) functions on natural numbers (including zero):

f : Nk → N

Functions on words:
f : Σ∗ → Σ∗

We also allow partial functions, which are not necessarily defined
everywhere.

Formally, a partial function f : A→ B can be defined as a function
f : A→ B ∪ {⊥}, where ⊥ /∈ B is a special element, and f (a) = ⊥ means
that f is undefined at a.
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Computability: Motivation

Intuitive Concept of Computability

A partial function f : Nk → N should be considered computable if there
exists a computational procedure/an algorithm/a program that computes
f , i.e., for an input (n1, . . . , nk) the program behaves as follows:

If f (n1, . . . , nk) is defined, the program terminates after finitely many
steps and outputs f (n1, . . . , nk).

If the function is not defined for (n1, . . . , nk), the program should not
stop (e.g., by entering an infinite loop).
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Computability: Motivation

The equivalence of many computational models (this will be shown later)
and the intuitive understanding of the concept of computability lead to the
following (unprovable) thesis.

Church’s Thesis

The class of functions captured by the formal definition of Turing machine
computability (equivalent: While-computability, Goto-computability,
µ-recursiveness) coincides exactly with the class of functions computable
in the intuitive sense.

Remarks: A computational model that is equivalent to Turing machines is
also called Turing-complete. The corresponding concept of computability is
called Turing-computability.

Almost all programming languages are Turing-complete.
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Computability: Motivation

Non-computable Functions

There are functions of the form f : N→ N that are not computable.

Idea of the proof: We choose an arbitrary computational model and
impose only one requirement:

Programs or machines in this computational model can be encoded
as words over a finite alphabet.

Then it holds: there are at most countably many machines/programs.
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Computability: Motivation

But: there are uncountably many (total) functions.

We show this by contradiction: assume the set of all functions F on
natural numbers is countable. This means there is a surjective mapping
F : N→ F .

We construct the function g : N→ N with

g(n) = fn(n) + 1, where fn = F (n).

Since F is surjective, there must be a natural number i such that
F (i) = g . For this i , it follows: g(i) = fi (i). But this is a contradiction to
the definition of g with g(i) = fi (i) + 1.
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Computability: Motivation

Illustration: we represent F by writing for each n the function fn as the
sequence fn(0), fn(1), fn(2), . . . .

For example:

n

0

1

2

3

4

fn(0) fn(1) fn(2) fn(3) fn(4) . . .

. . .

7

12

99

2

17

12

7

20

33

101

0

5

033

94

16

14

77

2

99

17

11

11

22

42

This type of
”self-referential” proof is
often called a
diagonalization proof
because of its
representation through
such diagrams.
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Computability: Motivation

Illustration: we represent F by writing for each n the function fn as the
sequence fn(0), fn(1), fn(2), . . . .

Use all the numbers on the diagonal . . .
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Computability: Motivation

Illustration: we represent F by writing for each n the function fn as the
sequence fn(0), fn(1), fn(2), . . . .

. . . and increment them by one. This gives us g .
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This type of
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often called a
diagonalization proof
because of its
representation through
such diagrams.
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Computability: Motivation

Illustration: we represent F by writing for each n the function fn as the
sequence fn(0), fn(1), fn(2), . . . .

However, the function g cannot match any of the other functions due to
this construction.
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Turing-computability

After discussing the intuitive concept of computability, we now turn to the
formal concept of computability, first based on Turing machines.

We already know what it means for a Turing machine to accept a
language. Now we define what it means for a Turing machine to compute
a function.

For a number n ∈ N, let bin(n) be the binary representation of n:

bin(n) ∈ 1{0, 1}∗ ∪ {0}
If bin(n) = bkbk−1 · · · b0, then n =

∑k
i=0 bi2

i .

Example: bin(5) = 101, bin(6) = 110, bin(7) = 111, bin(8) = 1000.
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Turing-computability

Turing-computable Functions on Natural Numbers

A partial function f : Nk → N is Turing-computable if there exists a
deterministic Turing machine M = (Z , {0, 1,#}, Γ, δ, z0,2,E ) such that
for all n1, . . . , nk ∈ N:

If f (n1, . . . , nk) is undefined, then M does not halt on the initial
configuration z0bin(n1)#bin(n2)# . . . bin(nk)#, i.e., there is no
configuration c ∈ Γ∗EΓ+ such that

z0bin(n1)#bin(n2)# . . . bin(nk)# `∗M c .

If f (n1, . . . , nk) is defined, and f (n1, . . . , nk) = m, then there exists a
halting state ze ∈ E with

z0bin(n1)#bin(n2)# . . . bin(nk)# `∗M 2 · · ·2zebin(m)2 · · ·2.
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Turing-computability

Intuition:

If you write the numbers n1, . . . , nk in binary representation –
separated by # – onto the tape, then M halts if and only if
f (n1, . . . , nk) is defined.

If f (n1, . . . , nk) = m, then M computes the number f (n1, . . . , nk)
(possibly surrounded by spaces) from n1, . . . , nk and transitions to a
halting state.
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Turing-computability

Turing-computable Functions on Words

A partial function f : Σ∗ → Σ∗ is Turing-computable if there exists a
deterministic Turing machine M = (Z ,Σ, Γ, δ, z0,2,E ) such that for all
x ∈ Σ∗:

If f (x) is undefined, then M does not halt on the initial configuration
z0x2, i.e., there is no c ∈ Γ∗EΓ+ with z0x2 `∗M c .

If f (x) is defined, and f (x) = y , then there exists a halting state
ze ∈ E with z0x2 `∗M 2 · · ·2zey2 · · ·2.

Intuition:

If you write the word x onto the tape, M halts if and only if f (x) is
defined.

If f (x) = y , then M computes the word y from x (possibly
surrounded by spaces) and transitions to a halting state.
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Turing-computability

Examples of Turing-computable functions:

Example 1: The successor function n 7→ n + 1 is Turing-computable (see
FSA, Slide 324 and 325).

Example 2: Let Ω be the everywhere undefined function. This is also
Turing-computable, for example, by a Turing machine that has no halting
state. For instance, by a Turing machine with the transition rule

δ(z0, a) = (z0, a,N) for all a ∈ Γ.

Example 3: Given a Type-0 language L ⊆ Σ∗, we consider the so-called
“half” characteristic function of L:

χL : Σ∗ → {1}

χL(w) =

{
1 if w ∈ L
undefined otherwise
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Turing-computability

Idea for a Turing machine M that computes χL:

We use the transformation “Grammar → Turing machine” (FSA,
Slide 354), and obtain a Turing machine M ′ with T (M ′) = L.

The machine M ′ is non-deterministic. Due to the equivalence of
deterministic and non-deterministic Turing machines (FSA, Slide 358)
one can convert M ′ into a deterministic Turing machine M ′′ with
T (M ′′) = T (M ′) = L.

From M ′′ we can easily obtain a deterministic Turing machine M,
which behaves like M ′′ except: If M ′′ is supposed to transition to a
halting state (and thus accepts), then M overwrites the entire tape
with 1 and transitions to a halting state.

Note: If the input x does not belong to L, M will not halt.
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Multi-tape Turing Machine

We now introduce several new computational models and show that they
are all equivalent to Turing machines. The first one is the so-called
multi-tape Turing machine.

Multi-tape Turing Machine

A multi-tape Turing machine has k (k ≥ 1) tapes with k independent
heads, but only one state.

The transition function has the form

δ : (Z \ E )× Γk → Z × Γk × {L,R,N}k

(one state, k tape symbols, k movements).

The input and output are each on the first tape. Initially, the
remaining tapes are empty.
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Multi-tape Turing Machine

Theorem 1 (Multi-tape Turing Machines → Turing Machines)

For every multi-tape Turing machine M, there exists a (single-tape) Turing
machine M ′ that accepts the same language or computes the same
function.

Proof Idea: We start with the representation of a typical configuration of
a multi-tape Turing machine.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

M
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Multi-tape Turing Machine

Simulation using a single-tape Turing machine by extending the alphabet:
We combine the overlapping tape entries into a field. The symbols ∗ and
3 are used to encode where the heads of the multi-tape Turing machine
are located.

M ′

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

3 3 3 33 3 3

33 3 3 3 3 3

3 3 3 3 3 3 3

* 33

*3 3

*3 3
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Multi-tape Turing Machine

Let k be the number of tapes of M, Γ its tape alphabet, and Σ the input
alphabet.

Tape alphabet of M ′: Γ′ = Σ ∪ (Γ× {∗,3})k

Meaning of a tape symbol from (Γ× {∗,3})k using the example of
(a,3, b, ∗, c ,3), i.e., k = 3:

From each of the 3 tapes of M, M ′ (the single-tape Turing machine)
is currently scanning one cell. In the cell scanned from tape 1 (or 2,
3) of M, there is currently a (or b, c).

The M-head of tape 2 is currently positioned on the cell of tape 2
scanned by M ′ (indicated by ∗).

The M-heads of tapes 1 and 3, however, are on cells that M ′ is not
currently scanning (indicated by the two 3).
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Multi-tape Turing Machine

Since M ′ and M have the same input alphabet, Σ must be part of Γ′.
When M ′ receives the input w ∈ Σ∗, it first goes completely over w
in a single pass, converting w into the above “multi-tape encoding.”

Problem: A single-tape Turing machine has only one head, and it can
only be in one position ; Simulation of a multi-tape Turing machine
transition in multiple steps.

Simulation of a transition of the multi-tape Turing machine:

At the beginning of simulating a step, the head of the single-tape
Turing machine M ′ is to the left of all ∗-marks.

Then the head moves to the right, crossing all k ∗-marks and
recording the respective actions of the δ function. (This requires
many states.)

Then the head moves back to the left and performs all the necessary
changes.
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Loop-, While-, Goto-Computability

We now consider another computational model, which essentially
represents a simple programming language with various constructs.

These programs have variables that are assigned natural numbers.
These variables may be assigned arithmetic expressions (with
constants, variables, and operators +, −).

Additionally, the programs include various loop constructs.
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Loop-, While-, Goto-Computability

In particular, we consider the following types of programs:

Loop Programs

Contain only Loop loops and for loops, where the number of iterations
is determined at the outset.

While Programs

Contain only While loops with a condition that needs to be repeatedly
evaluated.

Goto Programs

Contain Gotos (unconditional jumps) and if-then-else statements.

We are mainly interested in the functions computed by such programs.
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Loop Programs

Syntactic Components for Loop Programs

Variables: x1, x2, x3, . . .

Constants: 0, 1, 2, . . .

Delimiters: ; and :=

Operator Symbols: + and −
Keywords: Loop, Do, End

Inductive Syntax Definition of Loop Programs

A Loop program is either of the form

xi := xj + c or xi := xj − c with c ∈ N and i , j ≥ 1
(Assignment) or

P1;P2, where P1 and P2 are already Loop programs
(Sequential Composition) or

Loop xi Do P End, where P is a Loop program and i ≥ 1.
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Loop Programs

Informal Description of Semantics

A Loop program that is supposed to compute a k-ary function
f : Nk → N starts with the input values n1, . . . , nk in the variables
x1, . . . , xk . All other variables start with the value 0. The result
f (n1, . . . , nk) will be in x1 upon termination.

Interpretation of assignments:

xi := xj + c – as usual
xi := xj − c – modified subtraction; if c > xj , the result is 0

Sequential composition P1;P2: first execute P1, then execute P2.

Loop xi Do P End: the program P is executed as many times as
the variable xi initially specifies.
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Loop Programs

Note: If in a program Loop xi Do P End the value of xi is changed
within P, this has no effect on the number of executions of the loop body
P.

If xi has the value n before P is executed for the first time, then P is
executed exactly n times.

Example: x1 := x1 + 3;Loop x1 Do x1 := x1 + 1 End

Suppose x1 initially has the value 0.

Then the loop body will be executed 3 times.

Therefore, at the end x1 will have the value 6.
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Loop Programs

Formal Description of Semantics

For every Loop program P in which no variable xi with i > k occurs (i.e.,
only variables x1, . . . , xk are allowed in P), we first define a function

[P]k : Nk → Nk

as follows, by induction on the structure of P:

[xi := xj + c]k(n1, . . . , nk) = (m1, . . . ,mk) if and only if
(i) m` = n` for ` 6= i and (ii) mi = nj + c .

[xi := xj − c]k(n1, . . . , nk) = (m1, . . . ,mk) if and only if
(i) m` = n` for ` 6= i and (ii) mi = max{0, nj − c}.

[P1;P2]k(n1, . . . , nk) = [P2]k([P1]k(n1, . . . , nk))

[Loop xi Do P End]k(n1, . . . , nk) = [P]nik (n1, . . . , nk)
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Loop Programs

Intuition: [P]k(n1, . . . , nk) is computed as follows:

Initially, set each variable xi with 1 ≤ i ≤ k to the value ni .

The initial values of variables xi with i > k do not matter, as such
variables do not occur in P.

Now execute the program P.

Suppose after executing P, the variable xi (1 ≤ i ≤ k) has the value
mi .

Then [P]k(n1, . . . , nk) = (m1, . . . ,mk).
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Loop Programs

Let πi (n1, . . . , nk) = ni (projection onto the i-th component).

Loop Computability (Definition)

A function f : Nk → N is called Loop-computable if there exists an ` ≥ k
and a Loop program P, using only the variables x1, . . . , x`, such that:

∀n1, . . . , nk ∈ N : f (n1, . . . , nk) = π1([P]`(n1, . . . , nk , 0, . . . , 0︸ ︷︷ ︸
`− k many

)).

To compute f (n1, . . . , nk), the variables x1, . . . , xk are initially set to the
input values n1, . . . , nk .

The auxiliary variables xk+1, . . . , x` are initialized to 0.

Then P is executed.

After the execution of P, the value of variable x1 is the function value
f (n1, . . . , nk).
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Loop Programs

Remarks:

All Loop programs halt after a finite amount of time (Loop loops
always terminate).

Therefore, all Loop-computable functions are total (i.e., defined
everywhere).

Hence, there are Turing-computable functions that are not
Loop-computable (e.g., the everywhere undefined function Ω from
Slide 14).

We will see later that there are even total Turing-computable
functions that are not Loop-computable.
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Loop Programs

Loop programs can simulate certain programming constructs that are not
included in their syntax.

If-Then

Simulation of If x1 = 0 Then A End

x2 := 1; Loop x1 Do x2 := 0 End; Loop x2 Do A End

Addition

Simulation of xi := xj + xk (where i 6= k)

xi := xj ; Loop xk Do xi := xi + 1 End

Multiplication

Simulation of xi := xj · xk (where k 6= i 6= j)
xi := 0; Loop xk Do xi := xi + xj End
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Loop Programs

We will also use such constructs in While programs. We will assume that
they are suitably simulated as above.

Analogously: Integer division (x Div y) and remainder (x Mod y).
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While-Programs

We now extend the syntax of Loop-Programs to While-Programs by
allowing an additional type of loop construct besides Loop loops.

Syntax of While-Programs

If P is a While-Program and i ≥ 1, then
While xi 6= 0 Do P End

is also a While-Program.

All constructs allowed in Loop-Programs (see Slide 23) are also permitted
in While-Programs.

Intuition: Program P is executed as long as the value of xi is not equal to
0.
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While Programs

Semantics of While Programs

As with Loop programs, we first define, for each While program P that
contains no variable xi with i > k, a (partial) function [P]k : Nk → Nk

inductively.

For the constructs available in Loop programs, we adopt the definitions
from Slide 26.

Let P = While xi 6= 0 Do A End (i ≤ k) and (n1, . . . , nk) ∈ Nk .

If there exists a number τ such that πi ([A]τk(n1, . . . , nk)) = 0, let t be the
smallest number with this property. Otherwise, let t be undefined.

Then define

[P]k(n1, . . . , nk) =

{
[A]tk(n1, . . . , nk) if t is defined

undefined otherwise.
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While Programs

Explanation: [A]τk denotes the τ -fold composition of [A]:

[A]τk(n1, . . . , nk) = [A]k([A]k([A]k(· · · [A]k︸ ︷︷ ︸
τ times

(n1, . . . , nk) · · · )))

Thus, t is the smallest number τ such that after τ executions of A
(starting with the initial values n1, . . . , nk for the variables x1, . . . , xk), the
variable xi has the value 0.

If xi never takes the value 0, the While loop does not terminate, and
[P]k(n1, . . . , nk) is undefined.

Note: A Loop loop Loop x Do P End can be simulated by
y := x ;
While y 6= 0 Do y := y − 1;P End

Important: y is a new variable that does not appear in P.
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While Programs

While Computability (Definition)

A partial function f : Nk → N is called While-computable if there exists
an ` ≥ k and a While program P, using only the variables x1, . . . , x`,
such that for all n1, . . . , nk ∈ N:

f (n1, . . . , nk) is defined ⇐⇒ [P]`(n1, . . . , nk , 0, . . . , 0︸ ︷︷ ︸
`− k many

) is defined

If f (n1, . . . , nk) is defined, then
f (n1, . . . , nk) = π1([P]`(n1, . . . , nk , 0, . . . , 0︸ ︷︷ ︸

`− k many

)).
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While Programs

Theorem 2 (While-Programs → Turing Machines)

Every While-computable function is also Turing-computable.

In other words: Turing machines can simulate While programs.

Proof Idea:

We use a multi-tape Turing machine, where each tape stores a
different variable of the While program in binary representation.
k variables ; k tapes

xi := xj + c can be performed by the Turing machine by executing the
increment function (+1) c times.

xi := xj − c works similarly.
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While Programs

Sequential Composition P1;P2:

We inductively determine Turing machines M1, M2 for P1, P2.

We then construct a Turing machine for P1;P2 as follows:

Union of the state sets, tape alphabets, and transition functions

The initial state is the initial state of M1. The final states are the final
states of M2.

Instead of transitioning to a final state of M1, a transition to the initial
state of M2 is made.

(Compare with the concatenation construction for finite automata
(FSA, Slides 99 and 100).
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While Loop While xi 6= 0 Do P End:

First, determine a Turing machine M for P.

Modify M as follows:
In the new initial state, first check if 0 is on the i-th tape.

If yes: transition to the final state
If no: M is executed

Instead of transitioning to the final state: transition to the new
initial state.
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Syntax of Goto Programs

Possible instructions for Goto programs:

Assignment: xi := xj + c or xi := xj − c (with c ∈ N)

Unconditional Jump: Goto Mi

Conditional Jump: If xi = c Then Goto Mi

Halt Instruction: Halt

A Goto program consists of a sequence of instructions Ai , each preceded
by a (jump) label Mi .

M1 : A1;M2 : A2; . . . ;Mk : Ak

(If labels are not jumped to, we sometimes omit them.)
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Intuitive Semantics of Goto Programs

The instructions of a Goto program are executed sequentially.

Exception: Goto M jumps to the instruction with label M.

If statements are interpreted as usual.

Halt instructions terminate Goto programs. (The last instruction
of a program should be a Halt or an unconditional jump.)

This is not a truly formal semantics definition. As an exercise, write a
formal semantics definition (analogous to While programs).

Like While programs, Goto programs can also enter infinite loops.
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Goto-computable functions are defined analogously to
While-computable functions.

Example: a Goto program for computing x1 := x1 + x2

M1 : If x2 = 0 Then Goto M2;

x1 := x1 + 1;

x2 := x2 − 1;

Goto M1;

M2 : Halt
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Satz 3 (While Programs → Goto Programs)

Every While program can be simulated by a Goto program, i.e., every
While-computable function is Goto-computable.

Proof:

A While loop
While x 6= 0 Do P End

can be simulated by
M1 : If x = 0 Then Goto M2;

P;
Goto M1;

M2 : . . .
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The less obvious reversal also holds:

Satz 4 (Goto Programs → While Programs)

Every Goto program can be simulated by a While program, i.e., every
Goto-computable function is While-computable.

This is one of the reasons why modern programming languages generally
do not use Gotos.

Additional Reasons: Spaghetti code with the use of Gotos, see also
Edsger W. Dijkstra: “Go To Statement Considered Harmful” (1968),
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 43 / 419



Goto Programs

Proof (Goto Programs → While Programs):

Let P = (M1 : A1;M2 : A2; . . .Mk : Ak) be a Goto program.

We simulate P with the following While program Q that contains only
one While loop:

count := 1;
While count 6= 0 Do

If count = 1 Then A′1 End;
If count = 2 Then A′2 End;
...

If count = k Then A′k End
End
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Here, A′i is the following While program:

A′i =



xj := x` ± c; count := count + 1 if Ai = (xj := x` ± c)

count := n if Ai = (Goto Mn)

If xj = c Then count := n if Ai = (If xj = c Then

Else count := count + 1 END Goto Mn)

count := 0 if Ai = Halt

The simulation of Goto programs by While programs uses only one
While loop (if If THEN ELSE is allowed as an elementary construct).

This means: A While program can be transformed into an equivalent
While program with a While loop (Kleene Normal Form for While
programs) by converting it into a Goto program and then back to a
While program.
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What transformations have we carried out so far?

Goto oo //While // TM

Loop

OO

To demonstrate the equivalence of Goto, While, and Turing
computability, we still need to show the direction

TM→ Goto
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Theorem 5 (TM → Goto Programs)

Every Turing machine can be simulated by a Goto program. That is,
every Turing-computable function is Goto-computable.

Proof:

Let M = (Z ,Σ, Γ, δ, z0,E ,2) be a deterministic Turing machine that
computes a function f : Nk → N.

Without loss of generality, assume Γ = {0, . . . ,m − 1}, 2 = 0, and
Z = {0, . . . , n − 1}.

For a1a2 · · · ap ∈ Γ∗, let

(a1a2 · · · ap)m =

p∑
i=1

ai ·mi−1

be the value of a1a2 · · · ap in base m (least significant digit on the far left).
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A configuration a1 · · · ap z b1 · · · bq is represented by the triple(
(ap . . . a1)m, z , (b1 · · · bq)m

)
∈ N× {0, . . . , n − 1} × N

Such a triple is stored using the three variables x , z , and y as follows:

z = current state

x = encoding of the tape contents to the left of the head

y = encoding of the tape contents to the right of the head, including
the currently read cell

Note: (ap . . . a12)m = (ap . . . a1)m and (b1 · · · bq2)m = (b1 · · · bq)m, since
2 = 0 and the highest digit is on the far right.

This is convenient because a1 · · · ap z b1 · · · bq and 2a1 · · · ap z b1 · · · bq2
represent the same configuration.
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To simulate Turing machine operations, we use the arithmetic operations
Div and Mod (integer division and remainder), always dividing by our
base m. These operations can be easily implemented using Goto
programs.

Example: In base m = 10, we have (here we write numbers as usual, i.e.,
the least significant digit is on the right)

5634 Div 10 = 563

5634 Mod 10 = 4

Simulation of Turing machine operations:

Head reads symbol: a := y Mod m

Write symbol b on the tape: y := (y Div m) ·m + b

Move head left: y := y ·m + (x Mod m); x := x Div m

Move head right: x := x ·m + (y Mod m); y := y Div m
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Explanation: Let a1 · · · ap z b1 · · · bq be the current configuration, and
thus

x = (ap . . . a1)m, y = (b1 · · · bq)m (and z = z)

Then y Mod m = (b1 + m · (b2 · · · bq)m) Mod m = b1.

Therefore, the variable a is set to the currently read symbol.

Furthermore,

(y Div m) ·m + b = ((b1 · · · bq)m Div m) ·m + b

= (b2 · · · bq)m ·m + b

= (0b2 · · · bq)m + b

= (bb2 · · · bq)m

So, the operation y := (y Div m) ·m + b indeed writes b into the
currently scanned tape cell.
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It holds that

x Div m = (apap−1 . . . a1)m Div m = (ap−1 . . . a1)m

and

y ·m + (x Mod m) = (b1 · · · bq)m ·m + ((apap−1 . . . a1)m Mod m)

= (0b1 · · · bq)m + ap

= (apb1 · · · bq)m

Thus, the operation

y := y ·m + (x Mod m); x := x Div m

correctly implements a leftward movement of the head.

Similarly, we can show that

x := x ·m + (y Mod m); y := y Div m

correctly implements a rightward movement of the head.
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Let (n1, . . . , nk) ∈ Nk be an input tuple.

The Goto program to be created consists of the following three parts:

Part 1: Initialization of the variables x , y , z with the initial configuration.

The initial configuration corresponding to the input tuple (n1, . . . , nk) is

z0 bin(n1) # bin(n2) # · · ·# bin(nk) #

So we initialize x , y , z with

x := 0; z = z0; y := (bin(n1)#bin(n2)# · · ·#bin(nk)#)m.

In bin(ni ), the binary digits 0 and 1 are represented by symbols
a ∈ Γ \ {2} and b ∈ Γ \ {2} respectively (e.g., 0→ 1, 1→ 2). This is
necessary because 0 is already reserved for the blank symbol 2.
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The number (bin(n1)#bin(n2)# · · ·#bin(nk)#)m must first be calculated
from the input numbers n1, . . . , nk using a Goto program.

This is somewhat tedious but not fundamentally difficult.

Part 2: The Turing machine computation is simulated by manipulating x ,
z , and y until finally z ∈ E holds.

Part 3: The number stored in y is converted into the actual output value:

If y has the value (a1a2 · · · an)m with a1, . . . , an ∈ {a, b}, then the unique
number n with bin(n) = a1a2 · · · an must be computed.

This arithmetic transformation can again be realized by a Goto program.

Remark: Only the second part depends on the transition function δ.
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Schema for Part 2:

M2 : If (z ∈ E ) Then Goto M3;
a := y Mod m; (Read symbol)
If (z = 0) And (a = 0) Then Goto M0,0;
If (z = 0) And (a = 1) Then Goto M0,1;
...

M0,0 : P0,0; (Execute action δ(0, 0))
Goto M2;

M0,1 : P0,1; (Execute action δ(0, 1))
Goto M2;
...

M3 : Execute Part 3

In program part Pi ,j , the action described by δ(i , j) is simulated as detailed
at the bottom of slide 49.
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Loop-, While-, and Goto programs are simplified imperative programs
and represent imperative programming languages, where programs are
seen as sequences of commands.

In parallel, there are also functional programs, whose main component is
the definition of recursive functions. There are computation concepts that
align more closely with functional programs.

For example:

λ-Calculus (Alonzo Church, 1932)

µ-recursive and primitive recursive functions (which we will cover in
this lecture)
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We now define classes of functions of the form f : Nk → N.

Primitive Recursive Functions (Definition)

The class of primitive recursive functions is inductively defined as follows:

All constant functions of the form km : N0 → N with km() = m (for a
fixed m ∈ N) are primitive recursive.

All projections of the form πki : Nk → N with πki (n1, . . . , nk) = ni for
1 ≤ i ≤ k are primitive recursive.

The successor function s : N→ N with s(n) = n + 1 is primitive
recursive.

If g : Nk → N and f1, . . . , fk : Nr → N (k ≥ 0) are primitive recursive,
then the function f : Nr → N defined by

f (n1, . . . , nr ) = g(f1(n1, . . . , nr ), . . . , fk(n1, . . . , nr ))

is also primitive recursive (Substitution/Composition)
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Primitive Recursive Functions (Definition, Continuation)

Any function f that is obtained through primitive recursion from
primitive recursive functions is primitive recursive.

This means f : Nk+1 → N must satisfy the following equations (for
primitive recursive functions g : Nk → N, h : Nk+2 → N):

f (0, n1, . . . , nk) = g(n1, . . . , nk)

f (n + 1, n1, . . . , nk) = h(f (n, n1, . . . , nk), n, n1, . . . , nk)

Intuitively: in primitive recursion, the definition of f (n + 1, . . . ) is reduced
to f (n, . . . ). This means that primitive recursion always terminates.

Thus, it is a computational model analogous to Loop-programs.
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Examples of primitive recursive functions:

Addition Function

The function add : N2 → N with add(n,m) = n + m is primitive recursive.

add(0,m) = m

add(n + 1,m) = s(add(n,m))

Strictly speaking, we should write:

add(0,m) = g(m)

add(n + 1,m) = h(add(n,m), n,m)

where g = π1
1 and h : N3 → N is the following primitive recursive function:

h(x , y , z) = s(π3
1(x , y , z))

However, we will usually not be so precise.
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Multiplication Function

The function mult : N2 → N with mult(n,m) = n ·m is primitive recursive.

mult(0,m) = 0

mult(n + 1,m) = add(mult(n,m),m)

Instead of mult(0,m) = 0, we should strictly speaking write
mult(0,m) = k0(), which is allowed since in the composition case on
Slide 56, we allow k = 0.
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Decrement

The function dec : N→ N with dec(n) = n − 1 is primitive recursive.

dec(0) = 0

dec(n + 1) = n

Subtraction

The function sub : N2 → N with sub(n,m) = max{0, n −m} is primitive
recursive.

sub(n, 0) = n

sub(n,m + 1) = dec(sub(n,m))
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Reminder: The binomial coefficient
(n
k

)
is defined for n ≥ 0, k ≥ 1 by(

n

k

)
=

n!

k!(n − k)!
=

n · (n − 1) · · · (n − k + 1)

k · (k − 1) · · · 1
.

The unary function n 7→
(n

2

)
= (n−1)n

2 is primitive recursive.(
0

2

)
= 0(

n + 1

2

)
=

n(n + 1)

2
=

(n − 1)n

2
+ n =

(
n

2

)
+ n

By composition, it follows that the function c : N2 → N with

c(n,m) = n +

(
n + m + 1

2

)
is also primitive recursive.
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The function c is a bijection from N2 to N (pairing function).

n = 0 1 2 3 4

m = 0 0 2 5 9 14

1 1 4 8 13 19

2 3 7 12 18 25

3 6 11 17 24 32

4 10 16 23 31 40

Note: c(n,m) = n +
∑n+m

i=1 i .

The function c can be used to encode arbitrary k-tuples (k ≥ 2) of natural
numbers into a single number:

〈n1, n2, . . . , nk〉 = c(n1, c(n2, . . . , c(nk−1, nk) . . .))

The mapping (n1, n2, . . . , nk) 7→ 〈n1, n2, . . . , nk〉 is also primitive recursive
(for each fixed k).
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Let ` : N→ N and r : N→ N be the unique functions with:

∀n,m ∈ N : `(c(n,m)) = n and r(c(n,m)) = m

We will now show that the functions ` and r are also primitive recursive.
With these, we can define primitive recursive decoding functions for
encoded k-tuples:

d1(n) = `(n)

d2(n) = `(r(n))

...

dk−1(n) = `( r(r(· · · r︸ ︷︷ ︸
k − 2 times

(n) · · · ))

dk(n) = r(r(· · · r︸ ︷︷ ︸
k − 1 times

(n) · · · ))

Then: di (〈n1, n2, . . . , nk〉) = ni .
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Let P : Nk+1 → {0, 1} be a predicate (a function with range {0, 1}). Then
the function q : Nk+1 → N defined by

q(n, n1, . . . , nk) =

{
0 if P(x , n1, . . . , nk) = 0 for all x ∈ {0, . . . , n}
max{x ≤ n | P(x , n1, . . . , nk) = 1} otherwise

is defined by applying the bounded max-operator to P.

If P is primitive recursive, then q is also primitive recursive.

q(0, n1, . . . , nk) = 0

q(n + 1, n1, . . . , nk) =

{
n + 1 if P(n + 1, n1, . . . , nk) = 1

q(n, n1, . . . , nk) otherwise

= q(n, n1, . . . , nk) +

P(n + 1, n1, . . . , nk) ∗ (n + 1− q(n, n1, . . . , nk))
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Let P : Nk+1 → {0, 1} be a predicate. Then the predicate
Q : Nk+1 → {0, 1} defined by

Q(n, n1, . . . , nk) =

{
1 if ∃x ≤ n : P(x , n1, . . . , nk) = 1

0 otherwise

is defined by applying the bounded existential quantifier to P.

If P is primitive recursive, then Q is also primitive recursive.

Q(0, n1, . . . , nk) = P(0, n1, . . . , nk)

Q(n + 1, n1, . . . , nk) = P(n + 1, n1, . . . , nk) + Q(n, n1, . . . , nk)

−P(n + 1, n1, . . . , nk) ∗ Q(n, n1, . . . , nk)
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We can now show that the inverse functions ` and r of c : N2 → N are
also primitive recursive.

The predicate C : N3 → {0, 1} defined by

C (x , y , z) =

{
1 if c(x , y) = z

0 if c(x , y) 6= z

is primitive recursive:

C (x , y , z) =

(
1− (c(x , y)− z)

)
∗
(

1− (z − c(x , y))

)
.

Therefore, the following functions `′ and r ′ are also primitive recursive:

`′(k ,m, n) = max{x ≤ k | ∃y ≤ m : C (x , y , n) = 1}
r ′(k ,m, n) = max{y ≤ k | ∃x ≤ m : C (x , y , n) = 1}
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Finally, it holds that `(n) = `′(n, n, n) and r(n) = r ′(n, n, n):

Note that x ≤ c(x , y) and y ≤ c(x , y) for all x , y ∈ N.

Further, we have:

`′(c(x , y), c(x , y), c(x , y))

= max{x ′ ≤ c(x , y) | ∃y ′ ≤ c(x , y) : C (x ′, y ′, c(x , y)) = 1}
= max{x ′ ≤ c(x , y) | ∃y ′ ≤ c(x , y) : c(x ′, y ′) = c(x , y))}
= max{x ′ ≤ c(x , y) | ∃y ′ ≤ c(x , y) : x ′ = x and y ′ = y}
= max{x ′ ≤ c(x , y) | x ′ = x} = x

and similarly r ′(c(x , y), c(x , y), c(x , y)) = y .

From the definition of the functions ` and r (Slide 63) it follows that
`(n) = `′(n, n, n) and r(n) = r ′(n, n, n).
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Theorem 6 (Primitive Recursive Functions = Loop-Computable
Functions)

The class of primitive recursive functions is exactly the same as the class
of Loop-computable functions.

Proof: Let f : Nr → N be Loop-computable.

Then there exists a Loop program P, in which only the variables
x1, . . . , xk (k ≥ r) appear, such that (see Slide 28)

∀n1, . . . , nr ∈ N : f (n1, . . . , nr ) = π1([P]k(n1, . . . , nr , 0, . . . , 0)).

By induction on the construction of P, we define a primitive recursive
function gP : N→ N such that

∀n1, . . . , nk ∈ N : gP(〈n1, . . . , nk〉) = 〈[P]k(n1, . . . , nk)〉.

Since f (n1, . . . , nr ) = d1(gP(〈n1, . . . , nr , 0, . . . , 0〉)), it follows that f is
also primitive recursive.
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Case 1. P = (xi := xj ± c): Define

gP(n) := 〈d1(n), . . . , di−1(n), dj(n)± c , di+1(n), . . . , dk(n)〉.

Then

gP(〈n1, . . . , nk〉)
= 〈d1(〈n1, . . . , nk〉), . . . , di−1(〈n1, . . . , nk〉), dj(〈n1, . . . , nk〉)± c ,

di+1(〈n1, . . . , nk〉), . . . , dk(〈n1, . . . , nk〉)〉
= 〈n1, . . . , ni−1, nj ± c , ni+1, . . . , nk〉

Slide 26
= 〈[P]k(n1, . . . , nk)〉.

Moreover: Since all functions d1, . . . , dk as well as n 7→ n ± c and
(n1, . . . , nk) 7→ 〈n1, . . . , nk〉 are primitive recursive, gP is also primitive
recursive by the above definition.
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Case 2. P = (Q;R): Define

gP(n) := gR(gQ(n)).

By induction, for all n1, . . . , nk ∈ N:

gQ(〈n1, . . . , nk〉) = 〈[Q]k(n1, . . . , nk)〉
gR(〈n1, . . . , nk〉) = 〈[R]k(n1, . . . , nk)〉

Thus

gP(〈n1, . . . , nk〉) = gR(gQ(〈n1, . . . , nk〉))

= gR(〈[Q]k(n1, . . . , nk)〉)
= 〈[R]k([Q]k(n1, . . . , nk))〉

Slide 26
= 〈[P]k(n1, . . . , nk)〉.

Moreover: Since gQ and gR are primitive recursive by induction, gP is also
primitive recursive by the above definition.
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Case 3. P = (Loop xi Do Q End):

First, define the primitive recursive function h by

h(0,m) = m

h(n + 1,m) = gQ(h(n,m))

Thus h(n,m) = gn
Q(m) (the n-fold application of gQ to m).

Finally, define gP(x) = h(di (x), x).

Then:

gP(〈n1, . . . , nk〉) = h(di (〈n1, . . . , nk〉), 〈n1, . . . , nk〉)
= h(ni , 〈n1, . . . , nk〉)
= gni

Q (〈n1, . . . , nk〉)
Ind.hyp.

= 〈[Q]nik (n1, . . . , nk)〉
Slide 26

= 〈[P]k(n1, . . . , nk)〉.
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Let f : Nr → N be primitive recursive.

By induction on the construction of f , we show that f is
Loop-computable.

Case 1: f is one of the basic functions (constant functions, projections,
successor function).

Then f is obviously Loop-computable.

Case 2: There are primitive recursive functions g , f1, . . . , fk such that

f (n1, . . . , nr ) = g(f1(n1, . . . , nr ), . . . , fk(n1, . . . , nr )).

By induction, g , f1, . . . , fk are Loop-computable.

Let G ,F1, . . . ,Fk be Loop-programs for computing g , f1, . . . , fk .

Then the following Loop-program computes f :
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y1 := x1; . . . ; yr := xr ;
F1;
z1 := x1;
x1 := y1; . . . ; xr := yr ;
F2;
z2 := x1;
x1 := y1; . . . ; xr := yr ;
F3;
z3 := x1;
...

x1 := y1; . . . ; xr := yr ;
Fk ;
zk := x1;
x1 := z1; . . . ; xk := zk ;
G
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Explanation:

The input numbers n1, . . . , nr are initially in the variables x1, . . . , xr .
These are saved using y1 := x1; . . . ; yr := xr into the variables
y1, . . . , yr .

Using the program Fi , the value fi (n1, . . . , nr ) is computed and this
value is in the variable x1 after executing Fi .

By using zi := x1, the value fi (n1, . . . , nr ) is saved in the variable zi .

Before starting Fi+1, the variables x1, . . . , xr must be restored to the
input values n1, . . . , nr using x1 := y1; . . . ; xr := yr .

Finally, each variable zi (1 ≤ i ≤ k) contains the value fi (n1, . . . , nr ).

Using x1 := z1; . . . ; xk := zk , these values are copied into the
variables x1, . . . , xk . After that, G is executed.

After G finishes, the variable x1 contains the desired value
g(f1(n1, . . . , nr ), . . . , fk(n1, . . . , nr )) = f (n1, . . . , nr ).
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Case 3: f is derived from g and h through primitive recursion.

There exist primitive recursive functions g : Nr−1 → N and h : Nr+1 → N
such that

f (0, n2, . . . , nr ) = g(n2, . . . , nr )

f (n1 + 1, n2, . . . , nr ) = h(f (n1, n2, . . . , nr ), n1, n2, . . . , nr )

The function f can then be computed by the following (pseudocode)
Loop program:

y := g(x2, . . . , xr ); k := 0;
Loop x1 Do

y := h(y , k , x2, . . . , xr ); k := k + 1
End

Using Loop programs for g and h and intermediate storage similar to
Case 2, this pseudocode
can be converted into a Loop program for f .
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We now define another class that is equivalent to While-programs,
Goto-programs, and Turing machines.

µ-Recursive Functions (Definition)

The µ-recursive functions use the same basic functions (constant
functions, projections, successor function) and operators (substitution,
primitive recursion) as primitive recursive functions.

Additionally, the µ-Operator may be used.

The µ-Operator transforms a function f : Nk+1 → N into a function
µf : Nk → N with

µf (n1, . . . , nk) = min{n | f (n, n1, . . . , nk) = 0 and

∀m < n : f (m, n1, . . . , nk) is defined}

where min ∅ = undefined .
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Intuitive Calculation of µf (n1, . . . , nk):

Compute f (0, n1, . . . , nk), f (1, n1, . . . , nk), . . .

If for some n it holds that f (n, n1, . . . , nk) = 0, then return n as the
function value.

If f (m, n1, . . . , nk) is undefined (without the function value being 0
previously), or if the function value 0 is never reached: the intuitive
calculation does not terminate.
In this case, µf (n1, . . . , nk) = min ∅ = undefined .

Analogy to While-programs: it is not clear whether the termination
condition will ever be met.
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With the µ-operator, we can now also create partial functions that are not
total.

Total Undefined Function

The function Ω: N→ N with Ω(n) = undefined for all n ∈ N is
µ-recursive.

For example, use the binary function f : N2 → N with f (n,m) = n + 1 for
all n,m.

It holds that f (n,m) = s(π2
1(n,m)), where s is the successor function.

Then Ω = µf .
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Another Example:

Square Root Function

The function sqrt : N→ N with sqrt(n) = d
√
ne is µ-recursive.

Here, d. . . e rounds a real number up to the nearest (or equal) integer.

Let f (m, n) = n −m ·m. (Note: multiplication and subtraction functions
are primitive recursive).

Then sqrt = µf , because: µf (n) = min{m ∈ N | n −m ·m = 0} = d
√
ne

However, this function is also primitive recursive.

Intuition: calculating sqrt(n) requires at most n iterations.
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Theorem 7

The class of µ-recursive functions is exactly the same as the class of
While-(Goto-, Turing-) computable functions.

Proof:

We show that the class of µ-recursive functions coincides with the class of
While-computable functions.

To do this, it is sufficient to extend the proof of the theorem on Slide 68
(primitive recursive functions = Loop-computable functions) to include
the µ-operator and the While loop.

Let P = (While xi 6= 0 Do Q End) be a While-program.

We need to show that the function gP : N→ N defined on Slide 68 is
µ-recursive.

By induction, this is already the case for gQ .
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As in the proof of the theorem on Slide 68 (Case 3 on Slide 71), we can
define a µ-recursive function h : N2 → N with h(n,m) = gn

Q(m).

Define j : N2 → N by j(n,m) = di (h(n,m)) and

gP(x) := h((µj)(x), x).

Note: (µj)(〈n1, . . . , nk〉) is defined if and only if there exists a number t
such that

0 = di (h(t, 〈n1, . . . , nk〉))

= di (g
t
Q(〈n1, . . . , nk〉))

= di (〈[Q]tk(n1, . . . , nk)〉)
= πki ([Q]tk(n1, . . . , nk))

and [Q]sk(n1, . . . , nk) is defined for all s < t.
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In this case, (µj)(〈n1, . . . , nk〉) is the smallest such number t.

Therefore, (µj)(〈n1, . . . , nk〉) is defined if and only if the program
P = (While xi 6= 0 Do Q End) terminates with input n1, . . . , nk .

Thus: gP(〈n1, . . . , nk〉) is defined ⇐⇒ 〈[P]k(n1, . . . , nk)〉 is defined.

Moreover: If (µj)(〈n1, . . . , nk〉) is defined and equal to t ∈ N, then t is the
number of iterations of the While loop for input n1, . . . , nk .

In this case:

gP(〈n1, . . . , nk〉) = h((µj)(〈n1, . . . , nk〉), 〈n1, . . . , nk〉)
= h(t, 〈n1, . . . , nk〉)
= g t

Q(〈n1, . . . , nk〉)
Ind.hyp.

= 〈[Q]tk(n1, . . . , nk)〉
Folie 33

= 〈[P]k(n1, . . . , nk)〉.
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Let f = µg : Nr → N be a µ-recursive function g : Nr+1 → N.

Then f can be computed by the following (pseudocode) While-program:

y := 0; z := g(0, x1, . . . , xr );
While z 6= 0 Do

y := y + 1; z := g(y , x1, . . . , xr );
End;
x1 := y
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We will now show that there are total Turing-computable/µ-recursive
functions that are not primitive recursive.

A classic example of this is the so-called Ackermann Function.

Ackermann Function a : N2 → N (Ackermann 1928)

a(0, y) = y + 1 (1)

a(x , 0) = a(x − 1, 1), if x > 0 (2)

a(x , y) = a(x − 1, a(x , y − 1)), if x , y > 0 (3)

Lemma 8

The Ackermann function is a total function.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 84 / 419



Primitive Recursive and µ-Recursive Functions

Proof: By induction on the first argument x .

Let x , y ∈ N.

If x = 0, then a(x , y)
(1)
= y + 1.

If x > 0, then

a(x , y)
(3)
= a(x − 1, a(x , y − 1))

(3)
= a(x − 1, a(x − 1, a(x , y − 2))) = · · ·
= a(x − 1, a(x − 1, . . . a(x − 1︸ ︷︷ ︸

(y + 1)-times

, 1) . . .)).

Since by induction all values a(x − 1, z) (for z ∈ N) are defined, a(x , y) is
also defined.
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Value table of the Ackermann function for small values:

y = 0 1 2 3 4 . . . a(x , y)

x = 0 1 2 3 4 5 . . . y + 1
x = 1 2 3 4 5 6 . . . y + 2
x = 2 3 5 7 9 11 . . . 2y + 3
x = 3 5 13 29 61 125 . . . 2y+3 − 3

x = 4 13 65533 > 1019727 22. .
.2︸ ︷︷ ︸

y + 3 twos

−3

. . .

Satz 9

The Ackermann function is While-computable, but not primitive
recursive or Loop-computable.
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Proof:

We first show that the Ackermann function is While-computable (the
Ackermann function is certainly computable in the intuitive sense).

For this purpose, it is useful to introduce stacks (LIFO) of natural
numbers.

A sequence (n0, n1, . . . , nk) of natural numbers can be stored in a single
number using the encoding function (n0, n1, . . . , nk) 7→ 〈n0, n1, . . . , nk〉
(see Slide 62).

Let stack be an integer variable representing a stack of natural numbers.
We define the following operations:

Init(stack): stack := 0

Push(n, stack) for n ∈ N: stack := c(n + 1, stack)

x := Pop(stack): x := `(stack)− 1; stack := r(stack)

Additionally, we use size(stack) 6= 1 as a shorthand for r(stack) 6= 0.
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Note: In a Push operation, the argument to be pushed onto the stack is
incremented by 1, and in a Pop operation, it is decremented again.

This is necessary to distinguish these arguments from the bottom stack
symbol 0.

If we did not perform this increment, all stacks of the form (0, 0, . . . , 0)
would be encoded by the number 0.

Using these operations, the Ackermann function can be computed by the
following While-program:
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Init(stack);
Push(x1, stack);
Push(x2, stack);
While size(stack) 6= 1 Do

y := Pop(stack);
x := Pop(stack);
If x = 0 Then Push(y + 1, stack);
Elseif y = 0 Then Push(x − 1, stack); Push(1, stack);
Else Push(x − 1, stack); Push(x , stack); Push(y − 1, stack);
End (if)

End (while)
x1 := Pop(stack);

We will now show that the Ackermann function grows faster than any
primitive recursive function.

For this, we prove a series of lemmas.
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Lemma 10

∀x , y ∈ N : y < a(x , y)

Proof: Induction on x .

Base Case: x = 0.

It holds that y < y + 1
(1)
= a(0, y) for all y ∈ N.

Inductive Step: Assume ∀y ∈ N : y < a(x , y) (IH 1).

We will now show by induction on y ∈ N that ∀y ∈ N : y < a(x + 1, y).

Base Case: y = 0.

It holds that 1 < a(x , 1) (by IH 1) and thus 0 < 1 < a(x , 1)
(2)
= a(x + 1, 0).

Inductive Step: Assume y < a(x + 1, y) (IH 2).

We will now show y + 1 < a(x + 1, y + 1).
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First, by (IH 1): a(x + 1, y) < a(x , a(x + 1, y))
(replace y in (IH 1) with a(x + 1, y)).

Therefore: y + 1
(IH 2)

≤ a(x + 1, y) < a(x , a(x + 1, y))
(3)
= a(x + 1, y + 1).

Lemma 11

∀x , y ∈ N : a(x , y) < a(x , y + 1)

Proof:

For x = 0, it holds that a(0, y)
(1)
= y + 1 < y + 2

(1)
= a(0, y + 1) for all

y ∈ N.

For x > 0, we have a(x , y) < a(x − 1, a(x , y)) by Lemma 10
(replace x in Lemma 10 with x − 1 and y with a(x , y)).

This yields a(x , y) < a(x − 1, a(x , y))
(3)
= a(x , y + 1).
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Lemma 12

∀x , y ∈ N : a(x , y + 1) ≤ a(x + 1, y)

Proof: Induction on y .

IA: y = 0.

It holds that a(x , 1)
(2)
= a(x + 1, 0) for all x ∈ N.

IS: Assume ∀x ∈ N : a(x , y + 1) ≤ a(x + 1, y) (IH).

We show a(x , y + 2) ≤ a(x + 1, y + 1) for all x ∈ N.

By Lemma 10, y + 1 < a(x , y + 1).

Thus, y + 2 ≤ a(x , y + 1)
(IH)

≤ a(x + 1, y).

Lemma 11 implies a(x , y + 2) ≤ a(x , a(x + 1, y)).

Therefore, a(x , y + 2) ≤ a(x , a(x + 1, y))
(3)
= a(x + 1, y + 1).
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Lemma 13

∀x , y ∈ N : a(x , y) < a(x + 1, y)

Proof:

Lemma 11 ; a(x , y) < a(x , y + 1).

Lemma 12 ; a(x , y + 1) ≤ a(x + 1, y).

From Lemma 11 and Lemma 13, it follows that the function a is
monotonic:

If x ≤ x ′ and y ≤ y ′ then a(x , y) ≤ a(x ′, y ′). Additionally, if x < x ′ or
y < y ′ then a(x , y) < a(x ′, y ′).
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Let P be a Loop program where no variable xi with i > k appears.

For a tuple (n1, . . . , nk) ∈ Nk , we write∑
(n1, . . . , nk) = n1 + · · ·+ nk .

We then define

fP(n) = max{
∑

[P]k(n1, . . . , nk) | n1, . . . , nk ∈ N,
∑

(n1, . . . , nk) ≤ n}.

Lemma 14

For every Loop program P, there exists a number ` such that for all
n ∈ N it holds: fP(n) < a(`, n).

Proof: Induction over the construction of P.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 94 / 419



Primitive Recursive and µ-Recursive Functions

Without loss of generality, assume P satisfies the following properties:

For each subprogram xi := xj ± c in P, we have c = 1.

For example, xi := xj + 2 can be replaced by xi := xj + 1; xi := xi + 1.

For each subprogram Loop xi Do Q End in P:
xi does not appear in Q.

If xi does appear in Q, replace Loop xi Do Q End with
y := xi ; Loop y Do Q End, where y is a new variable.

Case 1: P = (xi := xj ± 1)

Then we have fP(n) ≤ 2n + 1.

By induction on y , it can be easily shown that:
a(1, y) = y + 2 and a(2, y) = 2y + 3 (see exercise).

Thus, fP(n) < a(2, n).
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Case 2: P = (P1;P2).

By the induction hypothesis, there exist numbers `1 and `2 such that

∀n ∈ N : fP1(n) < a(`1, n) and fP2(n) < a(`2, n). (4)

We first show that fP(n) ≤ fP2(fP1(n)).

By the definition of fP(n), there exists a tuple (n1, . . . , nk) ∈ Nk with∑
(n1, . . . , nk) ≤ n and

fP(n) =
∑

[P]k(n1, . . . , nk) =
∑

[P2]k([P1]k(n1, . . . , nk)).

Now, by the definition of fP1(n), we have:
∑

[P1]k(n1, . . . , nk) ≤ fP1(n).

With the definition of fP2(n), it follows that:

fP(n) =
∑

[P2]k([P1]k(n1, . . . , nk)) ≤ fP2(fP1(n)).
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With `3 := max{`1 − 1, `2} it follows:

fP(n) ≤ fP2(fP1(n))

< a(`2, a(`1, n)) ((4) and monotonicity of a)

≤ a(`3, a(`3 + 1, n)) (monotonicity of a)

= a(`3 + 1, n + 1) (definition of a)

≤ a(`3 + 2, n) (Lemma 12)

Thus, we can choose ` = `3 + 2 in Lemma 14.

Case 3: P = (Loop xi Do Q End)

By the induction hypothesis, there exists a number `1 such that

∀n ∈ N : fQ(n) < a(`1, n). (5)

Note: xi does not appear in Q.
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Choose m, n1, . . . , ni−1, ni+1, . . . , nk ≤ n such that:

fP(n) = max{
∑

[P]k(n1, . . . , nk) | n1, . . . , nk ∈ N,
∑

(n1, . . . , nk) ≤ n}

=
∑

[P]k(n1, . . . , ni−1,m, ni+1, . . . , nk),

where n1 + · · ·+ ni−1 + ni+1 + · · ·+ nk + m ≤ n.

If m = 0, then:

fP(n) =
∑

[P]k(n1, . . . , ni−1, 0, ni+1, . . . , nk)

=
∑

(n1, . . . , ni−1, 0, ni+1, . . . , nk)

≤ n

< n + 1

= a(0, n).
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If m ≥ 1, then we get (since xi does not occur in Q):

fP(n) =
∑

[P]k(n1, . . . , ni−1,m, ni+1, . . . , nk)

=
∑

[Q]mk (n1, . . . , ni−1,m, ni+1, . . . , nk)

≤ fQ(fQ(· · · fQ︸ ︷︷ ︸
m-times

(n −m) · · · )) + m

< a(`1, fQ(fQ(· · · fQ︸ ︷︷ ︸
m − 1-times

(n −m) · · · ))) + m

...

< a(`1, a(`1, · · · a(`1︸ ︷︷ ︸
m-times

, n −m) · · · )) + m
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Since this estimate contains the symbol “<” m-times, we get:

fP(n) ≤ a(`1, a(`1, · · · a(`1,︸ ︷︷ ︸
m-times

n −m) · · · ))

< a(`1, · · · a(`1︸ ︷︷ ︸
m − 1-times

, a(`1 + 1, n −m)) · · · ) (Monotonicity of a, m ≥ 1)

= a(`1 + 1, n − 1) (Definition of a)

< a(`1 + 1, n) (Monotonicity of a)

Thus, we can choose ` = `1 + 1 in Lemma 14.
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We can now finally conclude the proof of Theorem 9.

Suppose the Ackermann function a were Loop-computable.

Then the function g : N→ N with g(n) = a(n, n) is also
Loop-computable.

Let P be a Loop program such that

∀n ∈ N : g(n) = π0([P]k(n, 0, . . . , 0)).

According to Lemma 14, there exists a constant ` such that

∀n ∈ N : fP(n) < a(`, n).

For n = `, it follows that

g(`) = π0([P]k(`, 0, . . . , 0)) ≤ fP(`) < a(`, `) = g(`).

This is a contradiction.
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Undecidability

Overview

First, we formally define the concept of decidability. What does it
actually mean for a problem to be decidable?

Next, we introduce the concept of semi-decidability.
Here, it is allowed that the decision procedure may not terminate and
not provide an answer for a negative case.

Finally, we discuss negative results.
How can one prove that a problem is undecidable?
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Decidability (Definition)

A language L ⊆ Σ∗ is called decidable, if the characteristic function of L,
i.e., the function χL : Σ∗ → {0, 1} with

χL(w) =

{
1 if w ∈ L
0 if w 6∈ L

is computable.

A language that is not decidable is called undecidable.

Intuition: There exists an algorithmic procedure that, given an input
w ∈ Σ∗, behaves as follows:

If w ∈ L, the procedure terminates after a finite number of steps with
the output 1 (“Yes, w belongs to L”).

If w /∈ L, the procedure terminates after a finite number of steps with
the output 0 (“No, w does not belong to L”).

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 103 / 419



Decidability

Representation of decidability using a machine model:

Yes (Output 1)

No (Output 0)
w

For every input, the machine computes for a finite amount of time and
then outputs either “Yes” or “No”.
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In semi-decidability, it is allowed that the characteristic function is
undefined in the negative case, meaning no answer is returned. In concrete
computational models, this results in non-termination.

Semi-Decidability (Definition)

A language L ⊆ Σ∗ is called semi-decidable, if the “partial” characteristic
function of L, i.e., the function χ′L : Σ∗ → {1} with

χ′L(w) =

{
1 if w ∈ L
undefined if w 6∈ L

is computable.
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Decidability

Intuition: There is an algorithmic procedure that, given an input w ∈ Σ∗,
behaves as follows:

If w ∈ L, the procedure terminates after a finite number of steps with
output 1 (“Yes, w belongs to L”).

If w /∈ L, the procedure never terminates.
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Representation of semi-decidability using a machine model:

Yes (Output 1)

???
w

For any input, the machine computes and outputs “Yes” after a finite
amount of time if w ∈ A. If w 6∈ A, the machine never terminates.

This means you can never be sure if “Yes” will eventually be output, as
the machine’s response time is not bounded.
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Satz 15 (Semi-Decidability and Chomsky-0 Languages)

A language A is semi-decidable if and only if it is of type 0.

Proof: The Chomsky-0 languages are exactly the languages accepted by a
Turing machine, see FSA, slide 354.

A Turing machine that computes the partial characteristic function χ′A
also accepts the language A, as it moves into an accepting state after
writing the 1.

A Turing machine that accepts a language A can easily be converted into
a Turing machine that computes the “partial” characteristic function χ′A,
by erasing the tape after reaching an accepting state and then writing a
1.
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Decidability

As a reminder: the Chomsky hierarchy

Type 2 languages
context free languages

Type 3 languages
regular languages

context sensitive languages
Type 1 languages

semi-decidable languages
Type 0 languages

all languages
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Decidability

Remarks:

In the context of decidability questions, languages are often referred
to as problems.

Even though characteristic functions take words as arguments, they
can easily be viewed as functions over natural numbers and thus
computed with While- or Goto-programs. Every word from Σ∗ can
be interpreted as a number in base b, where b ≥ |Σ| (see also the
conversion of Turing machines into Goto-programs on slide 47).

Therefore, we will consider problems as subsets of N or Nk from now
on.
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Decidability

Typical examples of problems:

Example 1: the word problem

Given a fixed Chomsky grammar G , the problem is A = L(G ). We already
know that A is decidable if G is a Chomsky-1 grammar. Moreover, there
exist grammars for which L(G ) is not decidable (proof coming soon).

Example 2: the general word problem

The general word problem is the set

A = {(w ,G ) | w ∈ L(G ), G Chomsky grammar over

the alphabet Σ},

where the pairs (w ,G ) must be suitably encoded as words (e.g., by listing
all productions of G , separated by a symbol #).
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Decidability

Satz 16 (Undecidability of the General Word Problem)

The general word problem is undecidable.

Proof: Let G be a grammar for which the word problem L(G ) is
undecidable (proof to follow).

If the general word problem A were decidable, then L(G ) would also be
decidable. For a given word w , one would only need to check if
(w ,G ) ∈ A. ; Contradiction!

G

w

No

Yes

Machine for the (specific) word problem

Machine for
the general
word problem
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Decidability

This means that from a machine that solves the general word problem, one
could construct a machine to solve the (special) word problem. However,
since such a machine does not exist for all grammars G , the former cannot
exist either.

Such arguments (“if there is a procedure for A, then one can construct a
procedure for B”) are called reductions. We will use them frequently in the
following.
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Decidability

Example 3: The Intersection Problem

The intersection problem for context-free grammars is the set

A = {(G1,G2) | G1,G2 are context-free grammars,

L(G1) ∩ L(G2) 6= ∅}.

The intersection problem is undecidable (proof still pending).

Intuitively speaking: There is no algorithmic procedure (e.g., a C
program) that takes as input two context-free grammars G1 and G2 and,
after a finite number of steps, produces the following output:

1, if L(G1) ∩ L(G2) 6= ∅,
0, if L(G1) ∩ L(G2) = ∅.
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Decidability

Theorem 17 (Decidability and Semi-Decidability)

A language A is decidable if and only if both A and A (the complement of
A) are semi-decidable.

Proof:

Suppose A is decidable.

Then the characteristic function χA is computable by a Turing machine M.

The following Turing machine MA computes the partial characteristic
function χ′A:

MA simulates the machine M.

If M terminates with output 0, MA enters an infinite loop.
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Decidability

The following Turing machine MA computes the partial characteristic
function χ′

A
:

MA simulates the machine M.

If M terminates with output 1, MA enters an infinite loop.

If M terminates with output 0, MA terminates with output 1.

Thus, both A and A are semi-decidable.

Now suppose both A and A are semi-decidable.

Let MA (or MA) be a Turing machine that computes the partial
characteristic function χ′A (or χ′

A
).

The following algorithm computes the characteristic function of A:
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Decidability

Input w
t := 1;
While true Do
If MA terminates on input w after t steps Then
Output(1)

Elseif MA terminates on input w after t steps Then
Output(0)

End
t := t + 1

End

Note: The While loop will always terminate after a finite number of
steps, since either w ∈ A or w 6∈ A.

Thus, there exists a number t such that either MA or MA terminates on
input w after t steps.
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Decidability

Recursively Enumerable (Definition)

A language L ⊆ Σ∗ is recursively enumerable if L = ∅ or there exists a
total and computable function f : N→ Σ∗ such that

L = {f (n) | n ∈ N} = {f (1), f (2), f (3), . . . }.

Remarks:

Terminology: the function f enumerates the language L.

An equivalent definition of recursive enumerability: there exists a
total, computable, and surjective function f : N→ L.

The mathematical concept of countability
is defined similarly, but it does not require that f be computable. Hence:

L is recursively enumerable ⇒ L is countable.
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Decidability

Theorem 18 (Recursive Enumerability and Semi-Decidability)

A language L is recursively enumerable if and only if it is semi-decidable.

Proof:

Recursive Enumerability → Semi-Decidability:

Given: A recursively enumerable language L ⊆ Σ∗, described by a
computable and total function f : N→ Σ∗.

Goal: Construct a Turing machine that determines whether a word w ∈ Σ∗

is in L.

Solution: Compute f (1), f (2), f (3), . . . until w = f (i) for some i . In this
case, the Turing machine outputs 1; otherwise, it does not terminate.
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Decidability

Semi-Decidability → Recursive Enumerability:

Given: A semi-decidable language L ⊆ Σ∗, described by a deterministic
Turing machine M = (Z ,Σ, Γ, δ, z0,2,E ) with L = T (M).

Goal: Construct a Turing machine M ′ that computes a function f such
that {f (1), f (2), f (3), . . . } = L.

The case where L is finite is simple: If L = {w1,w2, . . . ,wn}, then the
function f : N→ Σ∗ defined by f (i) = wi for 1 ≤ i ≤ n and f (i) = wn for
all i > n is computable.

Now consider the case where L is infinite.

Recall how we described successful computations of M using words over
the alphabet Ω = Z ∪ Γ ∪ {#} in FSA (Slide 359).

Since M is deterministic, there is exactly one successful computation c(w)
for each word w ∈ T (M).
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Decidability

M ′ operates as follows:

Input: i ∈ N
c := ε,
j := 0;
While true Do

c := the length-lexicographically next word after c from Ω∗;
If c is a successful computation Then

j := j + 1
If j = i Then Output w if c = c(w)

End
End

Justification of correctness:

Let c(w1), c(w2), . . . be the length-lexicographic listing of all
successful computations of M.

Then M ′ computes the function i 7→ wi .
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Decidability

From Theorems 7 in FSA (Slide 354), 15 (Slide 108) and 18 (Slide 119) it
follows that the following statements are equivalent for a language L:

Semi-Decidability and Equivalent Terms

L is semi-decidable, i.e., χ′L is
(Turing, While-, Goto-)computable.

L is recursively enumerable

L is of Type 0.

L = T (M) for some Turing machine M.
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Halting Problem/Encoding Turing Machines

Our goal now is to show that the so-called Halting Problem is undecidable.

Halting Problem (informally)

Input: A deterministic Turing machine M with input w .

Output: Does M halt on w?

To do this, we first need to define more precisely how a Turing machine can
be encoded to be used as input for a computable (characteristic) function.
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Halting Problem/Encoding Turing Machines

Goal: Encode a deterministic Turing machine

M = (Z , {0, 1}, Γ, δ, z0,2,E )

by a word over the alphabet {0, 1}.

Without loss of generality, we can assume the following:

Γ = {0, 1, . . . ,m} where 2 = m ≥ 2,

Z = {1, . . . , n} where z0 = 1 and

E = {k + 1, . . . , n}

In the following, 1i denotes the word 11 · · · 1︸ ︷︷ ︸
i ones

.

The most important part of M is the transition function δ. This can be
encoded as a word over the alphabet {0, 1} as follows:
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Halting Problem/Encoding Turing Machines

For all 1 ≤ i ≤ k and 0 ≤ j ≤ m, we define the word wi ,j as follows:

Let δ(i , j) = (i ′, j ′, y). Then

wi ,j = 1i01j01i
′
01j
′
01code(y)0 ∈ {0, 1}∗.

where code(y) =


1 if y = L
2 if y = R
3 if y = N

Then the deterministic Turing machine M can be encoded by the following
word code(M) ∈ {0, 1}∗:

code(M) = 1n01m01k0
∏

1≤i≤k

∏
0≤j≤m

wi ,j
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Halting Problem/Encoding Turing Machines

Remarks: Many of the choices in our encoding of Turing machines are
highly arbitrary. There are many other ways to encode Turing machines.
What is important here is that there exists a possible encoding that we
agree upon.

Note: Not every word w ∈ {0, 1}∗ is the code of a Turing machine.
Nevertheless, we want to assign a Turing machine Mw to every word
w ∈ {0, 1}∗.

To this end, we fix an arbitrary but fixed deterministic Turing machine M̂
(the default machine) with input alphabet {0, 1}. Then define

Mw :=

{
M if code(M) = w

M̂ if no Turing machine M exists with code(M) = w
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Halting Problem/Encoding Turing Machines

We can now define two different variants of the halting problem.

Halting Problem

The (general) halting problem is the language

H = {w#x | w , x ∈ {0, 1}∗,Mw halts on x}
= {w#x | w , x ∈ {0, 1}∗, x ∈ T (Mw )}

Special Halting Problem

The special halting problem is the language

K = {w ∈ {0, 1}∗ | Mw halts on w}
= {w ∈ {0, 1}∗ | w ∈ T (Mw )}.
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Universal Turing Machine

Note the self-reference in the definition of K : A Turing machine M = Mw

receives its own encoding w as input.

This is, however, perfectly possible.

For example, if you have written a C program P that takes a text file as
input, you can certainly apply the program P to its own source code.
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Universal Turing Machine

Some of the following results are based on the fact that there exists a
deterministic Turing machine that can simulate another Turing machine
when its encoding is provided. Such a Turing machine is also called a
universal Turing machine.

Universal Turing Machine

A deterministic Turing machine U is called a universal Turing machine if it
behaves as follows when given input w#x :

If Mw does not halt on input x , then U does not halt on input w#x
either.

If Mw halts on input x with output y , then U also halts on input
w#x with y .

From now on, let U be a universal Turing machine.
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Undecidability of the Halting Problem

Satz 19 (Undecidability of the Halting Problem)

The special halting problem K is undecidable.

Proof:

Assume that the special halting problem K is decidable, i.e., the
characteristic function χK : {0, 1}∗ → {0, 1} is computed by a Turing
machine M.

We can then construct a Turing machine M ′ that behaves as follows:

Input w ∈ {0, 1}∗
Simulate M on input w
If χK (w) = 0 Then Output(1)
Else Enter an infinite loop
End

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 130 / 419



Undecidability of the Halting Problem

Illustration of the Turing machine M ′:

TM M that
solves special
halting problem

Yes (Output 1)
No (Output 0)

M ′

w

Yes (Output 1)

(M ′ terminates)

Infinite loop (M ′ does not terminate)

Let w ′ ∈ {0, 1}∗ be such that M ′ = Mw ′ .

We then obtain the following contradiction:

M ′ = Mw ′ halts on input w ′ ⇐⇒ M outputs 0 on input w ′

⇐⇒ χK (w ′) = 0

⇐⇒ w ′ 6∈ K

⇐⇒ Mw ′ does not halt on input w ′
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Undecidability of the Halting Problem

This is a diagonalization proof:

Let w0,w1,w2, . . . be an enumeration of all words from {0, 1}∗, for
example w0 = ε, w1 = 0, w2 = 1, w3 = 00, . . .

We record in a table: “How does Mwi behave on wj?”

There are two possibilities: H (Mwi halts) or HN (Mwi does not halt).
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Undecidability of the Halting Problem

...

...... ...

...

... ...

...

...

...

...

...

Mw0

Mw1

w0 w1 w2

Mw3

w
M

?M ′ = Mw ′

w ′

H

H

HN

HN HN H
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Undecidability of the Halting Problem

The constructed Turing machine M ′ and a w ′ with M ′ = Mw ′ are also
entered into the table.

Due to the construction of M ′: the diagonal entries determine the entries
in the row of M ′.

Problem: nothing fits in the place of the question mark!

; There can be no Turing machine that solves the Halting Problem.
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Undecidability of the Halting Problem

Theorem 20 (Semi-Decidability of the Special Halting Problem)

The special Halting Problem K is semi-decidable.

Proof:

The “partial” characteristic function χ′K : {0, 1}∗ → {1} can be computed
as follows:

On input w , we start the universal Turing machine U with the input
w#w .

If U halts on input w#w , the produced output is overwritten by
1.
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Reductions

We have now proven the undecidability of a problem, the special Halting
Problem.

Further undecidability results should be derived from this.

This is done using arguments of the following kind:

1 If one could solve problem B, then one could also solve A. (Reduction
step)

2 It follows that B is harder or more general than A (A ≤ B).

3 We already know that A is undecidable.

4 Therefore, the harder problem B must also be undecidable.
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Reductions

Reduction/Reducibility (Definition)

Given languages A ⊆ Σ∗ and B ⊆ Γ∗, A is said to be reducible to B
(denoted A ≤ B) if there is a total and computable function f : Σ∗ → Γ∗

such that for all w ∈ Σ∗:

w ∈ A ⇐⇒ f (w) ∈ B.

Intuitively: A ≤ B if you can construct a machine MA for A from a
machine MB for B and a function f . That is, MB is called as a subroutine
after preprocessing the input with f .

Yes

No

MA

w f MB
f (w)
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Reductions

The following statement is then obvious:

Lemma 21 (Reductions and Decidability)

Let A ≤ B.

If B is decidable, then A is also decidable.

If A is undecidable, then B is also undecidable.

Recipe for Showing the Undecidability of a Problem B

Find a suitable problem A known to be undecidable.

So far, we only know the special halting problem K , but we will soon
learn about other suitable problems.

Find an appropriate function f that reduces A to B and prove its
correctness.

It then follows immediately that B is undecidable.
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Undecidability of the Halting Problem

Satz 22 (Undecidability of the Halting Problem)

The (general) halting problem H is undecidable.

Proof:

Let the computable function f be defined by f (w) = w#w for
w ∈ {0, 1}∗.

Then for all w ∈ {0, 1}∗:

w ∈ K ⇐⇒ w#w ∈ H ⇐⇒ f (w) ∈ H.

Thus, K ≤ H.

Since K is undecidable by Satz 20, H must also be undecidable.
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Undecidability of the Halting Problem

Halting Problem on an Empty Tape (Definition)

The Halting Problem on an Empty Tape is the language

H0 = {w ∈ {0, 1}∗ | Mw halts when started with an empty tape}
= {w ∈ {0, 1}∗ | ε ∈ T (Mw )}.

Satz 23 (Undecidability of the Halting Problem on an Empty Tape)

The Halting Problem on an Empty Tape H0 is undecidable.

Proof: We show H ≤ H0.

To each word w#x with w , x ∈ {0, 1}∗, we assign a Turing machine
M(w#x) that, when started on an empty tape, operates as follows:

1 Write x on the tape.

2 Then simulate the machine Mw .
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Undecidability of the Halting Problem

It does not matter how the machine M(w#x) behaves on a non-empty
tape.

We now define the function f : {0, 1,#}∗ → {0, 1}∗ by the rule

f (w#x) = code(M(w#x)),

i.e., M(w#x) = Mf (w#x) for all w , x ∈ {0, 1}∗.

For words of the form y ∈ {0, 1,#}∗ \ {0, 1}∗#{0, 1}∗, let f (y) be the
code of a Turing machine M0 that does not halt on an empty tape.

The function f is then computable: Let y ∈ {0, 1,#}∗ be the input.

If y does not contain exactly one # (which can be checked with a
DFA), the fixed word code(M0) is output.

If y = w#x with w , x ∈ {0, 1}∗, we algorithmically construct the
Turing machine M(w#x) and then compute code(M(w#x)).
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Undecidability of the Halting Problem

It holds that:

w#x ∈ H ⇐⇒ Mw halts on input x

⇐⇒ M(w#x) halts on an empty tape

⇐⇒ Mf (w#x) halts on an empty tape

⇐⇒ f (w#x) ∈ H0

Furthermore, for all y ∈ {0, 1,#}∗ \ {0, 1}∗#{0, 1}∗:

y 6∈ H and f (y) = code(M0) 6∈ H0.

Thus, f indeed provides a reduction from H to H0.
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Rice’s Theorem

The next result shows that it is undecidable whether the function
computed by a Turing machine M has a certain property S.

This means there is no method to make reliable statements about the
functions computed by all Turing machines.

Satz 24 (Rice’s Theorem)

Let R be the class of all Turing-computable functions, and let S be any
non-empty proper subset of R (i.e., S 6= ∅ and S 6= R).
Then the language

C (S) = {w ∈ {0, 1}∗ | the function computed by Mw is in S}

is undecidable.
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Rice’s Theorem

Proof:

Let Ω be the function that is undefined everywhere.

Either Ω ∈ S or Ω 6∈ S.

Case 1: Ω ∈ S

Since S 6= R, there exists a function q ∈ R \ S.

Let Q be a Turing machine that computes q.

We now assign to each word w ∈ {0, 1}∗ a Turing machine M(w) that
behaves as follows on input y ∈ {0, 1}∗:

1 M(w) initially ignores the input y and simulates Mw on an empty
tape.

2 If this simulation eventually halts, then M(w) simulates the machine
Q on y .
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Rice’s Theorem

Then for the function g computed by M(w), we have:

g =

{
Ω if Mw does not halt on an empty tape, i.e., w 6∈ H0

q otherwise, i.e., w ∈ H0

The total function f : {0, 1}∗ → {0, 1}∗ given by

f (w) = the code of the machine M(w)

is obviously computable.

Note: M(w) = Mf (w).

We obtain:

w ∈ H0 =⇒ g = q

=⇒ the function computed by Mf (w) is not in S
=⇒ f (w) 6∈ C (S)
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Rice’s Theorem

Conversely:

w 6∈ H0 =⇒ g = Ω

=⇒ the function computed by Mf (w) is in S
=⇒ f (w) ∈ C (S)

Thus, w ∈ H0 ⇐⇒ f (w) ∈ C (S), i.e., H0 ≤ C (S).

Since H0 is undecidable by Theorem 23, H0 and thus C (S) are
undecidable.

Case 2: Ω 6∈ S

Since S 6= ∅, there is a function q ∈ S.

Let Q be a Turing machine that computes q.

For w ∈ {0, 1}∗, let the machine M(w) and the computable total function
f : {0, 1}∗ → {0, 1}∗ be defined exactly as in Case 1.
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Rice’s Theorem

This time we get:

w ∈ H0 =⇒ g = q

=⇒ the function computed by Mf (w) is in S
=⇒ f (w) ∈ C (S)

Conversely:

w 6∈ H0 =⇒ g = Ω

=⇒ the function computed by Mf (w) is not in S
=⇒ f (w) 6∈ C (S)

Thus, the undecidability of C (S) follows as in Case 1.
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Rice’s Theorem

Consequences of Rice’s Theorem

The following problems are undecidable:

Constant Function: {w | Mw computes a constant function}
Identity: {w | Mw computes the identity function}
Total Function: {w | Mw computes a total function}
Totally Undefined Function: {w | Mw computes Ω}

Rice’s Theorem allows us to show undecidability for the properties of the
function computed by a Turing machine, but not for other properties of a
Turing machine (such as the number of its states or the tape alphabet).

Consequence of Rice’s Theorem on Program Verification: No
program can automatically verify the correctness of software.
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Rice’s Theorem

Rice’s Theorem and its variants also apply to other universal computation
models.

Satz 25 (Halting Problem for Goto/While Programs)

For a given Goto/While program and initial values for the variables, it
is undecidable whether the program halts on that input.

Proof:

The halting problem for Turing machines can be reduced to this problem.
It suffices to translate the Turing machine into the corresponding
Goto/While program and the machine’s input into the corresponding
variable assignments.

See the transformation “Turing Machine → Goto Program” as the
reduction function f .
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Rice’s Theorem

The following problem is already undecidable:

Satz 26 (Halting Problem for Goto Programs with Two Variables)

For a given Goto program with two variables, both initialized to 0, it is
undecidable whether the program halts.

(Proof omitted)

For Goto programs with only one variable, the halting problem is
decidable, as one variable can be simulated by a pushdown automaton.
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Non-computable functions

Similar to the undecidability of problems, it can also be shown that certain
functions are not computable. One example of this is the so-called Busy
Beaver function.

Busy Beaver

We consider all Turing machines with the two-element tape alphabet
Γ = {1,2} and n states. Of these machines, some halt on the empty tape,
while others do not terminate.

The value of the Busy Beaver function Σ at position n is the maximum
number of ones that can be written by a machine with n states that
terminates on the empty tape.
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Non-computable functions

The following is known about the Busy Beaver function Σ: N→ N:

It is not computable.

The following values of the function are known:

n Σ(n)

1 1
2 4
3 6
4 13
5 ≥ 4098
6 ≥ 1.29× 10865

The function value at position n = 5 has not yet been exactly
determined.
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Undecidable Problems

We will now use the reduction proof technique to show the undecidability
of the following problems:

Post’s Correspondence Problem (PCP)

PCP: a combinatorial problem on words, an important (auxiliary)
problem used to demonstrate the undecidability of other problems.

Intersection Problem for Context-Free Grammars
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Post’s Correspondence Problem

We now consider an important undecidable problem that is used to
demonstrate the undecidability of many other problems:

Post’s Correspondence Problem (PCP)

Input: A finite list of word pairs I = ((x1, y1), . . . , (xk , yk)) with
xi , yi ∈ Σ+.

Here, Σ is an arbitrary alphabet.

Question: Is there a sequence of indices i1, . . . , in ∈ {1, . . . , k} with
n ≥ 1 such that xi1 · · · xin = yi1 · · · yin?

A sequence (i1, . . . , in) with n ≥ 1, i1, . . . , in ∈ {1, . . . , k} such that
xi1 · · · xin = yi1 · · · yin is called a solution for the PCP input
I = ((x1, y1), . . . , (xk , yk)), and xi1 · · · xin is the solution word.
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Post’s Correspondence Problem

Example 1: The following PCP input is solvable:

x1 = 0 x2 = 1 x3 = 0101
y1 = 010 y2 = 101 y3 = 01

A possible solution: (3, 3, 1, 2):

01 01 | 010 1 | 0 | 1

01 | 01 | 010 | 1 0 1

Another (shorter) solution is: (3, 1)
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Example 2: The following PCP input is solvable:

x1 = 001 x2 = 01 x3 = 01 x4 = 10
y1 = 0 y2 = 011 y3 = 101 y4 = 001

A shortest solution consists of 66 indices:
(2, 4, 3, 4, 4, 2, 1, 2, 4, 3, 4, 3, 4, 4, 3, 4, 4, 2, 1, 4, 4, 2, 1, 3, 4, 1, 1, 3,
4, 4, 4, 2, 1, 2, 1, 1, 1, 3, 4, 3, 4, 1, 2, 1, 4, 4, 2, 1, 4, 1, 1, 3, 4, 1, 1, 3,
1, 1, 3, 1, 2, 1, 4, 1, 1, 3).

The complexity of this solution already shows the difficulty of the problem.
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Post’s Correspondence Problem

Satz 27 (Semi-Decidability of PCP)

The Post’s Correspondence Problem is semi-decidable.

Proof:

Try all index sequences of length 1, then all index sequences of length 2,
and so on.

If a matching index sequence is found at some point, output 1.
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Post’s Correspondence Problem

The first step of the undecidability proof is to consider the following
modified problem.

Modified PCP (MPCP)

Input: I as in PCP.

Question: Is there a solution (i1, . . . , in) for I with i1 = 1?

We now prove two reduction lemmas from which the undecidability of
Post’s Correspondence Problem follows:

Lemma 28 (MPCP reducible to PCP)

MPCP ≤ PCP
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Post’s Correspondence Problem

Proof:

Let I = ((x1, y1), . . . , (xk , yk)) with xi , yi ∈ Σ+ be a finite sequence of
word pairs.

Let # and $ be two new symbols.

For a word w = a1a2 · · · an with a1, . . . , an ∈ Σ and n ≥ 1, we define the
words #w , w#, #w# as follows:

#w = #a1#a2# · · ·#an

w# = a1#a2# · · ·#an#
#w# = #a1#a2# · · ·#an#

We now assign to the list I the list

f (I ) = (( #x#
1 ,

#y1), ( x#
1 ,

#y1), . . . , ( x#
k ,

#yk), ($,#$))

This consists of k + 2 pairs.

The function f is clearly computable.
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Post’s Correspondence Problem

We claim that f provides a reduction from MPCP to PCP.

First, let (i1, i2, . . . , in) be a solution for I with i1 = 1 (n ≥ 1).

Then (1, i2 + 1, . . . , in + 1, k + 2) is a solution for f (I ).

Now, let (i1, . . . , in) be the shortest solution of f (I ).

Then it must hold that i1 = 1, i2, . . . , in−1 ∈ {2, . . . , k + 1}, and
in = k + 2.

Thus, (1, i2 − 1, . . . , in−1 − 1) is a solution for I .
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Post’s Correspondence Problem

Lemma 29 (Halting Problem reducible to MPCP)

H ≤ MPCP

Proof:

Let M = (Z ,Σ, Γ, δ, z0,2,E ) be a deterministic Turing machine (given by
its encoding) and w ∈ Σ∗.

We will construct an MPCP input

I (M,w) = ((x1, y1), . . . , (xk , yk)),

which is solvable if and only if M halts on input w .

I (M,w) will be defined over the alphabet Z ∪ Γ ∪ {$,#}
(w.l.o.g. assume Z ∩ Γ = ∅).
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Post’s Correspondence Problem

Then I (M,w) looks as follows:

1st word pair:
($, $2z0w2#)

Copy pairs:
(a, a) for all a ∈ Γ ∪ {#}
Transition pairs:
(za, z ′c) if δ(z , a) = (z ′, c,N)
(za, cz ′) if δ(z , a) = (z ′, c ,R)
(bza, z ′bc) if δ(z , a) = (z ′, c, L) and b ∈ Γ

Pair to add blanks at the ends if needed:
(#,2#) and (#,#2)

Delete pairs:
(aze , ze) and (zea, ze) for all ze ∈ E and a ∈ Γ

Final pair:
(ze##,#) for all ze ∈ E
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Post’s Correspondence Problem

Claim: M halts on input w if and only if I (M,w) is solvable.

Assume M halts on input w .

Then there exists a sequence of configurations k0, k1, . . . , kt ∈ Γ+ZΓ+

such that:

k0 = 2z0w2

ki `M ki+1 for all 0 ≤ i ≤ t − 1

kt ∈ Γ+EΓ+

Then we obtain a solution for I (M,w), where the solution word looks like:

$k0#k1# · · ·#kt#k ′t#k ′′t #k ′′′t · · ·#ze##.

Here, k ′t , k
′′
t , k

′′′
t , . . . are obtained from kt by deleting the symbol next to ze

either to the left or to the right.
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Post’s Correspondence Problem

Assume that I (M,w) has a solution (1, i2, . . . , it), which thus begins with
(#,#22z0w2#).

As long as the “partial solution”(x1xi2 · · · xin , y1yi2 · · · yin) does not yet
contain an accepting state ze ∈ E in y1yi2 · · · yin (the longer word), the
computation of M on input w must be correctly simulated using the copy
pairs, transition pairs, and the pair for adding blanks.

However, since we have a finite solution (1, i2, . . . , it), there must be some
m ≤ t such that an accepting state ze ∈ E occurs in y1yi1 · · · yim .

Thus, M halts on input w .
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Post’s Correspondence Problem

Example: Consider a Turing machine M with states z0, z1, z2, ze , tape
symbols a, b, c ,2, and the following transitions:

δ(z0, a) = (z1, b,R) δ(z1, b) = (z2, c , L) δ(z2, b) = (ze , c,N)

with ze ∈ E . Then there is the following accepting computation on input
ab:

z0ab ` bz1b ` z2bc ` zecc

I (M, ab) consists of the following pairs for all x ∈ {a, b, c ,2,#} and
y ∈ {a, b, c ,2}

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

$
$ 2 z0 a b 2 #
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with ze ∈ E . Then there is the following accepting computation on input
ab:

z0ab ` bz1b ` z2bc ` zecc

I (M, ab) consists of the following pairs for all x ∈ {a, b, c ,2,#} and
y ∈ {a, b, c ,2}

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

$ 2 z0 a b 2 # 2 b z1 b 2 # 2 z2 b c 2 # 2 ze c c
$ 2 z0 a b 2 # 2 b z1 b 2 # 2 z2 b c 2 # 2 ze c c 2 # ze c c
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Post’s Correspondence Problem

Example (continued)
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· · · 2
· · · 2 # ze c c 2

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 #
· · · 2 # ze c c 2 #

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c
· · · 2 # ze c c 2 # ze

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem
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Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2

· · · 2 # ze c c 2 # ze c 2

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2 #
· · · 2 # ze c c 2 # ze c 2 #

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2 # ze c
· · · 2 # ze c c 2 # ze c 2 # ze

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2 # ze c 2

· · · 2 # ze c c 2 # ze c 2 # ze 2

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2 # ze c 2 #
· · · 2 # ze c c 2 # ze c 2 # ze 2 #

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2 # ze c 2 # ze 2
· · · 2 # ze c c 2 # ze c 2 # ze 2 # ze

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)

($, $2z0ab2#) (x , x) (z0a, bz1) (yz1b, z2yc) (z2b, zec)

(#,2#) (#,#2) (yze , ze) (zey , ze) (ze##,#)

A solution to this PCP, corresponding to the above accepting
computation, then builds up as follows:

· · · 2 # ze c c 2 # ze c 2 # ze 2 #
· · · 2 # ze c c 2 # ze c 2 # ze 2 # ze #

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 166 / 419



Post’s Correspondence Problem

Example (continued)
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Post’s Correspondence Problem

Theorem 30 (PCP undecidable)

The Post Correspondence Problem is undecidable.

Proof: The claim follows directly from the two previous lemmas:

From H ≤ MPCP ≤ PCP it follows that H ≤ PCP (by composition of the
reduction mappings).

Since the general halting problem H is also undecidable, PCP is also
undecidable.
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Post’s Correspondence Problem

Remarks:

Let PCPm,n be the restriction of the PCP to inputs of the form
((x1, y1), . . . , (xk , yk)) with k ≤ m, x1, y1, . . . , xk , yk ∈ {a1, . . . , an}+

(i.e., n-element alphabet and at most m word pairs)

Already PCP5,2 is undecidable.
(Turlough Neary 2015, http:
//drops.dagstuhl.de/opus/frontdoor.php?source_opus=4948

PCPm,1 and PCP2,n are decidable (for arbitrary m and n).

It is unknown whether PCPk,2 for k ∈ {3, 4} is decidable.
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Intersection Problem for Context-Free Grammars

We will now use the PCP to show the undecidability of the intersection
problem for context-free grammars.

Intersection Problem for Context-Free Grammars

Input: two context-free grammars G1, G2.

Question: Is L(G1)∩ L(G2) 6= ∅, i.e., is there a word that is generated
by both G1 and G2?

Theorem 31 (Intersection Problem Undecidable)

The intersection problem for context-free grammars is undecidable.
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Intersection Problem for Context-Free Grammars

Proof:

Based on Theorem 30 (PCP Undecidable), it suffices to show that PCP is
reducible to the intersection problem for context-free grammars.

Let I = ((x1, y1), . . . , (xk , yk)) be an arbitrary PCP instance with
x1, y1, . . . , xk , yk ∈ Σ+.

Let Γ = Σ ∪ {$, 1, . . . , k}.

We now define two context-free grammars G1 and G2 over the terminal
alphabet Γ.

Productions of G1 (with S as the start symbol):

S → A $B

A → 1Ax1 | 1 x1 | · · · | k A xk | k xk
B → y rev

1 B 1 | y rev
1 1 | · · · | y rev

k B k | y rev
k k
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Intersection Problem for Context-Free Grammars

Here, w rev is the word w read from right to left.

Then it holds that:

L(G1) ={in · · · i1xi1 · · · xin$(yj1 · · · yjm)revj1 · · · jm |
n,m ≥ 1, 1 ≤ i1, . . . , in, j1, . . . , jm ≤ k}.

Productions of G2 (with S as the start symbol):

S → 1S1 | · · · kSk | T
T → aTa for all a ∈ Σ | $

Then it holds that: L(G2) = {uv$v revurev | u ∈ {1, . . . , k}∗, v ∈ Σ∗}.

Thus we have: I is solvable ⇐⇒ L(G1) ∩ L(G2) 6= ∅.
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Intersection Problem for Context-Free Grammars

In the previous proof, solutions to the PCP input I correspond exactly to
the words in L(G1) ∩ L(G2).

Now, for any PCP input J: J is solvable if and only if J has infinitely many
solutions (if (i1, . . . , ik) is a solution, then (i1, . . . , ik , i1, . . . , ik) is also a
solution).

Thus, I is solvable if and only if L(G1) ∩ L(G2) is infinite.

We obtain:

Satz 32

It is undecidable whether for given context-free grammars G1 and G2 the
intersection L(G1) ∩ L(G2) is infinite.
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Intersection Problem for Context-Free Grammars

It is easy to provide a context-free grammar G ′2 for the language
Γ∗ \ L(G2) (Exercise).

Let G3 be a context-free grammar for L(G1) ∪ L(G ′2).

Then we have:

L(G1) ∩ L(G2) = ∅ ⇐⇒ L(G1) ⊆ L(G ′2)

⇐⇒ L(G1) ∪ L(G ′2) = L(G ′2)

⇐⇒ L(G3) = L(G ′2)

We obtain:

Satz 33

It is undecidable whether for given context-free grammars G1 and G2 it
holds that:

L(G1) ⊆ L(G2)

L(G1) = L(G2)
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Intersection Problem for Context-Free Grammars

Finally, it can be shown that the grammars G1, G2, and G ′2 generate
deterministic context-free languages, and it is possible to construct
equivalent deterministic pushdown automata A1, A2, and A′2 from G1, G2,
and G ′2.

Thus we obtain:

Satz 34

It is undecidable whether for given deterministic pushdown automata A1

and A2 it holds that:

T (A1) ∩ T (A2) 6= ∅
T (A1) ∩ T (A2) is infinite.

T (A1) ⊆ T (A2)
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Intersection Problem for Context-Free Grammars

Remark 1: The language L(G1) ∪ L(G ′2) constructed on slide 195 is not
necessarily deterministic context-free (the class of deterministic
context-free languages is not closed under union).

In fact, it is decidable whether T (A1) = T (A2) for two given deterministic
pushdown automata A1 and A2 (Senizergues 1997).

Remark 2: The intersection problem for context-free languages is
semi-decidable:

More generally: The set {(u, v) | u, v ∈ {0, 1}∗,T (Mu) ∩ T (Mv ) 6= ∅} is
semi-decidable, i.e., the intersection problem for Type-0 languages is
semi-decidable:

The languages T (Mu) and T (Mv ) are recursively enumerable.

Enumerate the languages T (Mu) and T (Mv ) “in parallel”.
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Emptiness of Context-Sensitive Languages

Terminate with output 1 if at any point a word w appears in both
enumerations.

Consequence: The complement of the intersection problem is not
semi-decidable. Otherwise, it would be decidable (Slide 115).

Theorem 35 (Emptiness of Type-1 Grammars Undecidable)

It is undecidable whether for a given Type-1 grammar G (or alternatively a
linear bounded automaton) it holds that L(G ) 6= ∅.

Proof:

We reduce the intersection problem for context-free grammars to the
emptiness problem for Type-1 grammars.

With Theorem 31, this proves the theorem.

Let G1 and G2 be two context-free grammars.

These are in particular of Type-1.
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Emptiness of Context-Sensitive Languages

Since Type-1 languages are effectively closed under intersection, we can
construct a Type-1 grammar G from G1 and G2 with
L(G ) = L(G1) ∩ L(G2).

To elaborate: Construct two linear bounded automata A1 and A2 from G1

and G2 with L(G1) = T (A1) and L(G2) = T (A2) (see the construction in
the proof of Kuroda’s theorem (FSA, Slide 344)).

From A1 and A2, one can easily construct a linear bounded automaton A
with T (A) = T (A1) ∩ T (A2).

A can then again be transformed into an equivalent Type-1 grammar using
the construction in the proof of Kuroda’s theorem.
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Hilbert’s 10th Problem

Another undecidable problem (without proof):

We consider polynomials p(x1, . . . , xn) (in multiple variables) with
coefficients from Z.

Example: p(x1, x2, x3, x4) = −5x2
1x

4
3x4 + 3x8

2x
2
3x

3
4 − 8x1x

6
2 + 17x4 − 25.

Hilbert’s 10th Problem is Undecidable (Matiyasevich 1970)

The following problem is undecidable:

INPUT: A polynomial p(x1, . . . , xn) (in multiple variables) with coefficients
from Z.

QUESTION: Do there exist a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0?
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Complexity Theory

Deterministic Time Classes

Let f : N→ N be a monotonic function. The class DTIME(f ) consists of
all languages L for which there exists a deterministic Turing machine M
such that:

M computes the characteristic function of L.

For every input w ∈ Σ∗, M reaches a final state from the start
configuration z0w2 in at most f (|w |) computation steps (and
outputs 0 or 1, depending on whether w 6∈ L or w ∈ L).

Poly denotes the set of all functions on N described by a polynomial with
coefficients from N (e.g., n, 2n, n2 + 3n, n10000).

The Class P

P =
⋃

f ∈Poly

DTIME(f )
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Complexity Theory

Remarks:

P is often considered the set of all efficiently solvable problems.

The class P is relatively robust against changes in the computational
model. For example, the class P does not change if we allow
multi-tape Turing machines instead of normal Turing machines
(which would also be somewhat more realistic, as using single-tape
Turing machines requires copying a lot of information).

If we define P in terms of While or Goto programs, we must
measure the time required for an assignment (e.g., xi := xj + 1) as
the current number of bits of xj (so approximately log(xj)):
logarithmic cost.
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Complexity Theory

If one were to use the uniform cost model (i.e., an assignment is
counted as one step), then, for example, the following algorithm
would be polynomial:

INPUT n;
x := 2;
LOOP n DO x := x ∗ x END;
OUTPUT (x)

This algorithm computes the number 22n , and writing this number in
binary representation already requires 2n bits.

In this example, however, we have cheated a bit since we use
multiplication as a basic operation. If we replace x := x ∗ x with a
(standard) Loop program, the running time of the above algorithm
becomes exponential.
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Complexity Theory

Nondeterministic Time Classes

Let f : N→ N be a monotone function. The class NTIME(f ) consists of
all languages L for which there exists a nondeterministic Turing machine
M such that:

For every input w ∈ Σ∗, M reaches an accepting state from the initial
configuration z0w2 on every computation path in at most f (|w |)
steps and outputs 0 or 1.

It holds that w ∈ L if and only if M outputs 1 on at least one
computation path.

The Class NP

NP =
⋃

f ∈Poly

NTIME(f )
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Complexity Theory

Remarks:

Clearly, P ⊆ NP.

Whether P = NP is considered the most important open question in
theoretical computer science. It is generally suspected that P 6= NP.

Why is the question of P = NP so interesting?

It is known that a multitude of problems lie in NP, but it is unknown
whether they lie in P.

There is even a large class of problems (the NP-complete problems,
more on this shortly) of which it is known that if one of these
problems belongs to P, then P = NP.

It is not hard to see that all languages in NP are Loop-decidable
(i.e., the characteristic functions of languages from NP are
Loop-computable).
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Complexity Theory

Example: SUBSETSUM

SUBSETSUM

INPUT: Binary-encoded numbers t,w1, . . . ,wn

QUESTION: Is there a subset U ⊆ {w1, . . . ,wn} such that t =
∑

w∈U w?

Theorem 36

SUBSETSUM ∈ NP

Remark: This problem belongs to P if the numbers t,w1, . . . ,wn are
encoded in unary.

In unary encoding, the number n is represented by the word an (for a
symbol a).
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Complexity Theory

Reductions, as we learned in the section on (Un)decidability (Slide 137),
are not very informative for decidable problems:

Lemma 37

Let A,B ⊆ Σ∗ be decidable languages with ∅ 6= B 6= Σ∗. Then A ≤ B.

Choose two elements x ∈ B and y ∈ Σ∗ \ B.

Define the function f : Σ∗ → Σ∗ by

f (w) =

{
x if w ∈ A

y if w 6∈ A

Since A is decidable, f is computable, and it holds that
w ∈ A⇐⇒ f (w) ∈ B, i.e., A ≤ B.
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Complexity Theory

Polynomial Reducibility

A function f : Σ∗ → Γ∗ is polynomially computable if there exists a
deterministic Turing machine M and a polynomial p(n) such that for all
w ∈ Σ∗:

When M is started with input w , it halts after at most p(|w |) steps with
the output f (w) on the work tape.

A language A ⊆ Σ∗ is polynomially reducible to a language B ⊆ Γ∗

(denoted A ≤p B) if there exists a polynomially computable function
f : Σ∗ → Γ∗ such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f (w) ∈ B.
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Complexity Theory

Lemma 38

If A ≤p B and B ∈ P (or B ∈ NP), then it follows that A ∈ P (or
A ∈ NP).

Proof:

Assume first that A ≤p B and B ∈ P.

Then there exist polynomials p(n) and q(n) as well as Turing machines M
and N with the following properties:

M computes from an input w ∈ Σ∗ in time p(|w |) a word f (w) such
that: w ∈ A⇐⇒ f (w) ∈ B.

Note: Since machine M can only produce an output of length at most
p(|w |) in p(|w |) steps, it holds that |f (w)| ≤ p(|w |).

N accepts the language B in time q(n).
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Complexity Theory

A Turing machine for the language A operates on an input w as follows:

1 Compute f (w) (time requirement: p(|w |)).

2 Simulate machine N on f (w) (time requirement: q(p(|w |))).

Thus, the total time requirement is p(|w |) + q(p(|w |)), which is again a
polynomial.

The statement for the class NP can be proven in the same way.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 188 / 419



Complexity Theory

NP-Completeness

A language A is NP-hard if for all B ∈ NP it holds: B ≤p A
(A is at least as hard as any problem in NP).

A language A is NP-complete if it belongs to NP and is NP-hard.

Intuition: NP-complete languages are the hardest languages in NP.

We still do not know if there are any NP-complete languages at all. We
will show this soon.
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Complexity Theory

First, a simple result:

Lemma 39

If A is NP-complete, then it holds that: P = NP ⇐⇒ A ∈ P.

Proof:

⇒: Assume P = NP.

Since A is NP-complete, it follows that A ∈ NP = P.

⇐: Assume A ∈ P and let B ∈ NP be arbitrary.

Since A is NP-complete, it follows that B ≤p A ∈ P.

Lemma 38 implies B ∈ P.

Thus, it holds that NP ⊆ P and consequently NP = P.
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Complexity Theory

Soon we will get to know a concrete NP-complete problem: the
satisfiability problem for propositional logic formulas (SAT).

For many other problems A, NP-completeness can then be shown by a
reduction SAT ≤p A.

Here are some examples of NP-complete problems
(without proof; see Schöning for proofs).

SUBSETSUM

INPUT: Binary-encoded numbers t,w1, . . . ,wn

QUESTION: Is there a subset U ⊆ {w1, . . . ,wn} such that t =
∑

w∈U w?
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Complexity Theory

CLIQUE

INPUT: An undirected graph G = (V ,E ) (see the lecture on Discrete
Mathematics) and a number k (unary encoded)

QUESTION: Does G have a clique of size k, i.e., is there a set U ⊆ V
with |U| ≥ k such that for all u, v ∈ U with u 6= v : {u, v} ∈ E?

VERTEX-COVER

INPUT: An undirected graph G = (V ,E ) and a number k (unary encoded)

QUESTION: Does G have a vertex cover of size k, i.e., is there a set
U ⊆ V with |U| ≤ k such that for all {u, v} ∈ E it holds that
U ∩ {u, v} 6= ∅?
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Complexity Theory

3-COLORABILITY

INPUT: An undirected graph G = (V ,E )

QUESTION: Is the chromatic number of G at most 3?

HAMILTON-CIRCUIT

INPUT: An undirected graph G = (V ,E )

QUESTION: Does G have a Hamiltonian circuit (see the lecture on
Discrete Mathematics)?
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Logic

We will return to complexity theory later (and show that SAT is
NP-complete).

First, however, we want to focus on logic.

Intuitively speaking, a logic is a language through which formal facts (e.g.,
statements from mathematics, correctness claims for programs, etc.) can
be formulated.

Partly, we have already used such logical statements.

We will learn about two important (arguably the most important) logics:

Propositional Logic

Predicate Logic
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Logic

The approach to introducing a new logic is always the same:

First, we define the syntax of the logic. In doing so, we define a
language of syntactically correct formulas.

Next, we define the semantics of the logic, i.e., we define when a
formula is true or false.
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Syntax of Propositional Logic

An atomic formula has the form Ai (where i = 1, 2, 3, . . .).
Formulas are defined by the following inductive process:

1 All atomic formulas are formulas.

2 If F and G are formulas, then (F ∧ G ) and (F ∨ G ) are also formulas.

3 If F is a formula, then ¬F is also a formula.

Terminology:

(F ∧ G ): F and G , the conjunction of F and G

(F ∨ G ): F or G , the disjunction of F and G

¬F : not F , the negation of F

Example: ¬((¬A4 ∨ A1) ∧ A3) is a formula.
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Formula as Syntax Tree

Each formula can also be represented by an syntax tree.

Example: F = ¬((¬A4 ∨ A1) ∧ A3)

¬

¬

A4

∨ A3

∧

A1
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Subformulas

The subformulas of a formula F correspond to the subtrees.

A4

¬

¬

∨ A3

∧

A4

A1 A1

¬

¬

A4

∨ A3

∧

A1 A3

¬

¬

A4

∨

∧

A3

A1

¬A4

¬

∨ A3

∧

A4

¬ A1 (¬A4 ∨ A1)

¬

A3

∧

A4

∨

¬ A1

((¬A4 ∨ A1) ∧ A3)

¬

A4

∨

¬

∧

A3

A1 ¬((¬A4 ∨ A1) ∧ A3)

¬

A4

∨

¬

∧

A3

A1
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Semantics of Propositional Logic: Assignments

The elements of the set {0, 1} are called truth values.

An assignment is a function B : D → {0, 1}, where D ⊆ {A1,A2,A3, . . .}
is a subset of the atomic formulas.

On the next slide, we will extend B to a function B̂ : E → {0, 1}, where
E ⊇ D is the set of all formulas that are constructed only from the atomic
formulas in D.

Example: Let D = {A1,A5,A8}.

Then F = ¬((¬A5 ∨ A1) ∧ A8) ∈ E but ¬((¬A4 ∨ A1) ∧ A3) 6∈ E .

A possible truth assignment could be defined by: B(A1) = 1, B(A5) = 0,
B(A8) = 1.

Question: What is B̂(F )?
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Semantics of Propositional Logic: Assignments

B̂(A) = B(A) if A ∈ D is an atomic formula

B̂((F ∧ G )) =

{
1 if B̂(F ) = 1 and B̂(G ) = 1
0 otherwise

B̂((F ∨ G )) =

{
1 if B̂(F ) = 1 or B̂(G ) = 1
0 otherwise

B̂(¬F ) =

{
1 if B̂(F ) = 0
0 otherwise

From now on, we will write B instead of B̂.
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Truth Tables for ∧,∨, and ¬

Calculation of B using truth tables.

Observation: The value of B(F ) only depends on how B is defined on the
atomic formulas occurring in F .

Tables for the operators ∨, ∧, ¬:

A B A ∨ B

0 0 0
0 1 1
1 0 1
1 1 1

A B A ∧ B

0 0 0
0 1 0
1 0 0
1 1 1

A ¬A
0 1
1 0
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Abbreviations

A,B,C or
P,Q,R or . . . instead of A1,A2,A3 . . .

(F1 → F2) instead of (¬F1 ∨ F2)
(F1 ↔ F2) instead of ((F1 ∧ F2) ∨ (¬F1 ∧ ¬F2))

(
n∨

i=1

Fi ) instead of (. . . ((F1 ∨ F2) ∨ F3) ∨ . . . ∨ Fn)

(
n∧

i=1

Fi ) instead of (. . . ((F1 ∧ F2) ∧ F3) ∧ . . . ∧ Fn)
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Truth tables for → and ↔

Truth tables for the operators →, ↔:

A B A→ B

0 0 1
0 1 1
1 0 0
1 1 1

Name: Implication

Interpretation: If A holds, then B
must also hold.

A B A↔ B

0 0 1
0 1 0
1 0 0
1 1 1

Name: Equivalence

Interpretation: A holds if and
only if B holds.
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Attention!!!

A→ B does not say that A is a cause for B.

“Penguins swim → Dogs bark”
is true (in our world).

A→ B says nothing about whether A is true or false.

“x = y → 2x = 2y”
is true for all numbers x and y .

A false statement implies anything.

“Penguins fly → Cats bark”
is true (in our world).
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Formalization of Natural Language (I)

A device consists of a component A, a component B, and a red light. The
following is known:

Component A or Component B (or both) are broken.

If Component A is broken, then Component B is also broken.

If Component B is broken and the red light is on, then Component A
is not broken.

The red light is on.

Formalize this situation as a propositional logic formula and create the
truth table for this formula. Use the following atomic formulas: RL (red
light is on), AK (Component A broken), BK (Component B broken).
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Formalization of Natural Language (II)

Full Truth Table:

(AK ∨ BK ) ∧ (AK → BK )∧
RL AK BK ((BK ∧ RL)→ ¬AK ) ∧ RL

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 206 / 419



Formalization of Sudoku

Formalize the Sudoku problem:

4

4

4

4

4

1

1

1

1

2

2

3

3

5

5

5

5

5

5

6

6

6

7

7

8

8

9

9

9

9

9

8

6

Use an atomic formula A[n, x , y ] for each triple (n, x , y) ∈ {1, . . . , 9}3:

A[n, x , y ] = 1, if: In row x and column y the number n is placed.
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Formalization of Sudoku

Example: In the first row, all numbers from 1 to 9 appear

9∧
n=1

 9∨
y=1

A[n, 1, y ]


The truth table has

2729 = 282401395870821749694910884220462786335135391185
157752468340193086269383036119849990587392099522
999697089786549828399657812329686587839094762655
308848694610643079609148271612057263207249270352
7723757359478834530365734912

rows. Why?
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Models

Let F be a formula and B an assignment.
If B is defined for all atomic formulas occurring in F ,
then B is called suitable for F .

Let B be suitable for F :

If B(F ) = 1 we write B |= F
and say F holds under B
or B is a model for F

If B(F ) = 0 we write B 6|= F
and say F does not hold under B
or B is not a model for F
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Validity and Satisfiability

Satisfiability: A formula F is called satisfiable if F has at least one model;
otherwise, F is called unsatisfiable.

A (finite or infinite!) set of formulas M is called satisfiable if there is an
assignment that is a model for each formula in M.

Validity: A formula F is called valid (or universally valid or a tautology) if
every assignment suitable for F is a model for F . We write |= F if F is
valid, and 6|= F otherwise.
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Aufgabe

Valid Satisfiable Unsatisfiable

A

A ∨ B

A ∨ ¬A
A ∧ ¬A
A→ ¬A
A→ B

A→ (B → A)

A→ (A→ B)

A↔ ¬A
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Aufgabe

Valid Satisfiable Unsatisfiable

A N

A ∨ B

A ∨ ¬A
A ∧ ¬A
A→ ¬A
A→ B

A→ (B → A)

A→ (A→ B)

A↔ ¬A
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Aufgabe

Valid Satisfiable Unsatisfiable

A N Y

A ∨ B

A ∨ ¬A
A ∧ ¬A
A→ ¬A
A→ B

A→ (B → A)

A→ (A→ B)

A↔ ¬A
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Aufgabe
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Aufgabe

Valid Satisfiable Unsatisfiable
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Aufgabe

Valid Satisfiable Unsatisfiable

A N Y N

A ∨ B N Y N

A ∨ ¬A Y Y N

A ∧ ¬A N N Y

A→ ¬A N Y N

A→ B N Y N

A→ (B → A) Y Y N

A→ (A→ B) N Y N

A↔ ¬A N N Y
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Task

Do the following statements hold true?

Y/N Counterex.

If F is valid, then F is satisfiable

If F is satisfiable, then ¬F is unsatisfiable

If F is valid, then ¬F is unsatisfiable

If F is unsatisfiable, then ¬F is valid
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Y/N Counterex.
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If F is satisfiable, then ¬F is unsatisfiable N F = A
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Task

Do the following statements hold true?

Y/N Counterex.

If F is valid, then F is satisfiable Y

If F is satisfiable, then ¬F is unsatisfiable N F = A

If F is valid, then ¬F is unsatisfiable Y

If F is unsatisfiable, then ¬F is valid Y
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Reflection Principle

¬FF
G

valid
formulas

¬G

satisfiable, but
not valid
formulas

unsatis-
fiable

formulas
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A Validity Test

How can one check whether a formula F is valid/satisfiable?

One possibility: create a truth table.

Suppose the formula F contains n different atomic formulas. How large is
the truth table?

Number of Rows in the truth table: 2n

Is there a more efficient method?

Probably not: Satisfiability of propositional formulas is NP-complete and
thus cannot be done in polynomial time unless P = NP.
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Complexity Theory: SAT

The SAT Problem

INPUT: A propositional formula F

QUESTION: Is F satisfiable?

Propositional formulas can be encoded, for example, using words over the
alphabet {a,∨,∧,¬, ), (} (atomic formulas are encoded using words of the
form an).

Theorem 40

SAT ∈ NP
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Complexity Theory: SAT

Proof: Let F be a propositional formula in which the atomic formulas
A1, . . . ,An occur.

A nondeterministic Turing machine “guesses” an assignment
B : {A1, . . . ,An} → {0, 1} in a first phase:

In the first step, the Turing machine branches (i.e., there are two
subsequent configurations).
In the first branch, the Turing machine writes A10 on the tape, and in
the second branch, it writes A11 on the tape.

In the second step, the Turing machine branches again.
In the first branch, it writes (after A1b with b ∈ {0, 1}) A20 on the
tape, and in the second branch, it writes A21 on the tape.
...
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Complexity Theory: Cook’s Theorem

After n steps, each of the 2n computation branches contains a word of the
form A1b1A2b2 · · ·Anbn on the tape, with b1, . . . , bn ∈ {0, 1}.

This word encodes the assignment B with B(Ai ) = bi for 1 ≤ i ≤ n.

In a second phase, the Turing machine can now deterministically compute
the value B(F ) by traversing the formula F from left to right, determining
the value B(Ai ) = bi from the stored “assignment word” every time an
atomic formula Ai is encountered.

This requires at most |F |2 steps, so the Turing machine performs only
O(|F |2) steps on each computation path.

The machine outputs 1 at the end if and only if B(F ) = 1.

Therefore, there exists a computation path on which the machine outputs
1 if and only if F is satisfiable.
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Complexity Theory: Cook’s Theorem

Theorem 41 (Cook’s Theorem)

SAT is NP-complete.

Proof:

We still need to show that SAT is NP-hard.

Let L ∈ NP, L ⊆ Σ∗.

For w ∈ Σ∗, we construct a propositional formula f (w) such that:
w ∈ L ⇐⇒ f (w) is satisfiable.

The mapping f will be computable in polynomial time.

Let M = (Z ,Σ, Γ, δ, z0,2,E ) be a nondeterministic Turing machine for L
that terminates on every computation path in at most p(n) steps for an
input of length n (where p(n) is a polynomial).

Let w = w1w2 · · ·wn ∈ Σ∗ be an input of length n.
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Complexity Theory: Cook’s Theorem

We make the following assumptions about M without loss of generality:

1 The head of M never moves left of the position where it starts (this
can be achieved through special marking).

2 M terminates with output 1 if and only if M enters the special state
z1 ∈ E . This means that the state z1 signals acceptance of the input.

3 All tuples of the form (z1, a, z1, a,N) (with a ∈ Γ) belong to δ.

4 (z , a, z ′, a′,D), (z , b, z ′′, b′,D ′) ∈ δ =⇒ a = b, a′ = b′,D = D ′

Thus, we only have a nondeterministic choice regarding the successor
state z ′ (see next slide).
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Complexity Theory: Cook’s Theorem

Property (4) can be enforced as follows.

First, we can replace the language L with $L for a new symbol $, since
L ≤p $L holds (i.e., from $L ≤p SAT it follows that L ≤p SAT again).

Thus, we know that all positive inputs must begin with a $.

Now define the state set and transition relation as follows:

Z ′ ={z [a, a′,D] | z ∈ Z , a, a′ ∈ Γ,D ∈ {L,R,N}} ∪ {z0[$, $,R]}
δ′ ={(z [a, a′,D], a, z ′[b, b′,D ′], a′,D) | (z , a, z ′, a′,D) ∈ δ,

b, b′ ∈ Γ,D ′ ∈ {L,R,N}}∪
{(z0[$, $,R], $, z0[a, a′,D], $,R) | a, a′ ∈ Γ,D ∈ {L,R,N}}

The new starting state is z0[$, $,R].
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Complexity Theory: Cook’s Theorem

Every configuration reachable from the start configuration can be
described by a word from

Conf = {2uzv2 | z ∈ Z ; u, v ∈ Γ∗; |uv | = p(n)}

The start configuration is 2z0w2p(n)+1−n.

Due to points (2) and (3), the machine M accepts the input w on a
specific computation path if and only if M is in state z1 after p(n) steps.

Notation: For an α ∈ Conf, we write

α = α[−1]α[0] · · ·α[p(n)]α[p(n) + 1]

where α[−1] = 2, α[0], . . . , α[p(n)] ∈ Z ∪ Γ, and α[p(n) + 1] = 2.
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Complexity Theory: Cook’s Theorem

Define the set of 4-tuples

∆ = {(a, b, c, b) | a, b, c ∈ Γ}
∪ {(c , b, z , z ′), (b, z , a, b), (z , a, d , a′) | (z , a, z ′, a′, L) ∈ δ, c , b, d ∈ Γ}
∪ {(c , b, z , b), (b, z , a, z ′), (z , a, d , a′) | (z , a, z ′, a′,N) ∈ δ, c , b, d ∈ Γ}
∪ {(c , b, z , b), (b, z , a, a′), (z , a, d , z ′) | (z , a, z ′, a′,R) ∈ δ, c , b, d ∈ Γ}

The idea of the ∆-tuples: If three consecutive positions i − 1, i , i + 1 of a
configuration α contain the symbols x , y , z ∈ Z ∪ Γ, then for every
subsequent configuration α′ of α, there must exist a tuple (x , y , z , y ′)
where the symbol y ′ is present at position i .

Due to point (4), it holds for all α, α′ ∈ 2(Z ∪ Γ)∗2 with |α| = |α′|:

α, α′ ∈ Conf and α `M α′

⇐⇒
α ∈ Conf and ∀i ∈ {0, . . . , p(n)} : (α[i − 1], α[i ], α[i + 1], α′[i ]) ∈ ∆.
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Complexity Theory: Cook’s Theorem

Example:

If (z , a, z ′, a′, L) ∈ δ, the following local tape modification is possible for all
b ∈ Γ:

Position i−1 i i+1

α = · · · · · · b z a · · · · · ·

α′ = · · · · · · z ′ b a′ · · · · · ·

If (z , a, z ′, a′,R) ∈ δ, the following local tape modification is possible for
all b ∈ Γ:

Position i−1 i i+1

α = · · · · · · b z a · · · · · ·

α′ = · · · · · · b a′ z ′ · · · · · ·
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Complexity Theory: Cook’s Theorem

We can now describe a computation of M as a matrix:

α0 = 2 α0,0 α0,1 . . . α0,p(n) 2

α1 = 2 α1,0 α1,1 . . . α1,p(n) 2
...

αp(n) = 2 αp(n),0 αp(n),1 . . . αp(n),p(n) 2

For each triple (a, i , t) (a ∈ Z ∪ Γ,−1 ≤ i ≤ p(n) + 1, 0 ≤ t ≤ p(n)), let
x(a, i , t) be a propositional variable (atomic formula).

Interpretation: x(a, i , t) = true if and only if, at time t, the i-th
character of the current configuration is a.
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Complexity Theory: Cook’s Theorem

At positions −1 and p(n) + 1, 2 is always present:

G (n) =
∧

0≤t≤p(n)

(
x(2,−1, t) ∧ x(2, p(n) + 1, t)

)

For each pair (i , t), exactly one variable x(a, i , t) is true (at any time, only
one symbol can be on a tape cell):

X (n) =
∧

0≤t≤p(n)
−1≤i≤p(n)+1

 ∨
a∈Z∪Γ

(
x(a, i , t) ∧

∧
b 6=a

¬x(b, i , t)

)
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Complexity Theory: Cook’s Theorem

At time t = 0, the configuration is equal to 2z0w2p(n)+1−n:

S(w) =

x(z0, 0, 0) ∧
n∧

i=1

x(wi , i , 0) ∧
p(n)∧

i=n+1

x(2, i , 0)


The computation respects the local relation ∆:

D(n) =
∧

0≤i≤p(n)
0≤t<p(n)

∨
(a,b,c,d)∈∆

(
x(a, i − 1, t) ∧ x(b, i , t) ∧

x(c , i + 1, t) ∧ x(d , i , t + 1)

)
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Complexity Theory: Cook’s Theorem

Finally, let
R(w) = G (n) ∧ X (n) ∧ S(w) ∧ D(n).

A natural bijection arises between the set of satisfying assignments for
R(w) and the set of computations of M on the input w that consist of
p(n) computation steps.

For f (w) = R(w) ∧
∨p(n)

i=0 x(z1, i , p(n)) it holds that:

f (w) is satisfiable ⇐⇒ w ∈ L.

The number of variables of f (w) ∈ O(p(n)2)

Length of f (w) ∈ O(p(n)2 log p(n))

The factor O(log p(n)) is necessary since writing down the indices requires
log p(n) many bits.
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Complexity Theory: Cook’s Theorem

Cook’s theorem can be strengthened as follows:

3-CNF-SAT

INPUT: A propositional formula F in CNF, where each clause consists of
at most 3 literals (atomic formulas or negated atomic formulas).
QUESTION: Is F satisfiable?

Theorem 42

3-CNF-SAT is NP-complete

Note: 2-CNF-SAT ∈ P
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Consequence

A formula G is called a consequence of the formulas F1, . . . ,Fk if for every
assignment B suitable for both F1, . . . ,Fk and G , the following holds:

If B is a model of {F1, . . . ,Fk} (i.e., a model of F1 and a model
of F2 and . . . and a model of Fk), then B is also a model of G .

We write F1, . . . ,Fk |= G if G is a consequence of F1, . . . ,Fk .
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Consequence: Example

(A1 ∨ B1), (A1 → B1),

((B1 ∧ R1)→ ¬A1),R1 |= (R1 ∧ ¬A1) ∧ B1

If Component A or Component B is faulty and from the fact that
Component A is faulty, it always follows that Component B is faulty and
. . .

. . . then one can conclude: the red light is on, Component A is not faulty
and Component B is faulty.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 230 / 419



Exercise

M F Does M |= F hold?

A A ∨ B

A A ∧ B

A,B A ∨ B

A,B A ∧ B

A ∧ B A

A ∨ B A

A,A→ B B
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Exercise

M F Does M |= F hold?

A A ∨ B Y

A A ∧ B

A,B A ∨ B
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Exercise

M F Does M |= F hold?

A A ∨ B Y

A A ∧ B N
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Exercise

M F Does M |= F hold?

A A ∨ B Y

A A ∧ B N

A,B A ∨ B Y

A,B A ∧ B Y
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Exercise

M F Does M |= F hold?

A A ∨ B Y

A A ∧ B N

A,B A ∨ B Y

A,B A ∧ B Y

A ∧ B A Y

A ∨ B A N

A,A→ B B Y
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Inference, Validity, and Unsatisfiability

Theorem 43

The following statements are equivalent:

1 F1, . . . ,Fk |= G, i.e., G is an inference from F1, . . . ,Fk .

2 ((
∧k

i=1 Fi )→ G ) is valid.

3 ((
∧k

i=1 Fi ) ∧ ¬G ) is unsatisfiable.
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Inference, Validity, and Unsatisfiability

Proof:

1⇒ 2: Assume F1, . . . ,Fk |= G .

Claim: ((
∧k

i=1 Fi )→ G ) is valid.

Let B be any assignment that is suitable for ((
∧k

i=1 Fi )→ G ).

Case 1: There exists an i ∈ {1, . . . , k} such that B(Fi ) = 0:

Then B(
∧k

i=1 Fi ) = 0 also holds, and thus B((
∧k

i=1 Fi )→ G ) = 1.

Case 2: For all i ∈ {1, . . . , k}, it holds that B(Fi ) = 1:

From F1, . . . ,Fk |= G , it follows that B(G ) = 1, and thus
B((
∧k

i=1 Fi )→ G ) = 1 as well.
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Inference, Validity, and Unsatisfiability

2⇒ 3: Let ((
∧k

i=1 Fi )→ G ) be valid.

Claim: ((
∧k

i=1 Fi ) ∧ ¬G ) is unsatisfiable.

Let B be an arbitrary assignment.

Case 1: B(G ) = 1:

Then B((
∧k

i=1 Fi ) ∧ ¬G ) = 0 holds.

Case 2: B(
∧k

i=1 Fi ) = 0:

Then again, B((
∧k

i=1 Fi ) ∧ ¬G ) = 0 holds.

Case 3: B(
∧k

i=1 Fi ) = 1 and B(G ) = 0:

Then B((
∧k

i=1 Fi )→ G ) = 0 holds, but this contradicts the fact that

((
∧k

i=1 Fi )→ G ) is valid.

Thus, Case 3 cannot occur.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 234 / 419



Inference, Validity, and Unsatisfiability

3⇒ 1: Let ((
∧k

i=1 Fi ) ∧ ¬G ) be unsatisfiable.

Claim: F1, . . . ,Fk |= G

Let B be an arbitrary assignment with B(Fi ) = 1 for all i ∈ {1, . . . , k}.

Since ((
∧k

i=1 Fi ) ∧ ¬G ) is unsatisfiable, it must hold that B(G ) = 1

(otherwise, B((
∧k

i=1 Fi ) ∧ ¬G ) = 1 would be true).
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Equivalence

Two formulas F and G are called (semantically) equivalent, if for all
assignments B, which are suitable for both F and G , it holds that
B(F ) = B(G ). We denote this as F ≡ G .
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Aufgabe

Do the following equivalences hold?

(A ∧ (A ∨ B)) ≡ A

¬(A ∨ B) ≡ (¬A ∧ ¬B)

(A ∧ (B ∨ C )) ≡ ((A ∧ B) ∨ C )

(A ∧ (B ∨ C )) ≡ ((A ∧ B) ∨ (A ∧ C ))

(A→ B)→ C ≡ A→ (B → C )

(A→ B)→ C ≡ (A ∧ B)→ C

(A↔ B)↔ C ≡ A↔ (B ↔ C )
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Equivalence

Truth tables for (A↔ B)↔ C und A↔ (B ↔ C )

A B C (A↔ B)↔ C A↔ (B ↔ C )

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
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The Main Problems of Propositional Logic

In “computational” propositional logic, we seek methods that solve the
following tasks (problems):

Model Checking
Let F be a formula and B an suitable assignment. Does B(F ) = 1
hold?

Satisfiability (SAT)
Let F be a formula. Is F satisfiable?

Validity
Let F be a formula. Is F valid?

Consequence
Let F and G be formulas. Does F |= G hold?

Equivalence
Let F and G be formulas. Does F ≡ G hold?
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Exercise

Prove that the following statements hold:

If (F → G ) is valid, then F |= G .

If F |= G , then (F → G ) is valid.

If (F ↔ G ) is valid, then F ≡ G .

If F ≡ G , then (F ↔ G ) is valid.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 240 / 419



Reduction of Problems

Which problems can be reduced to which (polynomially)?
(A ≡p B stands for A ≤p B ≤p A.)

Validity ≡p (Unsatisfiability (complement of SAT)):
F is valid if and only if ¬F is unsatisfiable.
F is satisfiable if and only if ¬F is not valid.

Validity ≤p Consequence:
F is valid if and only if T |= F (T is any valid formula).

Consequence ≤p Validity:
F |= G if and only if F → G is valid.

Validity ≤p Equivalence:
F is valid if and only if F ≡ T (T is any valid formula).

Equivalence ≤p Validity:
F ≡ G if and only if F ↔ G is valid.
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Interlude: Equivalence Relations

Let R be a binary relation on the set A, i.e., R ⊆ A× A.

R is reflexive if for all a ∈ A: (a, a) ∈ R.

R is symmetrical if for all a, b ∈ A:
If (a, b) ∈ R, then also (b, a) ∈ R.

R is transitive if for all a, b, c ∈ A:
If (a, b) ∈ R and (b, c) ∈ R, then also (a, c) ∈ R.

A reflexive, symmetrical, and transitive relation is also called an
equivalence relation.

For a binary relation R, we will also write a R b instead of (a, b) ∈ R (infix
notation).

Example: For a natural number k ≥ 1, we define the binary relation ≡k

on Z: n ≡k m if and only if n −m is divisible by k .

Exercise: Prove that ≡k is an equivalence relation for every k ≥ 1.
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Interlude: Congruence Relations

Let f be an n-ary operator on A, i.e., f : An → A, where
An = {(a1, . . . , an) | a1, . . . , an ∈ A}.

The binary relation R ⊆ A× A is closed under the operator f if the
following holds:

For all (a1, . . . , an), (b1, . . . , bn) ∈ An:
If a1 R b1 and . . . an R bn, then also f (a1, . . . , an)R f (b1, . . . , bn).

We also say that R and f are compatible.

Let f1, . . . , fn be operators on A (of arbitrary arity).
R is a congruence relation on A (with respect to f1, . . . , fn), if the
following holds:

R is an equivalence relation.

R is closed under f1, . . . , fn.

Example: ≡k is a congruence relation on Z with respect to the 2-ary
operators + and · (multiplication).
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Equivalence is a Congruence Relation

The equivalence ≡ of formulas is a binary relation on the set of all
formulas: Let F be the set of all formulas. Then ≡ ⊆ F ×F .

∧ and ∨ are 2-ary operators on F .
¬ is a 1-ary operator on F .

The equivalence ≡ is a congruence relation on the set of all formulas (with
respect to the operators ∧,∨, and ¬):

reflexive: It holds that F ≡ F for every formula F (every formula is
equivalent to itself).

symmetrical: If F ≡ G holds, then G ≡ F also holds.

transitive: If F ≡ G and G ≡ H hold, then F ≡ H also holds.

closed under operators: If F1 ≡ F2 and G1 ≡ G2 hold, then
(F1 ∧ G1) ≡ (F2 ∧ G2), (F1 ∨ G1) ≡ (F2 ∨ G2), and
¬F1 ≡ ¬F2 also hold.
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Substitutability Theorem

The closure can also be formulated as follows:

Substitutability Theorem

Let F and G be equivalent formulas. Let H be a formula with (at least)
one occurrence of the subformula F . Then H is equivalent to H ′, where H ′

is derived from H by (somehow) replacing an occurrence of F in H with G .
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Proof of the Substitutability Theorem

Proof (by induction on the structure of the formula H):

Base case: If H is an atomic formula, then it can only be H = F . It is
clear that H is equivalent to H ′, since H ′ = G .

Inductive step: If F is exactly H itself, the same argument as in the base
case applies.

So, let us assume that F is a subformula of H with F 6= H. We need to
distinguish three cases.
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Proof of the Substitutability Theorem

Case 1: H has the form H = ¬H1.
By the inductive hypothesis, H1 is equivalent to H

′
1, where H

′
1 is derived

from H1 by replacing F with G .
Then, H

′
= ¬H ′1.

From the (semantic) definition of ¬, it follows that H and H
′

are
equivalent.

Case 2: H has the form H = (H1 ∨ H2).

Then F appears in either H1 or H2. Let us assume the former case (the
latter is entirely analogous).
By the inductive assumption, H1 is again equivalent to H

′
1, where H

′
1 is

derived from H1 by replacing F with G .
With the definition of ∨, it is clear that H ≡ (H

′
1 ∨ H2) = H

′
.

Case 3: H has the form H = (H1 ∧ H2).
This case can be proved entirely analogously to Case 2.
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Equivalences (I)

Theorem

The following equivalences hold:

(F ∧ F ) ≡ F
(F ∨ F ) ≡ F (Idempotency)

(F ∧ G ) ≡ (G ∧ F )
(F ∨ G ) ≡ (G ∨ F ) (Commutativity)

((F ∧ G ) ∧ H) ≡ (F ∧ (G ∧ H))
((F ∨ G ) ∨ H) ≡ (F ∨ (G ∨ H)) (Associativity)

(F ∧ (F ∨ G )) ≡ F
(F ∨ (F ∧ G )) ≡ F (Absorption)

(F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H)) (Distributivity)
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Equivalences (II)

Theorem

The following equivalences hold:

¬¬F ≡ F (Double Negation)

¬(F ∧ G ) ≡ (¬F ∨ ¬G )
¬(F ∨ G ) ≡ (¬F ∧ ¬G ) (de Morgan’s Laws)

(F ∨ G ) ≡ F , if F is a tautology
(F ∧ G ) ≡ G , if F is a tautology (Tautology Rules)

(F ∨ G ) ≡ G , if F is unsatisfiable
(F ∧ G ) ≡ F , if F is unsatisfiable (Unsatisfiability Rules)

Proof: Exercise
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Normal Forms: CNF

Definition (Normal Forms)
A literal is an atomic formula or the negation of an atomic formula. In the
first case, we speak of a positive literal, and in the second case, of a
negative literal.

A formula F is in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals:

F = (
n∧

i=1
(
mi∨
j=1

Li ,j)),

where Li ,j ∈ {A1,A2, . . .} ∪ {¬A1,¬A2, . . .}

Example: A1 ∧ ¬A2 ∧ (¬A1 ∨ A2 ∨ ¬A3) ∧ (A2 ∨ A4)
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Normal Forms: DNF

A formula F is in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals:

F = (
n∨

i=1
(
mi∧
j=1

Li ,j)),

where Li ,j ∈ {A1,A2, . . .} ∪ {¬A1,¬A2, . . .}

Theorem

For every formula F , there exists an equivalent formula in CNF, as well as
an equivalent formula in DNF.
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Method 1: Reading from the Truth Table

For an atomic formula Ai , define

A0
i := ¬Ai and A1

i := Ai .

For a formula F , in which exactly the atomic formulas A1, . . . ,An occur,
define

DNF(F ) :=
∨

B:{A1,...,An}→{0,1},
B(F )=1

n∧
i=1

A
B(Ai )
i

KNF(F ) :=
∧

B:{A1,...,An}→{0,1},
B(F )=0

n∨
i=1

A
1−B(Ai )
i

Lemma 44

For every formula F , it holds that F ≡ DNF(F ) ≡ KNF(F ).
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Method 1: Reading from the Truth Table

Proof: We show that F ≡ KNF(F ), F ≡ DNF(F ) follows analogously.

Let B′ : {A1, . . . ,An} → {0, 1} be an arbitrary assignment.

We show: B′(F ) = 0 if and only if B′(KNF(F )) = 0.

1. Assume B′(F ) = 0.

Claim: For all i ∈ {1, . . . , n}, it holds that B′(A1−B′(Ai )
i ) = 0.

(This holds for every suitable assignment):

Case A: B′(Ai ) = 0.

Then it holds that A
1−B′(Ai )
i = A1

i = Ai , and thus

B′(A1−B′(Ai )
i ) = B′(Ai ) = 0.

Case B: B′(Ai ) = 1.

Then it holds that A
1−B′(Ai )
i = A0

i = ¬Ai , and thus

B′(A1−B′(Ai )
i ) = B′(¬Ai ) = 0.
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Method 1: Reading from the Truth Table

From the claim, it follows that B′(
n∨

i=1

A
1−B′(Ai )
i ) = 0.

Since B′(F ) = 0, B′ is one of the assignments over which the large
∧

in
KNF(F ) is formed.

Thus, there exists a formula G such that

KNF(F ) ≡ G ∧
n∨

i=1

A
1−B′(Ai )
i

Due to B′(
n∨

i=1

A
1−B′(Ai )
i ) = 0, it follows that B′(KNF(F )) = 0.
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Method 1: Reading from the Truth Table

2. Let B′(KNF(F )) = 0.

From

KNF(F ) =
∧

B:{A1,...,An}→{0,1},
B(F )=0

n∨
i=1

A
1−B(Ai )
i

it follows that one of the disjunctions in KNF(F ) is equal to 0 under B′.

Thus, there exists an assignment B with: B(F ) = 0 and

B′(
n∨

i=1

A
1−B(Ai )
i ) = 0.

Therefore: B′(A1−B(Ai )
i ) = 0 for all i ∈ {1, . . . , n}.

This implies B′(Ai ) = B(Ai ) for all i ∈ {1, . . . , n}, and thus B′(F ) = 0
(because B(F ) = 0).
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Method 1: Reading from the Truth Table

Note:

If F is unsatisfiable, i.e., B(F ) = 0 for all suitable assignments B,
then DNF(F ) is the empty disjunction. This is to be considered an
unsatisfiable formula.

If F is valid, i.e., B(F ) = 1 for all suitable assignments B, then
KNF(F ) is the empty conjunction. This is to be considered a
tautology.
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Method 1: Reading from Truth Table

A B C F

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

DNF: From each row with truth value 1, a con-
junction is formed; from a 0 in the column A, we
take ¬A, and from a 1, we take A.

(¬A ∧ ¬B ∧ ¬C ) ∨ (¬A ∧ B ∧ C )

∨ (A ∧ ¬B ∧ ¬C ) ∨ (A ∧ B ∧ C )

KNF: From each row with truth value 0, a dis-
junction is formed; from a 0 in the column A, we
take A, and from a 1, we take ¬A.

(A ∨ B ∨ ¬C ) ∧ (A ∨ ¬B ∨ C )

∧ (¬A ∨ B ∨ ¬C ) ∧ (¬A ∨ ¬B ∨ C )

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 257 / 419



Method 2: Syntactic Transformation

Given: a formula F .
We form the KNF of F as follows:

1 Replace each occurrence of a subformula of the form

¬¬G by G

¬(G ∧ H) by (¬G ∨ ¬H)

¬(G ∨ H) by (¬G ∧ ¬H)

until no such subformulas remain.

2 Replace each occurrence of a subformula of the form

(F ∨ (G ∧ H)) by ((F ∨ G ) ∧ (F ∨ H))

((F ∧ G ) ∨ H) by ((F ∨ H) ∧ (G ∨ H))

until no such subformulas remain.
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Set Representation

A clause is a disjunction of literals.

The clause L1 ∨ L2 ∨ · · · ∨ Ln, where L1, . . . , Ln are literals, is also
identified with the set {L1, . . . , Ln}.

A formula in KNF (= conjunction of clauses) is identified with a set of
clauses (i.e., a set of sets of literals):

(
n∧

i=1
(
mi∨
j=1

Li ,j)) is identified with {{Li ,j | 1 ≤ j ≤ mi} | 1 ≤ i ≤ n}.

The empty clause (= empty disjunction) is equivalent to an unsatisfiable
formula.

The empty KNF formula (= empty conjunction) is equivalent to a valid
formula.
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Set Representation

Example: The set notation of the KNF

A1 ∧ ¬A2 ∧ (¬A1 ∨ A2 ∨ ¬A3) ∧ (A2 ∨ A4)

is {{A1}, {¬A2}, {¬A1,A2,¬A3}, {A2,A4}}.
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Precedences

Precedence of Operators:

↔ has the weakest binding
→ . . .
∨ . . .
∧ . . .
¬ has the strongest binding

Thus, it holds:

A↔ B ∨ ¬C → D ∧ ¬E ≡ (A↔ ((B ∨ ¬C )→ (D ∧ ¬E )))

Nevertheless: Too many parentheses generally do not harm.
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Satisfiability and Validity in DNF and KNF

Satisfiability is easy (solvable in linear time) for formulas in DNF:

A formula in DNF is satisfiable if and only if there is a conjunction
that does not simultaneously contain A and ¬A for an atomic
formula A.

Satisfiable: (¬B ∧ A ∧ B) ∨ (¬A ∧ C )
Not satisfiable: (A ∧ ¬A ∧ B) ∨ (C ∧ ¬C )

Validity is easy (solvable in linear time) for formulas in KNF:

A formula in KNF is valid if and only if every disjunction simulta-
neously contains A and ¬A for an atomic formula A (or it is the
empty conjunction).

Valid: (A ∨ ¬A ∨ B) ∧ (C ∨ ¬C )
Not valid: (A ∨ ¬A) ∧ (¬A ∨ C )
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Efficient Satisfiability Tests

In the following:

A very efficient satisfiability test for a special class of formulas, called
Horn formulas

A generally efficient unsatisfiability test for formulas in KNF
(Resolution)
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Horn Formula

A formula F is a Horn formula (named after Alfred Horn, 1918–2001) if F
is in KNF and each clause in F contains at most one positive literal.
Notation:

(¬A ∨ ¬B ∨ C ) is rewritten as (A ∧ B → C )
(¬A ∨ ¬B) is rewritten as (A ∧ B → 0)

A is rewritten as (1→ A)

0: represents any unsatisfiable formula
1: represents any valid formula

In general:

¬A1 ∨ · · · ∨ ¬Ak ∨ B ≡ ¬(A1 ∧ · · · ∧ Ak) ∨ B ≡ (A1 ∧ · · · ∧ Ak)→ B

¬A1 ∨ · · · ∨ ¬Ak ≡ ¬(A1 ∧ · · · ∧ Ak) ∨ 0 ≡ (A1 ∧ · · · ∧ Ak)→ 0

(A1 ∧ · · · ∧ Ak)→ B (or (A1 ∧ · · · ∧ Ak)→ 0) is the implicative form of
the clause ¬A1 ∨ · · · ∨ ¬Ak ∨ B (or ¬A1 ∨ · · · ∨ ¬Ak).
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Satisfiability Test for Horn Formulas

Marking Algorithm

Input: a Horn formula F .

(1) Mark each occurrence of an atomic formula A in F with a mark if
there is a subformula of the form (1→ A) in F ;

(2) while there is in F a subformula G of the form (A1 ∧ . . . ∧ Ak → B)
or (A1 ∧ . . . ∧ Ak → 0), k ≥ 1, where A1, . . . ,Ak are already marked
and B is not yet marked do:

if G has the first form then
mark each occurrence of B

else output “unsatisfiable” and stop;
endwhile

(3) Output “satisfiable” and stop.
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Examples for the Marking Algorithm

We apply the marking algorithm to the following Horn formula:

(1→ A1)∧(1→ A2)∧(A1∧A2 → A3)∧(A2∧A3 → A4)∧(A1∧A3∧A5 → 0)
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Examples for the Marking Algorithm

We apply the marking algorithm to the following Horn formula:

(1→ A1)∧(1→ A2)∧(A1∧A2 → A3)∧(A2∧A3 → A4)∧(A1∧A3∧A5 → 0)

The formula is satisfiable.

We apply the marking algorithm to the following Horn formula:

(1→ A1)∧(1→ A2)∧(A1∧A2 → A3)∧(A2∧A3 → A5)∧(A1∧A3∧A5 → 0)

The formula is not satisfiable.
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Principle of Induction

To prove the statement

For every n ∈ {0, 1, 2, 3, . . .}, P(n) holds.

we generally proceed as follows:

We show that P(0) holds. (Base case)

We show that for every n:
If P(n) holds, then P(n + 1) also holds. (Inductive step)

Then we can conclude that P(n) holds for every arbitrary n.

Alternative principle of induction: We show that for every n:
If P(k) holds for all k < n, then P(n) also holds.

Application: Proof that a condition is always satisfied during the
execution of an algorithm (invariant). To do this, one shows by induction
that the condition is satisfied after n steps of the algorithm.
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Correctness of the Marking Algorithm

Theorem 45

The marking algorithm is correct and always terminates after at most n
marking steps.
Here, n is the number of atomic formulas in the input formula F .

Proof:

(A) Algorithm terminates:

After at most n steps, all atomic formulas are marked.

(B) If the algorithm marks an atomic formula A, then B(A) = 1 for every
satisfying assignment B of F .

Proof of (B) by induction:

1st case: atomic formula A is marked in step (1): clear
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Correctness of the Marking Algorithm

2nd case: atomic formula A is marked in step (2):

Then there is a subformula (A1 ∧ . . . ∧ Ak → A), such that A1, . . . ,Ak

were marked at earlier times.

Thus, it holds that B(A1) = · · · = B(Ak) = 1 for every satisfying
assignment B of F .

However, it must also hold that B(A) = 1 for every satisfying assignment
B of F .

This proves (B).
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Correctness of the Marking Algorithm

(C) If the algorithm outputs “unsatisfiable”, then F is unsatisfiable.

Let (A1 ∧ . . . ∧ Ak → 0) be the subformula of F , which causes the output
“unsatisfiable”.

By (B), it holds that B(A1) = · · · = B(Ak) = 1 for every satisfying
assignment B of F .

But for such assignments, it holds: B(A1 ∧ · · · ∧ Ak → 0) = 0 and thus
B(F ) = 0.

So there cannot be a satisfying assignment for F .
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(D) If the algorithm outputs “satisfiable”, then F is satisfiable.

Assume the algorithm outputs “satisfiable”.

Define an assignment B as follows:

B(Ai ) =

{
1 if the algorithm marks Ai

0 otherwise

We claim that the assignment B satisfies the conjunction F :

In (A1 ∧ . . . ∧ Ak → B), B is marked or at least one Ai is not marked.

In (A1 ∧ . . . ∧ Ak → 0), at least one Ai is not marked (otherwise the
algorithm would have terminated with “unsatisfiable”).

Remark: With a suitable implementation, the algorithm runs in linear
time.
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Example: MYCIN

MYCIN: Expert system for the investigation of blood infections (developed
in the 1970s)

Example:
IF the infection is primary-bacteremia AND the site of the culture is one of
the sterile sites AND the suspected portal of entry is the gastrointestinal
tract THEN there is suggestive evidence (0.7) that the infection is
bacteroid.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 272 / 419



Resolution (Idea)

Resolution is a procedure used to determine whether a formula F in CNF
is unsatisfiable.

Idea:

(F ∨ A) ∧ (F ′ ∨ ¬A) ≡ (F ∨ A) ∧ (F ′ ∨ ¬A) ∧ (F ∨ F ′)

From the derivation of the empty disjunction (i.e., empty clause) follows
unsatisfiability.

Two questions:

Can we always derive the empty clause from an unsatisfiable formula?
(Completeness)

Is there a way to write the derivation more compactly?
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Set Representation

To recall:

Clause: Set of literals (disjunction).

{A,B} represents (A ∨ B).

Formula in CNF: Set of clauses (conjunction of clauses).

{{A,B}, {¬A,B}} represents ((A ∨ B) ∧ (¬A ∨ B)).

The empty clause (i.e., empty disjunction) is equivalent to an unsatisfiable
formula.
This is also denoted by 2.

The empty CNF formula (i.e., empty conjunction) is equivalent to a valid
formula.

Note: The CNF formula {} (i.e., empty conjunction = tautology) is to be
distinguished from the formula {2} (i.e., unsatisfiable formula).

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 274 / 419



Advantages of Set Representation

One automatically obtains:

Commutativity:
(A ∨ B) ≡ (B ∨ A),
both represented by {A,B}
Associativity:
((A ∨ B) ∨ C ) ≡ (A ∨ (B ∨ C )),
both represented by {A,B,C}
Idempotence:
(A ∨ A) ≡ A,
both represented by {A}

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 275 / 419



Resolvent

Definition: Let K1, K2, and R be clauses. Then R is called the resolvent
of K1 and K2 if there exists a literal L such that L ∈ K1 and L ∈ K2, and
R has the following form:

R = (K1 \ {L}) ∪ (K2 \ {L}).

Here, L is defined as

L =

{
¬Ai if L = Ai for some i ≥ 1,
Ai if L = ¬Ai for some i ≥ 1.
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Resolvent

We represent this fact with the following diagram:

K

R

1
K

2

Terminology: R is resolved from K1, K2 by L.

Furthermore, if K1 = {L} and K2 = {L}, then the empty set arises as the
resolvent. This is denoted by the special symbol 2, which represents an
unsatisfiable formula.

Example: All resolvents of {A,¬B,¬C} and {¬A,B,D}:

{¬B,B,¬C ,D} and {A,¬A,¬C ,D}
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Resolutionslemma

Resolutionslemma

Let F be a formula in CNF, represented as a set of clauses. Furthermore,
let R be a resolvent of two clauses K1 and K2 in F . Then F and F ∪ {R}
are equivalent.

Proof: Follows directly from

(F1 ∨ A)︸ ︷︷ ︸
K1

∧ (F2 ∨ ¬A)︸ ︷︷ ︸
K2

≡ (F1 ∨ A)︸ ︷︷ ︸
K1

∧ (F2 ∨ ¬A)︸ ︷︷ ︸
K2

∧ (F1 ∨ F2)︸ ︷︷ ︸
R
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Resolution Closure

Definition: Let F be a set of clauses. Then Res(F ) is defined as

Res(F ) = F ∪ {R | R is a resolvent of two clauses in F}.

Additionally, we set:

Res0(F ) = F

Resn+1(F ) = Res(Resn(F )) for n ≥ 0

and finally let

Res∗(F ) =
⋃
n≥0

Resn(F ).

Res∗(F ) is also referred to as the resolution closure of F .

From the resolution lemma, it immediately follows that

F ≡ Res∗(F ).
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Resolution Closure

Assume the formula F (in CNF) contains n atomic formulas.
What is the maximum possible size of Res∗(F )?

(A) |Res∗(F )| ≤ 2n

(B) |Res∗(F )| ≤ 4n

(C) |Res∗(F )| can become infinite

Here, |Res∗(F )| denotes the number of elements in Res∗(F ).

Example: The resolution closure of {{A,¬B,¬C}, {¬A,B,D}} consists
of the following clauses:

{A,¬B,¬C}, {¬A,B,D},
{¬B,B,¬C ,D}, {A,¬A,¬C ,D}
{A,¬B,¬C ,D}, {¬A,B,¬C ,D}
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Resolution Theorem

We now show the Correctness and Completeness of Resolution:

Resolution Theorem of Propositional Logic

A finite set F of clauses is unsatisfiable if and only if 2 ∈ Res∗(F ).

Proof:

Correctness: If 2 ∈ Res∗(F ), then F is unsatisfiable.

Assume 2 ∈ Res∗(F ).

From the resolution lemma, we have F ≡ Res∗(F ).

Since 2 is unsatisfiable, Res∗(F ) is also unsatisfiable, and thus F is
unsatisfiable.
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Proof of the Resolution Theorem (Completeness)

Completeness: If F is unsatisfiable, then 2 ∈ Res∗(F ).

Let F be unsatisfiable.

We prove completeness by induction on the number n(F ) of atomic
formulas occurring in F .

Base case: n(F ) = 0. Then it must hold that F = {2}. Thus,
2 ∈ F ⊆ Res∗(F ).

Inductive step: Assume n(F ) > 0.

Choose any atomic formula A that occurs in F .
We define the formula F0 from F as follows:

F0 = {K \ {A} | K ∈ F ,¬A 6∈ K}.

Intuition: F0 is derived from F by replacing A with 0 and performing the
öbviousßimplifications.
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Proof of the Resolution Theorem (Completeness)

Analogously, we define the formula F1 from F as:

F1 = {K \ {¬A} | K ∈ F ,A 6∈ K}.

Intuition: F1 is derived from F by replacing A with 1 and performing the
öbviousßimplifications.

Since F is unsatisfiable, both F0 and F1 are also unsatisfiable:

If, for example, F0 were to be satisfied by the assignment B, then F would
be satisfied by the following assignment B′:

B′(Ai ) =

{
0 if Ai = A

B(Ai ) if Ai 6= A

Since n(F0) = n(F1) = n(F )− 1, we can conclude from the induction
hypothesis that 2 ∈ Res∗(F0) and 2 ∈ Res∗(F1).
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Proof of the Resolution Theorem (Completeness)

Thus, there exists a sequence of clauses K1,K2, . . . ,Km such that

Km = 2

Ki ∈ F0 or Ki is a resolvent of Kj and K` with j , ` < i .

We now define a sequence of clauses K ′1,K
′
2, . . . ,K

′
m, where K ′i = Ki or

K ′i = Ki ∪ {A}, as follows:
1 Case Ki ∈ F0 and Ki ∈ F : K ′i := Ki

2 Case Ki ∈ F0 and Ki 6∈ F : K ′i := Ki ∪ {A} ∈ F
3 Case Ki 6∈ F0 and Ki is resolved from Kj and K` (j , ` < i) on literal L:

K ′i is formed from K ′j and K ′` by resolving on L.

Then either K ′m = 2 or K ′m = {A}, and thus

2 ∈ Res∗(F ) or {A} ∈ Res∗(F )

Similarly, by considering F1, we have:

2 ∈ Res∗(F ) or {¬A} ∈ Res∗(F )

From this, we conclude 2 ∈ Res∗(F ).
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Illustration of the Induction Step

F = {{A1}, {¬A2, A4}, {¬A1,A2, A4}, {A3,¬A4}, {¬A1,¬A3,¬A4} }
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Deduction

A deduction (or derivation or proof) of the empty clause from a set of
clauses F is a sequence of clauses K1,K2, . . . ,Km with the following
properties:

Km is the empty clause, and for every i ∈ {1, . . . ,m}, Ki is an
element of F or can be resolved from certain clauses Kj , K` with
j , ` < i .

From the resolution theorem, it follows:
A finite set of clauses is unsatisfiable if and only if a deduction of the
empty clause exists.

Note: It may be the case that Res∗(F ) is very large, but a short deduction
of the empty clause still exists.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 286 / 419



Resolution Calculus

The term calculus refers to a set of syntactic transformation rules that
allow one to derive semantic properties of the input formula.

For the resolution calculus:

Syntactic transformation rules: resolution, stopping upon reaching the
empty clause

Semantic property of the input formula: unsatisfiability

Desirable properties of a calculus:

Correctness: If the empty clause can be derived from F , then F is
unsatisfiable.

Completeness: If F is unsatisfiable, then the empty clause can be
derived from F .
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Example of Resolution

We want to show that

((AK ∨ BK ) ∧ (AK → BK ) ∧ (BK ∧ RL→ ¬AK ) ∧ RL)→ (¬AK ∧ BK )

is valid.

This is the case if and only if

(AK ∨ BK ) ∧ (¬AK ∨ BK ) ∧ (¬BK ∨ ¬RL ∨ ¬AK ) ∧ RL ∧ (AK ∨ ¬BK )

is unsatisfiable. (Because: F → G is valid iff F ∧ ¬G is unsatisfiable.)

In set representation:

{{AK ,BK}, {¬AK ,BK}, {¬BK ,¬RL,¬AK}, {RL}, {AK ,¬BK}}
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Example of Resolution

A possible deduction of the empty clause from

{{AK ,BK}, {¬AK ,BK}, {¬BK ,¬RL,¬AK}, {RL}, {AK ,¬BK}} (6)

is as follows:

{AK ,BK} is from (6) (7)

{¬AK ,BK} is from (6) (8)

{BK} from (7) and (8) (9)

{¬BK ,¬RL,¬AK} is from (6) (10)

{AK ,¬BK} is from (6) (11)

{¬BK ,¬RL} from (10) and (11) (12)

{RL} is from (6) (13)

{¬BK} from (12) and (13) (14)

2 from (9) and (14) (15)
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Remarks on Resolution

Armin Haken provided in 1985 a set of clauses Fn for each n with:

Fn is unsatisfiable.

Fn contains n · (n + 1) atomic subformulas.

Fn consists of n3+n2

2 + n + 1 clauses.

Any deduction of the empty clause from Fn has a length of at least cn

for some fixed constant c > 1.

Conclusion: Deductions can become very lengthy.
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The Compactness Theorem of Propositional Logic

Satz 46 (Compactness Theorem)

Let M be a (possibly infinite) set of formulas. Then M is satisfiable if and
only if every finite subset of M is satisfiable.

Proof:

1. If M is satisfiable, then every finite subset of M is satisfiable.

This statement is trivial because every model of M is also a model for any
subset of M.
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The Compactness Theorem of Propositional Logic: Proof

2. If every finite subset of M is satisfiable, then M is also satisfiable.

Recall: The set of atomic formulas is {A1,A2,A3, . . .}.

Let Mn ⊆ M be the set of formulas in M that contain only atomic
subformulas from {A1, . . . ,An}.

Note: Mn may be infinite; for example, M1 could contain the formulas
A1,A1 ∧ A1,A1 ∧ A1 ∧ A1, . . ..

But: There are only 22n different truth tables with the atomic formulas
A1, . . . ,An.

Therefore, there exists a finite subset M ′n ⊆ Mn with:

1 |M ′n| ≤ 22n

2 For every formula F ∈ Mn, there exists a formula F ′ ∈ M ′n such that
F ≡ F ′
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The Compactness Theorem of Propositional Logic: Proof

According to the assumption, M ′n has a model Bn.

Thus, Bn is also a model of Mn.

We now construct a model B of M in stages.

In stage n, the value B(An) ∈ {0, 1} is determined.

I0 := {1, 2, 3, . . .}
for all n ≥ 1 do

if there are infinitely many indices i ∈ In−1 with Bi (An) = 1 then
B(An) := 1
In := {i ∈ In−1 | Bi (An) = 1}

else (∗∗∗ there are infinitely many i ∈ In−1 with Bi (An) = 0 ∗∗∗)
B(An) := 0
In := {i ∈ In−1 | Bi (An) = 0}

endfor
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The Compactness Theorem of Propositional Logic: Proof

Although it holds that I0 ⊇ I1 ⊇ I2 ⊇ I3 · · · , we have:

Claim 1: For every n ≥ 0, In is infinite.

This is shown by induction over n:

I0 = {1, 2, 3, . . .} is obviously infinite.

If In−1 is infinite, then by construction, In is also infinite, since it holds that

In−1 = {i ∈ In−1 | Bi (An) = 1} ∪ {i ∈ In−1 | Bi (An) = 0}.

Claim 2: For all n ≥ 1 and all i ∈ In, it holds that:

Bi (A1) = B(A1), . . . ,Bi (An−1) = B(An−1), Bi (An) = B(An).

Let i ∈ In. Then, by the construction of B, we have Bi (An) = B(An).

Now, let j ∈ {1, . . . , n − 1}.

Since In ⊆ Ij , it follows that i ∈ Ij , and thus again Bi (Aj) = B(Aj).
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The Compactness Theorem of Propositional Logic: Proof

Claim 3: The constructed assignment B is a model of M.

Proof of Claim 3: Let F ∈ M.

Then there exists an n ≥ 1 with F ∈ Mn (since F contains only finitely
many atomic formulas).

Thus, it holds that F ∈ Mi for all i ≥ n.

Therefore, each of the assignments Bi with i ≥ n is a model of F .

Since In is infinite by Claim 1, there exists an i ≥ n with i ∈ In.

For this i , it holds by Claim 2:

Bi (A1) = B(A1), Bi (A2) = B(A2), . . . ,Bi (An) = B(An)

Since Bi is a model of F due to i ≥ n, it follows that B is also a model of
F .
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Consequences of the Compactness Theorem

The following statement has only been proven for a finite set of clauses F .

Resolution Theorem of Propositional Logic for Arbitrary Sets of Formulas

A set F of clauses is unsatisfiable if and only if 2 ∈ Res∗(F ).

Proof:

Correctness: If 2 ∈ Res∗(F ), then F is unsatisfiable:
Proof as in the finite case.

Completeness: If F is unsatisfiable, then 2 ∈ Res∗(F ).

If F is unsatisfiable, then by the Compactness Theorem, there must exist a
finite subset F ′ ⊆ F that is also unsatisfiable.

From the already proven Resolution Theorem for finite sets of formulas, it
follows that 2 ∈ Res∗(F ′).

Thus, it also holds that 2 ∈ Res∗(F ).
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Predicate Logic

Propositional logic is generally too weak in expressing mathematical
statements.

Example: In analysis, one wants to formulate statements of the form
For all x ∈ R and for all ε > 0, there exists a δ > 0 such that for
all y ∈ R, if abs(x − y) < δ, then abs(f (x)− f (y)) < ε.

In this context, we use:

Relations such as < or >.

Functions such as abs : R→ R+ (absolute value) or − : R× R→ R
(subtraction).

Quantifications such as “for all x ∈ R” or “there exists a δ > 0”.

This leads to predicate logic.
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Syntax of Predicate Logic: Variables, Terms

The set of variables is {x0, x1, x2, . . .}.

A predicate symbol has the form Pk
i with i , k ∈ {0, 1, 2, . . .}.

A function symbol has the form f ki with i , k ∈ {0, 1, 2, . . .}.

In both cases, i is called the distinguishing index and k is the arity.

Variables are also denoted by u, x , y , z ,
predicate symbols (function symbols) are also denoted by P,Q,R (f , g , h).

We now define the set of terms inductively:

1 Every variable is a term.
2 If f is a function symbol with arity k, and if t1, . . . , tk are terms, then

f (t1, . . . , tk) is also a term.

Function symbols of arity 0 are also included, and in this case, the
parentheses are omitted.

Zero-arity function symbols are called constants
(usually denoted by a, b, c).
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Formulas

We can now (again inductively) define what formulas (of predicate logic)
are.

1 If P is a predicate symbol of arity k , and if t1, . . . , tk are terms, then
P(t1, . . . , tk) is a formula.

2 For every formula F , ¬F is also a formula.

3 For all formulas F and G , (F ∧ G ) and (F ∨ G ) are also formulas.

4 If x is a variable and F is a formula, then ∃xF and ∀xF are also
formulas.
The symbol ∃ is called the existential quantifier and ∀ the universal
quantifier.

We call atomic formulas exactly those that are constructed according to 1.

If F is a formula and F occurs as a part of a formula G , then F is called a
subformula of G .
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Free and Bound Variables, Statements

All occurrences of variables in a formula that are not directly behind a
quantifier are divided into free and bound occurrences:

An occurrence of the variable x in the formula F , which is not directly
behind a quantifier, is bound if this occurrence appears in a subformula of
F of the form ∃xG or ∀xG .
Otherwise, this occurrence of x is free.

A formula without any occurrences of a free variable is called closed or a
statement.

The matrix of a formula F is the formula obtained from F by deleting
every occurrence of ∃ or ∀, along with the variables following them.

We denote the matrix of the formula F by F ∗.
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Example of a Formula in Predicate Logic

Let F be the formula

∃xP(x , f (y)) ∨ ¬∀yQ(y , g(a, h(z)))

The red marked occurrence of y in F is free, while the green marked
occurrence of y in F is bound:

∃xP(x , f (y)) ∨ ¬∀yQ(y , g(a, h(z)))

The matrix of F is

P(x , f (y)) ∨ ¬Q(y , g(a, h(z))).
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Exercise

NF: Non-formula F: Formula, but not a statement A: Statement

(x , y are variables, a is a constant, P,Q,R are predicate symbols, f is a
function symbol)

NF F A

∀xP(a)

∀x∃y(Q(x , y) ∨ R(x , y))

∀xQ(x , x)→ ∃xQ(x , y)

∀xP(x) ∨ ∀xQ(x , x)

∀x(P(y) ∧ ∀yP(x))

P(x)→ ∃xQ(x ,P(x))

∀f ∃xP(f (x))
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NF: Non-formula F: Formula, but not a statement A: Statement

NF F A

∀x(¬∀yQ(x , y) ∧ R(x , y))

∃z(Q(z , x) ∨ R(y , z))→ ∃y(R(x , y) ∧ Q(x , z))

∃x(¬P(x) ∨ P(f (a)))

P(x)→ ∃xP(x)

∃x∀y((P(y)→ Q(x , y)) ∨ ¬P(x))

∃x∀xQ(x , x)
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Insert: Relations and Functions of Arbitrary Arity

Let A be any set.

For n ≥ 0, let An = {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ A} be the set of all
n-tuples over the set A.

Note: A0 = {()} is a 1-element set and A1 = {(a) | a ∈ A} can be
identified with A.

An n-ary relation R over A is a subset of An: R ⊆ An.

In particular, there are only two 0-ary relations: ∅ and {()}.

If R is a 2-ary relation (also called a binary relation), it is often written as
a R b instead of (a, b) ∈ R (for a, b ∈ A).

An n-ary function f on A is a function f : An → A.

Note: A 0-ary function f can be identified with an element of A, namely
with the element f (()). We also write
for this f () or simply f .
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Semantics of Predicate Logic: Structures

A structure is a pair A = (UA, IA) with:

UA is an arbitrary but non-empty set, called the domain of A (or the base
set, the individuals set, the universe).

Furthermore, IA is a partially defined mapping that

assigns to each k-ary predicate symbol P from the domain of IA a
k-ary relation IA(P) ⊆ Uk

A,

assigns to each k-ary function symbol f from the domain of IA a
k-ary function IA(f ) : Uk

A → UA, and

assigns to each variable x from the domain of IA an element
IA(x) ∈ UA.
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Let F be a formula and A = (UA, IA) be a structure.

A is called suitable for F if IA is defined for all predicate symbols, function
symbols, and free variables occurring in F .

In other words, the domain Def(IA) of IA is a subset of

{Pk
i | i , k ≥ 0} ∪ {f ki | i , k ≥ 0} ∪ {xi | i ≥ 0},

and the codomain of IA is the set of all relations, functions, and elements
of UA.

We abbreviate IA(P) as PA, IA(f ) as f A, and IA(x) as xA.
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Example of Structure

Let F be the formula ∀xP(x , f (x)) ∧ Q(g(a, z)).

A suitable structure for F is, for example, A = (N, IA), where

PA = {(n,m) | n,m ∈ N, n < m}
QA = {n | n is prime}

f A(n) = n + 1 for all n ∈ N
gA(n,m) = n + m for all n,m ∈ N

aA = 2

zA = 3

In an intuitive sense, the formula F holds in the structure A:
∀x ∈ N (x < x + 1) ∧ (2 + 3 is prime) is a true statement.
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Evaluation in a Structure

Let F be a formula and A a suitable structure for F .

For every term t that can be formed from the components of F (i.e., from
the free variables and function symbols), we inductively define the value
A(t) ∈ UA of t in the structure A:

1 If t is a variable (i.e., t = x), then A(t) = xA.

2 If t has the form t = f (t1, . . . , tk) where t1, . . . , tk are terms and f is
a k-ary function symbol, then A(t) = f A(A(t1), . . . ,A(tk)).

Case 2 also includes the possibility that f is nullary, so that t has the form
t = a.

In this case, we have A(t) = aA.
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Evaluation in a Structure

In a similar way, we inductively define the (truth–) value A(F ) of the
formulas F under the structure A:

If F has the form F = P(t1, . . . , tk) with the terms t1, . . . , tk and
k-ary predicate symbol P, then

A(F ) =

{
1, if (A(t1), . . . ,A(tk)) ∈ PA

0, otherwise

If F has the form F = ¬G , then

A(F ) =

{
1, if A(G ) = 0
0, otherwise
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Evaluation in a Structure

If F has the form F = (G ∧ H), then

A(F ) =

{
1, if A(G ) = 1 and A(H) = 1
0, otherwise

If F has the form F = (G ∨ H), then

A(F ) =

{
1, if A(G ) = 1 or A(H) = 1
0, otherwise
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Evaluation in a Structure

If F has the form F = ∀xG , then

A(F ) =

{
1, if for all d ∈ UA: A[x/d ](G ) = 1
0, otherwise

If F has the form F = ∃xG , then

A(F ) =

{
1, if there exists a d ∈ UA such that: A[x/d ](G ) = 1
0, otherwise

Here, A[x/d ] for a variable x and d ∈ UA is the structure that is identical
to A, except that x is interpreted as d :

xA[x/d ] = d
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Evaluation in a Structure

More precisely, the structure A[x/d ] is defined as follows.

UA = UA[x/d ]

Def(IA[x/d ]
) = Def(IA) ∪ {x}

xA[x/d ] = d (regardless of whether xA is defined)

yA[x/d ] = yA for all variables y ∈ Def(IA) \ {x}

PA[x/d ] = PA for all predicate symbols P ∈ Def(IA)

f A[x/d ] = f A for all function symbols f ∈ Def(IA)

Note: xA may be defined, but this has no influence on the truth values
A(∀xG ) and A(∃xG ). When evaluating ∀xG and ∃xG in the structure A,
xA is “overwritten”.
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Convention on =

We adopt the following convention going forward:

Whenever we use the predicate symbol = in formulas, = is to be
considered a binary predicate, and for every structure A = (UA, IA), the
following holds:

For all a, b ∈ UA : a =A b if and only if a and b are the same.
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Model, Validity, Satisfiability

If for a formula F and a structure A corresponding to F , we have
A(F ) = 1, we again write A |= F .

Terminology: F is said to hold in A, or A is a model for F .

A is a model for a set M of formulas if A is a model for each formula
F ∈ M.

If every structure corresponding to F is a model for F , we write |= F ,
otherwise 6|= F .

Terminology: F is (universally) valid.

If there is at least one model for the formula F , then F is called satisfiable,
otherwise it is unsatisfiable.
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Examples

Models for the formula ∀x∃yP(x , y) would be A = (N, IA) as well as
B = (N, IB) with

PA = {(n,m) ∈ N× N | n < m} and

PB = {(n,m) ∈ N× N | n ≤ m}.

Another (finite) model would be C = ({0}, IC) with PC = {(0, 0)}.

Now consider the formula ∃x∀yP(x , y).

B and C are also models of ∃x∀yP(x , y).

A is not a model of ∃x∀yP(x , y).
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Exercise

G: valid E: satisfiable U: unsatisfiable

G E U

∀xP(a)

∃x(¬P(x) ∨ P(a))

P(a)→ ∃xP(x)

P(x)→ ∃xP(x)

∀xP(x)→ ∃xP(x)

∀xP(x) ∧ ¬∀yP(y)
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∀xP(a) N Y N
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G: valid E: satisfiable U: unsatisfiable

G E U

∀x(P(x , x)→ ∃x∀yP(x , y))

∀x∀y(x = y → f (x) = f (y))

∀x∀y(f (x) = f (y)→ x = y)

∃x∃y∃z(f (x) = y ∧ f (x) = z ∧ y 6= z)
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Implication and Equivalence

A formula G is called a consequence of the formulas F1, . . . ,Fk , if for every
structure A that is suitable for both F1, . . . ,Fk and G , the following holds:

If A is a model of {F1, . . . ,Fk}, then A is also a model of G .

We write F1, . . . ,Fk |= G , if G is a consequence of F1, . . . ,Fk .

Two formulas F and G are called (semantically) equivalent, if for all
structures A, which are suitable for both F and G , it holds that
A(F ) = A(G ).

We write F ≡ G for this.
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Exercise

1 ∀xP(x) ∨ ∀xQ(x , x)

2 ∀x(P(x) ∨ Q(x , x))

3 ∀x(∀zP(z) ∨ ∀yQ(x , y))

Y N

1. |= 2.

2. |= 3.

3. |= 1.
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Y N
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Exercise

1 ∀xP(x) ∨ ∀xQ(x , x)

2 ∀x(P(x) ∨ Q(x , x))

3 ∀x(∀zP(z) ∨ ∀yQ(x , y))

Y N

1. |= 2. X
2. |= 3. X
3. |= 1.

Beachte: ∀x(∀zP(z) ∨ ∀yQ(x , y)) ≡ ∀zP(z) ∨ ∀x∀yQ(x , y)
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Exercise

1 ∃y∀x P(x , y)

2 ∀x∃y P(x , y)

Y N

1. |= 2.

2. |= 1.
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Exercise

1 ∃y∀x P(x , y)

2 ∀x∃y P(x , y)

Y N

1. |= 2. X
2. |= 1.
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Exercise

1 ∃y∀x P(x , y)

2 ∀x∃y P(x , y)

Y N

1. |= 2. X
2. |= 1. X
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Exercise

1 ∃y∀x P(x , y)

2 ∀x∃y P(x , y)

Y N

1. |= 2. X
2. |= 1. X

Example for 2. 6|= 1.

Let A = ({0, 1}, I) with PI = {(0, 0), (1, 1)}.

Dann gilt A |= ∀x∃y P(x , y) und A 6|= ∃y∀x P(x , y).
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Exercise

Y N

∀x∀yF ≡ ∀y∀xF
∀x∃yF ≡ ∃x∀yF
∃x∃yF ≡ ∃y∃xF
∀xF ∨ ∀xG ≡ ∀x(F ∨ G )

∀xF ∧ ∀xG ≡ ∀x(F ∧ G )

∃xF ∨ ∃xG ≡ ∃x(F ∨ G )

∃xF ∧ ∃xG ≡ ∃x(F ∧ G )
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Equivalences

Theorem (Equivalences of Predicate Logic)

Let F and G be arbitrary formulas:

1 ¬∀xF ≡ ∃x¬F
¬∃xF ≡ ∀x¬F

2 If x does not occur freely in G , then:
(∀xF ∧ G ) ≡ ∀x(F ∧ G )
(∀xF ∨ G ) ≡ ∀x(F ∨ G )
(∃xF ∧ G ) ≡ ∃x(F ∧ G )
(∃xF ∨ G ) ≡ ∃x(F ∨ G )

3 (∀xF ∧ ∀xG ) ≡ ∀x(F ∧ G )
(∃xF ∨ ∃xG ) ≡ ∃x(F ∨ G )

4 ∀x∀yF ≡ ∀y∀xF
∃x∃yF ≡ ∃y∃xF
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Equivalences

We prove the equivalence

(∀xF ∧ G ) ≡ ∀x(F ∧ G )

where x does not occur freely in G .

Let A be any structure suitable for (∀xF ∧ G ) and ∀x(F ∧ G ). Then we
have:

A(∀xF ∧ G ) = 1

iff A(∀xF ) = 1 and A(G ) = 1

iff for all d ∈ UA it holds A[x/d ](F ) = 1 and A(G ) = 1

iff for all d ∈ UA it holds A[x/d ](F ) = 1 and A[x/d ](G ) = 1

(note: since x does not occur freely in G , it holds that A(G ) = A[x/d ](G ))

iff for all d ∈ UA it holds A[x/d ](F ∧ G ) = 1

iff A(∀x(F ∧ G )) = 1
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Renaming Bound Variables

For a formula G , a variable x , and a term t, let G [x/t] be the formula
that is obtained from G by replacing every free occurrence of x in G with
the term t.

Example:(
∃xP

(
x , f (y)

)
∨ ¬∀yQ

(
y , g(a, h(z))

))
[y/f (u)] =(

∃xP
(
x , f (f (u))

)
∨ ¬∀yQ

(
y , g(a, h(z))

))

Exercise: Define G [x/t] formally by induction on the structure of G .
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Renaming Bound Variables

Lemma (Renaming of Variables)

Let F = QxG be a formula with Q ∈ {∀, ∃}. Let y be a variable that does
not occur in G . Then it holds that F ≡ QyG [x/y ].

The condition that y does not occur in G is important here.

For example, let G = P(x , y).

Then we have G [x/y ] = P(y , y) and thus

∃xG = ∃xP(x , y) 6≡ ∃yP(y , y) = ∃yG [x/y ].
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Cleaned Formulas

A formula is called cleaned if there are

no variable that occurs both bound and free in the formula, and

different variables behind all occurring quantifiers.

Examples:

P(x) ∧ ∀xQ(x) is not cleaned.

∃xP(x) ∧ ∀xQ(x) is not cleaned.

P(x) ∧ ∀yQ(y) is cleaned.

∃xP(x) ∧ ∀yQ(y) is cleaned.

Repeated application of the lemma “Renaming of Variables” yields:

Lemma 47

For every formula F , there exists an equivalent cleaned formula.
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Prenex Form

A formula is called prenex or in prenex form if it has the structure

Q1y1Q2y2 · · ·QnynF

where

n ≥ 0, Q1, . . . ,Qn ∈ {∃, ∀}, y1, . . . , yn are variables, and

no quantifier occurs in F .

A cleaned formula in prenex form is in BPF.

Theorem

For every formula, there exists an equivalent formula in BPF.

Proof: Repeated application of the equivalences (1) and (2) from the
theorem “Equivalences of Predicate Logic” (Slide 322).
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Formation of Prenex Form

Let F be any formula.

We define a formula F ′ equivalent to F in BPF by induction on the
structure of F :

F is atomic:
Then F is already in BPF, and we can set F ′ = F .

F = ¬G :
By induction, there exists a formula G ′ equivalent to G in BPF

G ′ = Q1y1Q2y2 · · ·QnynH,

where Q1, . . . ,Qn ∈ {∃,∀} and H contains no quantifiers.
From point (1) in the theorem “Equivalences of Predicate Logic” it
follows:

F = ¬G ≡ ¬G ′ = ¬Q1y1Q2y2 · · ·QnynH

≡ Q1y1Q2y2 · · ·Qnyn¬H

where ∃ = ∀ and ∀ = ∃. The latter formula is in BPF.
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Formation of Prenex Form

F = F1 ∧ F2:
By induction, there exist formulas F ′1 and F ′2 equivalent to F1 and F2

in BPF F ′1 = Q1y1Q2y2 · · ·QmymG1 and F ′2 = P1z1P2z2 · · ·PnznG2,
where Q1, . . . ,Qm,P1, . . . ,Pn ∈ {∃, ∀} and G1,G2 contain no
quantifiers.
Due to the renaming lemma, we can assume that y1, . . . , ym do not
occur in F ′2 and z1, . . . , zn do not occur in F ′1.
From point (2) in the theorem “Equivalences of Predicate Logic” it
follows that

F = F1 ∧ F2 ≡ F ′1 ∧ F ′2

= (Q1y1Q2y2 · · ·QmymG1) ∧ F ′2

≡ Q1y1Q2y2 · · ·Qmym(G1 ∧ F ′2)

= Q1y1Q2y2 · · ·Qmym(G1 ∧ P1z1P2z2 · · ·PnznG2)

≡ Q1y1Q2y2 · · ·QmymP1z1P2z2 · · ·Pnzn(G1 ∧ G2)
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Formation of Prenex Form

F = F1 ∨ F2: the same argument as with ∧

F = QxG with Q ∈ {∃, ∀}:

By induction, there exists a formula G ′ equivalent to G in BPF

G ′ = Q1y1Q2y2 · · ·QnynH,

where H contains no quantifiers.

By the renaming lemma, we can assume that x 6∈ {y1, . . . , yn}.

Thus we have

F = QxG ≡ QxQ1y1Q2y2 · · ·QnynH

and the latter formula is in BPF.
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Formation of Prenex Form: Example(
∀x∃y P(x , g(y , f (x))) ∨ ¬Q(z)

)
∨ ¬∀x R(x , y)

≡
(
∀x∃y P(x , g(y , f (x))) ∨ ¬Q(z)

)
∨ ∃x ¬R(x , y)

≡ ∀x∃y
(
P(x , g(y , f (x))) ∨ ¬Q(z)

)
∨ ∃x ¬R(x , y)

≡ ∀x∃y
(
P(x , g(y , f (x))) ∨ ¬Q(z)

)
∨ ∃w ¬R(w , y)

≡ ∀x

(
∃y
(
P(x , g(y , f (x))) ∨ ¬Q(z)

)
∨ ∃w ¬R(w , y)

)

≡ ∀x

(
∃v
(
P(x , g(v , f (x))) ∨ ¬Q(z)

)
∨ ∃w ¬R(w , y)

)

≡ ∀x∃v

((
P(x , g(v , f (x))) ∨ ¬Q(z)

)
∨ ∃w ¬R(w , y)

)
≡ ∀x∃v∃w

(
P(x , g(v , f (x))) ∨ ¬Q(z) ∨ ¬R(w , y)

)
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Skolem Form

For every formula F in BPF, we define its Skolem form as the result of
applying the following algorithm to F :

while F contains an existential quantifier do
begin

F has the form F = ∀y1∀y2 · · · ∀yn∃zG for some
formula G in BPF and n ≥ 0 (the universal quantifier block
can also be empty);

Let f be a new n-ary function symbol not occurring in F ;

F := ∀y1∀y2 · · · ∀ynG [z/f (y1, y2, . . . , yn)];
(i.e., the existential quantifier in F is removed and
each occurrence of the variable z in G is replaced by
f (y1, y2, . . . , yn))

end
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Skolem Form: Example

Example 1: We want to form the Skolem form of

∀x∃v∃w
(
P(x , g(v , f (x))) ∨ ¬Q(z) ∨ ¬R(w , y)

)
After the 1st iteration through the while loop:

∀x∃w
(
P(x , g(f1(x), f (x))) ∨ ¬Q(z) ∨ ¬R(w , y)

)
After the 2nd iteration through the while loop:

∀x
(
P(x , g(f1(x), f (x))) ∨ ¬Q(z) ∨ ¬R(f2(x), y)

)
Example 2: The Skolem form of ∃xP(x) is P(a), where a is a constant.
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Skolem Form(F ) is satisfiable iff F is satisfiable.

Theorem

For every formula F in BPF, it holds that: F is satisfiable if and only if the
Skolem form of F is satisfiable.

For the proof, we need the following simple transfer lemma:

Transfer Lemma

Let F be a formula, x a variable, and t a term that does not contain any
variable bound in F . Then for every structure A suitable for F and F [x/t]:

A(F [x/t]) = A[x/A(t)](F )
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Proof of the Transfer Lemma

We first show by induction on the structure of terms:

For every term t ′ it holds: A(t ′[x/t]) = A[x/A(t)](t
′)

t ′ = y for a variable y .

If y = x , i.e., t ′ = x :

Then it holds that t ′[x/t] = t.

Thus: A[x/A(t)](t
′) = A[x/A(t)](x) = A(t) = A(t ′[x/t])

If y 6= x .

Then it holds that t ′[x/t] = t ′ = y .

Thus: A[x/A(t)](t
′) = A(t ′) = A(t ′[x/t]).
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Proof of the Transfer Lemma

t ′ = f (t1, . . . , tn).

Then it holds that:

A(t ′[x/t]) = A(f (t1[x/t], . . . , tn[x/t]))

= f A(A(t1[x/t]), . . . ,A(tn[x/t]))

= f A[x/A(t)](A[x/A(t)](t1), . . . ,A[x/A(t)](tn))

= A[x/A(t)](f (t1, . . . , tn))

= A[x/A(t)](t
′)
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Proof of the Transfer Lemma

Now we can prove A(F [x/t]) = A[x/A(t)](F ) for a formula F by induction
on the structure of F :

F is atomic, i.e., F = P(t1, . . . , tn) for a predicate symbol P and
terms t1, . . . , tn.

Then it holds:

A(F [x/t]) = 1 iff A(P(t1[x/t], . . . , tn[x/t])) = 1

iff (A(t1[x/t]), . . . ,A(tn[x/t])) ∈ PA

iff (A[x/A(t)](t1), . . . ,A[x/A(t)](tn)) ∈ PA[x/A(t)]

iff A[x/A(t)](P(t1, . . . , tn)) = 1

iff A[x/A(t)](F ) = 1
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Proof of the Transfer Lemma

F = ¬G .

Then it holds:

A(F [x/t]) = 1 iff A(¬G [x/t]) = 1

iff A(G [x/t]) = 0

iff A[x/A(t)](G ) = 0

iff A[x/A(t)](¬G ) = 1

iff A[x/A(t)](F ) = 1

F = F1 ∧ F2 or F = F1 ∨ F2:

Analogous argument as in the previous case.
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Proof of the Transfer Lemma

F = ∃yG , where y does not occur in t (since t should not contain
any bound variable in F ).

If y = x , then A(F [x/t]) = A(F ) = A[x/A(t)](F ).

The last equality holds because x does not occur free in F .

Now, let y 6= x . Then it holds:

A(F [x/t]) = 1 iff A(∃yG [x/t]) = 1

iff ∃d ∈ UA such that A[y/d ](G [x/t]) = 1

iff ∃d ∈ UA such that A[y/d ][x/A[y/d ](t)](G ) = 1

iff ∃d ∈ UA[x/A(t)]
such that A[x/A(t)][y/d ](G ) = 1

(A[y/d ](t) = A(t), since y does not occur in t)

iff A[x/A(t)](∃yG ) = 1

iff A[x/A(t)](F ) = 1
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Proof that Skolemform(F ) is satisfiable iff F is satisfiable

Proof of the Theorem from Slide 334:

We show: After each iteration of the while loop, the resulting formula is
satisfiable iff the formula before the iteration is satisfiable.

Formula before the iteration of the while loop:

F = ∀y1∀y2 · · · ∀yn∃zG

Formula after the iteration of the while loop:

F ′ = ∀y1∀y2 · · · ∀ynG [z/f (y1, y2, . . . , yn)]

Here, f is a function symbol that does not occur in F .

To show: F is satisfiable iff F ′ is satisfiable.
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Proof that Skolemform(F ) is satisfiable iff F is satisfiable

(1) Assume F ′ = ∀y1∀y2 · · · ∀ynG [z/f (y1, y2, . . . , yn)] is satisfiable.

Then there exists a structure A (suitable for F ′) such that A(F ′) = 1.

Then A is also suitable for F and it holds:

For all d1, . . . , dn ∈ UA, it holds:

A[y1/d1][y2/d2]···[yn/dn](G [z/f (y1, y2, . . . , yn)]) = 1

By the Transfer Lemma (replace A → A[y1/d1][y2/d2]···[yn/dn],
t → f (y1, y2, . . . , yn), F → G , x → z), it follows:

For all d1, . . . , dn ∈ UA, it holds:

A[y1/d1][y2/d2]···[yn/dn][z/d ](G ) = 1

where d = A[y1/d1][y2/d2]···[yn/dn](f (y1, y2, . . . , yn)) = f A(d1, . . . , dn).

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 341 / 419



Proof that Skolemform(F ) is satisfiable iff F is satisfiable

This implies

For all d1, . . . , dn ∈ UA, there exists a d ∈ UA such that:

A[y1/d1][y2/d2]···[yn/dn][z/d ](G ) = 1

i.e., A(∀y1∀y2 · · · ∀yn∃zG ) = 1.

(2) Assume F = ∀y1∀y2 · · · ∀yn∃zG is satisfiable.

Then there exists a structure A such that

For all d1, . . . , dn ∈ UA, there exists a d ∈ UA such that:

A[y1/d1][y2/d2]···[yn/dn][z/d ](G ) = 1

Thus, for all d1, . . . , dn ∈ UA, we can choose a u(d1, . . . , dn) ∈ UA such
that

A[y1/d1][y2/d2]···[yn/dn][z/u(d1,...,dn)](G ) = 1
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Proof that Skolemform(F ) is satisfiable iff F is satisfiable

We now define a structure A′ as follows:

A′ is identical to A except

f A
′
(d1, . . . , dn) = u(d1, . . . , dn) for all d1, . . . , dn ∈ UA.

Then it holds that:

For all d1, . . . , dn ∈ UA = UA′ it holds:

A′
[y1/d1][y2/d2]···[yn/dn][z/fA′ (d1,...,dn)]

(G ) = 1

Using the transfer lemma (replace A → A′[y1/d1][y2/d2]···[yn/dn],

t → f (y1, y2, . . . , yn), F → G , x → z), it follows that:

For all d1, . . . , dn ∈ UA′ it holds:

A′[y1/d1][y2/d2]···[yn/dn] (G [z/f (y1, y2, . . . , yn)]) = 1

and thus A′ (∀y1∀y2 · · · ∀ynG [z/f (y1, y2, . . . , yn)]) = 1.
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Remarks on Skolem Form

The Skolem form of a formula F is generally not equivalent to F .

Example: The Skolem form of ∃xP(x) is P(a) for a constant a.

However: ∃xP(x) 6≡ P(a)

The above proof (Point (1)) even shows that every model of the
Skolem form of F is also a model of F .

Furthermore, we obtain a model of the Skolem form of F by extending
a model of F with an interpretation of the new function symbols
(which are introduced during the formation of the Skolem form).
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Skolem Form of a Set of Formulas

Let M be a (generally infinite) set of predicate logic formulas, all of which
are in BPF without loss of generality.

We define the Skolem form of M as the set M ′ of Skolem formulas
obtained as follows:

We replace each formula F in M with its Skolem form. We ensure that we
introduce disjoint sets of new function symbols for different formulas
F ,G ∈ M.

We then obtain:

Theorem 48

Let M be a (generally infinite) set of predicate logic formulas in BPF.
Then M is satisfiable if and only if the Skolem form of M is satisfiable.
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Skolem Form of a Set of Formulas

Proof: Let M ′ = {F ′ | F ∈ M} be the Skolem form of M, where F ′ is a
Skolem form of F .

(1) Let A be a model of M ′, and let F ∈ M be arbitrary.

Then, A is a model of F ′, and thus, it is also a model of F .

(2) Let A be a model of M.

For a formula F ∈ M, let fun(F ) be the set of new function symbols
introduced in the formation of the Skolem form F ′ of F .

Thus, we have fun(F ) ∩ fun(G ) = ∅ for F 6= G from M.

We obtain a model of F ′ ∈ M ′ by expanding A with an interpretation of
the symbols from fun(F ).

These expansions then provide a model of M ′.
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Clause Form

A statement (= closed formula) is in clause form if it has the structure

∀y1∀y2 · · · ∀yn F

where F contains no quantifiers and is in CNF, with yi 6= yj for i 6= j .

A statement in clause form can be represented as a set of clauses.

Example: The following statement is in clause form:

∀y1∀y2∀y3∀y4((P(y1)∨¬Q(y2, y4))∧(Q(y1, y3)∨¬P(y3))∧(Q(y2, y2)∨P(y4)))
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Transformation of Any Formula into a Statement in Clause
Form

Given: a predicate logic formula F (possibly containing free variables).

1. Simplify F by systematically renaming the bound variables. This
produces a formula F1 that is equivalent to F .

2. Let y1, y2, . . . , yn be the free variables occurring in F or F1. Replace
F1 with F2 = F1[y1/a1, y2/a2, . . . , yn/an], where a1, . . . , an are
distinct constants that do not occur in F1. Then, F2 is a statement
and is satisfiable if and only if F1 is satisfiable.

3. Create an equivalent statement F3 in prenex form that is also
satisfiability-equivalent to F2 (and thus to F ).

4. Eliminate the existential quantifiers by converting to the Skolem form
of F3. Let this be F4, which is satisfiability-equivalent to F3 and hence
also to F .

5. Transform the matrix of F4 into CNF (and write this formula F5 as a
set of clauses).
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Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x))

∃x∃y(Cube(y) ∨ BackOf(x , y))

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x))

¬∃xCube(x) ↔ ∀x¬Cube(x)
∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y))

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y))

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x))

¬∃xCube(x) ↔ ∀x¬Cube(x)
∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y))

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y)) Y Y N N

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x))

¬∃xCube(x) ↔ ∀x¬Cube(x)
∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y))

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y)) Y Y N N

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x)) Y Y Y Y

¬∃xCube(x) ↔ ∀x¬Cube(x)
∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y))

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y)) Y Y N N

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x)) Y Y Y Y

¬∃xCube(x) ↔ ∀x¬Cube(x) N N N N

∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y))

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y)) Y Y N N

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x)) Y Y Y Y

¬∃xCube(x) ↔ ∀x¬Cube(x) N N N N

∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y)) Y N N N

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y)) Y Y N N

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x)) Y Y Y Y

¬∃xCube(x) ↔ ∀x¬Cube(x) N N N N

∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y)) Y N N N

(Cube(a) ∧ ∀xSmall(x)) → Small(a) Y N N N

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Exercise on Normal Forms

Which of these formulas are cleaned, in prenex form, in Skolem form, and
in clause form?

Cln. P S Cls.

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x)) Y Y Y Y

∃x∃y(Cube(y) ∨ BackOf(x , y)) Y Y N N

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x)) Y Y Y Y

¬∃xCube(x) ↔ ∀x¬Cube(x) N N N N

∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y)) Y N N N

(Cube(a) ∧ ∀xSmall(x)) → Small(a) Y N N N

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b) Y N N N

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 349 / 419



Herbrand Universe

Let F ⊆ {f ki | i , k ≥ 0} be a set of function symbols that contains at least
one constant.

The Herbrand Universe D(F) is the set of all variable-free terms that can
be formed from the symbols in F .

More formally, D(F) is defined inductively as follows:

For every n-ary function symbol f ∈ F (with n = 0 possible) and terms
t1, t2, . . . , tn ∈ D(F), the term f (t1, t2, . . . , tn) also belongs to D(F).

Example: D({f , a}) = {a, f (a), f (f (a)), f (f (f (a))), . . .}

Note: D(F) is finite if and only if F contains only constants.
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Herbrand Structure

A Herbrand Structure is a structure A = (UA, IA) such that there exists a
set F ⊆ {f ki | i , k ≥ 0} of function symbols with:

F contains a constant.
UA = D(F).
A function symbol f belongs to Def(IA) if and only if f ∈ F .
For all f ∈ F (with n-arity) and t1, t2, . . . , tn ∈ D(F), we have

f A(t1, t2, . . . , tn) = f (t1, t2, . . . , tn).

For every Herbrand structure A as above and all t ∈ D(F), it holds that
A(t) = t.

Let M be a set of formulas. A Herbrand Model of M is a model of M that
is also a Herbrand structure. The fundamental theorem of predicate logic:

Theorem 49

Let M be a set of statements in Skolem form. Then it holds:

M is satisfiable ⇐⇒ M has a Herbrand model.
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M satisfiable if and only if M has a Herbrand model

Proof:

If M has a Herbrand model, then M is naturally satisfiable.

Now assume that M is satisfiable and let A = (UA, IA) be a model of M.

By possibly replacing M with M ∪ {P(a) ∨ ¬P(a)} (where a is a constant
and P is a unary predicate symbol), we can assume that there is a
constant in M.

Let F (and P) be the set of all function symbols (and predicate symbols)
that occur in M.

We now define a Herbrand structure B = (D(F), IB):

We still need to define IB for the predicate symbols in P.

For all n-ary predicates P ∈ P and all terms t1, . . . , tn ∈ D(F), we set:

(t1, . . . , tn) ∈ PB if and only if (A(t1), . . . ,A(tn)) ∈ PA.
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M satisfiable if and only if M has a Herbrand model

Claim: For every statement F in Skolem form, built from the symbols in
F ∪ P, it holds that: If A(F ) = 1, then also B(F ) = 1.

If F contains no quantifiers, we even show A(F ) = B(F ) by induction on
the structure of F :

F is atomic, i.e., F = P(t1, . . . , tn) for a predicate symbol P ∈ P and
variable-free terms t1, . . . , tn ∈ D(F).
(Note: F is a statement, meaning F contains no free variables.)

A(F ) = 1 if and only if (A(t1), . . . ,A(tn)) ∈ PA

if and only if (t1, . . . , tn) ∈ PB

if and only if (B(t1), . . . ,B(tn)) ∈ PB

if and only if B(F ) = 1

F = ¬G : A(F ) = 1 if and only if A(G ) = 0 if and only if B(G ) =
0 if and only if B(F ) = 1

F = F1 ∧ F2 or F = F1 ∨ F2: An analogous argument as for F = ¬G .
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M satisfiable if and only if M has a Herbrand model

Thus, the case where F contains no quantifiers has been handled.

We handle the general case by induction on the number n of quantifiers in
F .

Note: Since F is in Skolem form, F is of the form ∀y1 · · · ∀ynH, where H
contains no quantifiers.

Induction Base: n = 0:

From A(F ) = 1, it follows that B(F ) = 1, see the previous slide.

Induction Step: Let F = ∀xG .

From A(∀xG ) = 1, it follows:

For all d ∈ UA, A[x/d ](G ) = 1

Due to {A(t) | t ∈ D(F)} ⊆ UA, it follows:

For all t ∈ D(F), A[x/A(t)](G ) = 1
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M satisfiable if and only if M has a Herbrand model

With the transfer lemma, it follows that:

For all t ∈ D(F), A(G [x/t]) = 1.

The statement G [x/t] is again in Skolem form and has only n − 1
quantifiers.

By the induction hypothesis, it holds that:

For all t ∈ D(F), B(G [x/t]) = 1.

Again, by the transfer lemma, it follows that:

For all t ∈ D(F), B[x/B(t)](G ) = B[x/t](G ) = 1

and thus B(F ) = B(∀xG ) = 1.

Remark: In the proof just conducted, it is important that all F ∈ M are in
Skolem form, and thus contain no existential quantifiers.
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The Löwenheim-Skolem Theorem

A set A is countable if A is finite or if there exists a bijection f : N→ A.

Note: The universe D(F) of a Herbrand structure is countable.

Löwenheim-Skolem Theorem

Every satisfiable set of statements in predicate logic has a model with a
countable domain (a countable model).

Proof: Let M be a satisfiable set of statements in predicate logic.

Let M ′ be the Skolem form of M.

Theorem 48 (Slide 345) =⇒ M ′ is satisfiable.

Theorem 49 (Slide 351) =⇒ M ′ has a Herbrand model B.

Remark on Slide 344 =⇒ B is also a model of M.

Furthermore, B is countable.
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Herbrand Expansion

Let M be a set of statements in Skolem form.

Let F be the set of function symbols occurring in formulas from M, and
let a be a fixed constant.

We define:

D(M) =

{
D(F) if F contains a constant

D(F ∪ {a}) otherwise

In the following, F ∗ will always denote a quantifier-free formula.

The set of statements

E (M) = {F ∗[y1/t1][y2/t2] . . . [yn/tn] | ∀y1∀y2 · · · ∀ynF ∗ ∈ M,

t1, t2, . . . , tn ∈ D(M)}

is the Herbrand Expansion of M.
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Herbrand Expansion

The formulas in E (M) are formed by substituting terms from D(M) for
the variables in F (F ∈ M) in every possible way.

Note: If M is satisfiable, there exists a Herbrand model of M with
universe D(M).

Example: For M = {∀x∀y(P(a, x) ∧ ¬R(f (y)))}, we have

D(M) = {a, f (a), f (f (a)), . . .}.

The Herbrand expansion of M is therefore

E (M) = {P(a, a) ∧ ¬R(f (a)),

P(a, f (a)) ∧ ¬R(f (a)),

P(a, a) ∧ ¬R(f (f (a))),

P(a, f (a)) ∧ ¬R(f (f (a))), . . .}
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Herbrand Expansion

We consider the Herbrand expansion of M in the following as a set of
propositional formulas.

The atomic formulas here are of the form P(t1, . . . , tn), where P is a
predicate symbol occurring in M and t1, . . . , tn ∈ D(M).

In the example from the previous slide, the Herbrand expansion

E (M) = {P(a, f n(a)) ∧ ¬R(f m(a)) | n ≥ 0,m ≥ 1}

(where f n(a) is an abbreviation for the term f (f (· · · f (a) · · · )), with f
occurring exactly n times) contains exactly the atomic formulas from the
set

{P(a, f n(a)) | n ≥ 0} ∪ {R(f m(a)) | m ≥ 1}.
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Herbrand Expansion

The assignment B with

B(P(a, f n(a))) = 1 for n ≥ 0 and B(R(f m(a))) = 0 for m ≥ 1

clearly also satisfies E (M) in the propositional sense: B(G ) = 1 for all
G ∈ E (M).

The (only) formula ∀x∀y(P(a, x) ∧ ¬R(f (y))) ∈ M is also satisfiable. As
the following theorem shows, this is no coincidence.
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Gödel-Herbrand-Skolem Theorem

Gödel-Herbrand-Skolem Theorem

Let M be a set of statements in Skolem form. Then M is satisfiable if and
only if the formula set E (M) (in the propositional sense) is satisfiable.

Proof: It suffices to show that M has a Herbrand model with universe
D(M) if and only if E (M) is satisfiable:

A is a Herbrand model for M with universe D(M)

iff for all ∀y1∀y2 · · · ∀ynF ∗ ∈ M, t1, t2, . . . , tn ∈ D(M), we have
A[y1/t1][y2/t2]...[yn/tn](F

∗) = 1

iff for all ∀y1∀y2 · · · ∀ynF ∗ ∈ M, t1, t2, . . . , tn ∈ D(M), we have
A(F ∗[y1/t1][y2/t2] . . . [yn/tn]) = 1

iff for all G ∈ E (M), we have A(G ) = 1

iff A is a model for E (M)
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Gödel-Herbrand-Skolem Theorem

In this chain of equivalences, A is a model of E (M) in the sense of
predicate logic.

From this, we can easily obtain a model for E (M) in the sense of
propositional logic:
For all atomic formulas P(t1, . . . , tn) with t1, . . . , tn ∈ D(M), we have

B(P(t1, . . . , tn)) = A(P(t1, . . . , tn)). (16)

Thus, it follows that:

A is a model for E (M) iff B is a model for E (M)

Conversely, a model B for E (M) in the sense of propositional logic also
yields (via the rule (16)) a (Herbrand) model A for E (M) in the sense of
predicate logic.
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Theorem of Predicate Logic on Finiteness

Theorem of Predicate Logic on Finiteness (Gödel 1930)

A set M of predicate logic formulas is satisfiable if and only if every finite
subset of M is satisfiable.

Proof: It suffices to show the “if” direction.

First, we replace each free variable in a formula F ∈ M with a new
constant a that does not occur in M (as shown on slide 348).

Important: If x occurs freely in both F ∈ M and G ∈ M, then x must be
replaced by the same constant a in both formulas.

Let M ′ be the new set of formulas.

Then M is satisfiable if and only if M ′ is satisfiable.
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Theorem of Predicate Logic on Finiteness

Now form the Skolem form M ′′ of M ′ (see slide 345).

According to Theorem 48 (slide 345), M ′′ is satisfiable if and only if M ′

(or M) is satisfiable.

We can therefore assume without loss of generality that M is a set of
statements in Skolem form.

Let each finite subset N of M be satisfiable.

Gödel-Herbrand-Skolem Theorem ⇒ For every finite subset N ⊆ M, the
Herbrand expansion E (N) is satisfiable in the propositional sense.

In particular, every finite subset of E (M) is satisfiable in the propositional
sense (for every finite set A ⊆ E (M), there exists a finite set B ⊆ M with
A ⊆ E (B)).

The Compactness Theorem of Propositional Logic (slide 291) ⇒ E (M) is
satisfiable.

Gödel-Herbrand-Skolem Theorem ⇒ M is satisfiable.
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Herbrand’s Theorem

Herbrand’s Theorem

A statement F in Skolem form is unsatisfiable if and only if there is a finite
subset of E (F ) that is unsatisfiable (in the propositional sense).

Proof: Immediate consequence of the Gödel-Herbrand-Skolem Theorem
and the Compactness Theorem of Propositional Logic (slide 291).
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Gilmore’s Algorithm

Let F be a predicate logic statement in Skolem form, and let
{F1,F2,F3, . . . , } be an enumeration of the Herbrand expansion E (F ).

Gilmore’s Algorithm

Input: F
n := 0;
repeat n := n + 1;
until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;
Output “unsatisfiable” and stop.

If F is unsatisfiable, then by Herbrand’s Theorem, there exists a finite set
M ⊆ E (F ) that is (in the sense of propositional logic) unsatisfiable.

Then there exists an n such that M ⊆ {F1, . . . ,Fn}.

Thus, {F1, . . . ,Fn} is unsatisfiable, and consequently F1 ∧ F2 ∧ . . . ∧ Fn is
unsatisfiable.
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Valid Formulas are Semi-Decidable

Conversely, if F is satisfiable, then E (F ) is satisfiable, and thus every
formula F1 ∧ F2 ∧ . . . ∧ Fn is satisfiable.

We thus obtain:

Theorem

Let F be a predicate logic statement in Skolem form. Then the following
holds:

If the input formula F is unsatisfiable, then Gilmore’s algorithm
terminates after a finite time with the output “unsatisfiable”.

If the input formula F is satisfiable, then Gilmore’s algorithm does not
terminate, i.e., it runs indefinitely.

The set of unsatisfiable predicate logic statements is thus semi-decidable
(recursively enumerable).
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The Satisfiability Problem is Undecidable

Corollary

The set of valid predicate logic statements is semi-decidable.

Proof: F is valid if and only if ¬F is unsatisfiable.

In the Advanced Logic course (every summer semester), it will be shown
that the set of (un)satisfiable predicate logic statements is undecidable.
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Resolution in Predicate Logic

Although Gilmore’s algorithm works, it is impractical in practice.

Therefore, our program for the next hours is:
What does Resolution look like in predicate logic?

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 369 / 419



Review: Resolution in Propositional Logic

Resolution Step:

{L1, . . . , Ln,A} {L′1, . . . , L′m,¬A}

{L1, . . . , Ln, L
′
1, . . . , L

′
m}

Mini-Example:

{¬A,B} {A} {¬B}

{B}

2

A set of clauses is unsatisfiable if and only if the empty clause can be
derived.
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Adjustment of Gilmore’s Algorithm

Gilmore’s Algorithm:
Let F be a predicate logic statement in Skolem form, and let
{F1,F2,F3, . . .} be a enumeration of E (F ).

Input: F
n := 0;
repeat n := n + 1;
until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;

(this can be tested using methods from propositional logic, e.g., truth
tables,

or other techniques)
Output “unsatisfiable” and stop.

“Methods of propositional logic” ; we use Resolution for the
unsatisfiability test.
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Definition of Res(F ) (Review)

Definition: Let F be a set of clauses. Then Res(F ) is defined as

Res(F ) = F ∪ {R | R is a resolvent of two clauses in F}.

Additionally, we set:

Res0(F ) = F

Resn+1(F ) = Res(Resn(F )) for n ≥ 0

Finally, let

Res∗(F ) =
⋃
n≥0

Resn(F ).
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Basic Resolution Algorithm

Let F1,F2,F3, . . . be an enumeration of the Herbrand expansion of F .

Let F be in clause form, i.e., F = ∀y1∀y2 · · · ∀ynF ∗, where F ∗ is in CNF.

We consider F ∗ as a set of clauses, then each Fi is also a set of clauses.

We already know: F is unsatisfiable if and only if there exists an n such
that F1 ∧ F2 ∧ · · · ∧ Fn is unsatisfiable.

Note: F1 ∧ F2 ∧ · · · ∧ Fn is again in CNF (in terms of propositional logic)
and can be identified with the set of clauses

⋃n
i=1 Fi .

From propositional logic, we know:

F1 ∧ F2 ∧ · · · ∧ Fn is unsatisfiable ⇐⇒ Res∗
( n⋃

i=1

Fi

)
is unsatisfiable

⇐⇒ 2 ∈ Res∗
( n⋃

i=1

Fi

)
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Basic Resolution Algorithm

This leads to the Basic Resolution Algorithm:

Input: a formula F in Skolem form with the matrix F ∗ in CNF
i := 0;
M := ∅;
repeat

i := i + 1; M := M ∪ Fi ; M := Res∗(M)
until 2 ∈ M
Output “unsatisfiable” and stop.

Why the name Basic Resolution?

In contrast to later methods, terms without variables (also known as basic
terms) are substituted to obtain the formulas of the Herbrand expansion.
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Basic Resolution Algorithm

Example: Consider the following formula in clause form:

F = ∀x∀y((P(x) ∨ ¬Q(y , a)) ∧ (Q(f (x), y) ∨ ¬P(y)))

The first three formulas of the Herbrand expansion of F are:

F1 = (P(a) ∨ ¬Q(a, a)) ∧ (Q(f (a), a) ∨ ¬P(a)),

F2 = (P(f (a)) ∨ ¬Q(a, a)) ∧ (Q(f (f (a)), a) ∨ ¬P(a)),

F3 = (P(a) ∨ ¬Q(f (a), a)) ∧ (Q(f (a), f (a)) ∨ ¬P(f (a)))

In set notation:

F1 = {{P(a),¬Q(a, a)}, {Q(f (a), a),¬P(a)}},
F2 = {{P(f (a)),¬Q(a, a)}, {Q(f (f (a)), a),¬P(a)}},
F3 = {{P(a),¬Q(f (a), a)}, {Q(f (a), f (a)),¬P(f (a))}}
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Basic Resolution Algorithm

Then, after the first three iterations through the repeat loop, we obtain
the following values for the set variable M:

After 1st iteration:

{P(a),¬Q(a, a)}, {Q(f (a), a),¬P(a)},
{¬Q(a, a),Q(f (a), a)}

After 2nd iteration:

{P(a),¬Q(a, a)}, {Q(f (a), a),¬P(a)}, {¬Q(a, a),Q(f (a), a)},
{P(f (a)),¬Q(a, a)}, {Q(f (f (a)), a),¬P(a)}
{¬Q(a, a),Q(f (f (a)), a)}
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Basic Resolution Algorithm

After 3rd iteration:

{P(a),¬Q(a, a)}, {Q(f (a), a),¬P(a)}, {¬Q(a, a),Q(f (a), a)},
{P(f (a)),¬Q(a, a)}, {Q(f (f (a)), a),¬P(a)},
{¬Q(a, a),Q(f (f (a)), a)},
{P(a),¬Q(f (a), a)}, {Q(f (a), f (a)),¬P(f (a))},
{Q(f (a), a),¬Q(f (a), a)}, {Q(f (f (a)), a),¬Q(f (a), a)},
{P(a),¬P(a)}, {¬Q(a, a),P(a)}, {Q(f (a), f (a)),¬Q(a, a)}
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Basic Resolution Theorem

The basic resolution algorithm can also be reformulated into the following
basic resolution theorem:

Basic Resolution Theorem

A formula in Skolem form F = ∀y1 . . . ∀ykF ∗ with the matrix F ∗ in CNF
is unsatisfiable if and only if there exists a sequence of clauses K1, . . . ,Kn

with the following properties:

Kn is the empty clause

For all i ∈ {1, . . . , n} holds:

either Ki is a basic instance of a clause K ∈ F ∗, i.e.
Ki = K [y1/t1] . . . [yk/tk ] with ti ∈ D(F )
or Ki is a (propositional) resolvent of two clauses Ka,Kb with a < i and
b < i

Omitting clauses and resolution steps that do not contribute to deriving
the empty clause.
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Substitutions

A substitution sub is a mapping from a finite set of variables to the set of
all terms.

Let Def(sub) denote the domain of the substitution sub.

For a term t, we define the term t sub (application of the substitution sub
to the term t) inductively as follows:

x sub = sub(x), if x ∈ Def(sub).

y sub = y , if y 6∈ Def(sub).

f (t1, . . . , tn) sub = f (t1 sub, . . . , tn sub) for terms t1, . . . , tn and an
n-ary function symbol f
(this implies a sub = a, if a is a constant)

For a literal F (= possibly negated atomic formula), we define F sub as
follows, where P is an n-ary predicate symbol and t1, . . . , tn are terms:

P(t1, . . . , tn) sub = P(t1 sub, . . . , tn sub)

¬P(t1, . . . , tn) sub = ¬P(t1sub, . . . , tnsub)
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Substitutions and Replacements

A replacement [x/t] (x is a variable, t is a term) can be identified with the
substitution sub with Def(sub) = {x} and sub(x) = t.

A substitution sub with Def(sub) = {y1, . . . , yn} (each yi is a variable)
can also be written as a sequence of replacements [y1/t1][y2/t2] · · · [yn/tn].

Note: Replacements are performed from left to right!

Example: The substitution sub with Def(sub) = {x , y , z} and

sub(x) = f (h(w)), sub(y) = g(a, h(w)), sub(z) = h(w)

is equal to the substitution

[x/f (z)] [y/g(a, z)] [z/h(w)].

Composition of substitutions: For sub1sub2 the substitution sub1 is
applied first, followed by sub2.
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Commuting Substitutions

Lemma (Rule for Commuting Substitutions)

If (i) x 6∈ Def(sub) and (ii) x does not occur in any of the terms y sub
with y ∈ Def(sub), then

[x/t]sub = sub[x/t sub].

Examples:

[x/f (y)] [y/g(z)]︸ ︷︷ ︸
sub

= [y/g(z)]︸ ︷︷ ︸
sub

[x/f (g(z))]

but [x/f (y)] [x/g(z)]︸ ︷︷ ︸
sub

6= [x/g(z)]︸ ︷︷ ︸
sub

[x/f (y)]
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Commuting Substitutions

Proof of the Lemma:

We show t ′[x/t]sub = t ′sub[x/t sub] for all terms t ′ by induction on the
structure of t ′.

t ′ = x :
Then we have x [x/t]sub = t sub and likewise
x sub[x/t sub] = x [x/t sub] = t sub, since x sub = x because
x 6∈ Def(sub).

t ′ = y for a variable y 6= x :
Then we have y [x/t]sub = y sub and likewise y sub[x/t sub] = y sub,
since x does not occur in y sub.

t ′ = f (t1, . . . , tn):
This case can be immediately handled with the induction hypothesis
for t1, . . . , tn.
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Unifier/Most General Unifier

Let L = {L1, . . . , Lk} (k ≥ 1) be a set of literals (i.e., possibly negated
atomic predicate logic formulas).

A substitution sub is called a unifier of L if

L1sub = L2sub = · · · = Lksub

This is equivalent to |L sub| = 1, where L sub = {L1sub, . . . , Lksub}.

A unifier sub of L is called the most general unifier of L if for any unifier
sub′ of L there exists a substitution s such that sub′ = sub s.
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Exercise

unifiable? Yes No

P(f (x)) P(g(y))

P(x) P(f (y))

P(x , f (y)) P(f (u), z)

P(x , f (y)) P(f (u), f (z))

P(x , f (x)) P(f (y), y)

P(x , g(x), g2(x)) P(f (z),w , g(w))

P(x , f (y)) P(g(y), f (a)) P(g(a), z)
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Exercise

unifiable? Yes No

P(f (x)) P(g(y)) X
P(x) P(f (y)) X
P(x , f (y)) P(f (u), z) X
P(x , f (y)) P(f (u), f (z)) X
P(x , f (x)) P(f (y), y) X
P(x , g(x), g2(x)) P(f (z),w , g(w)) X

P(x , f (y)) P(g(y), f (a)) P(g(a), z) X
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Exercise

A unifier for {P(x , g(x), g2(x)),P(f (z),w , g(w))}:

x 7→ f (z), w 7→ g(f (z))

A unifier for {P(x , f (y)),P(g(y), f (a)),P(g(a), z)}:

x 7→ g(a), y 7→ a, z 7→ f (a)
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Unification Algorithm

Input: a non-empty finite set of literals L 6= ∅
sub := []; (empty substitution, i.e., Def([]) = ∅)
while |L sub| > 1 do

Take two different literals L1, L2 ∈ L sub.
Search for the first position p where L1 and L2 differ.
if neither of the symbols at position p is a variable then

stop with “not unifiable”
else let x be the variable and t the term in the other literal that starts

at position p (possibly also a variable)
if x occurs in t then

stop with “not unifiable”
else sub := sub [x/t]

endwhile

Output: sub
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Unification Algorithm

Examples: (the position p is marked in red)

L1 = P(f (a, x), f (a, y), g(z))

L2 = P(f (a, x), g(x), g(z))

Here the algorithm stops with “not unifiable”.

L1 = P(f (a, x), y , g(z))

L2 = P(f (a, x), g(x), g(z))

Here the term t = g(x) and we set sub := sub [y/g(x)].

L1 = P(f (a, x), x , g(z))

L2 = P(f (a, x), g(x), g(z))

Here the algorithm stops with “not unifiable”.
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Correctness of the Unification Algorithm

Theorem

It holds:

(A) The unification algorithm terminates for every input L.

(B) If the input L is not unifiable, then the unification algorithm
terminates with the output “not unifiable”.

(C) If the input L is unifiable, then the unification algorithm always finds
a most general unifier of L.

(C) particularly implies that every unifiable set of literals has a most
general unifier.
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Proof of the Correctness of the Unification Algorithm

Proof:

(A) The unification algorithm terminates for every input L.

This holds because the number of variables present in L sub decreases in
each step.

Consider a single iteration of the while loop.

If the algorithm does not terminate in this iteration, then sub is set to
sub [x/t].

In this case, x is present in L sub and the term t does not contain x .

Thus, x no longer appears in L sub [x/t].
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Proof of the Correctness of the Unification Algorithm

(B) If the input L is not unifiable, then the unification algorithm
terminates with the output “not unifiable”.

Assume that the input L is not unifiable.

If the condition |L sub| > 1 in the while loop were ever violated, then L
would indeed be unifiable.

Since, according to (A), the algorithm terminates for input L, it must
eventually output “not unifiable”.
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Proof of the Correctness of the Unification Algorithm

(C) If the input L is unifiable, then the unification algorithm always finds a
most general unifier of L.

Assume L is unifiable, and let subi (i ≥ 0) be the substitution computed
after the i-th iteration of the while loop.

Suppose the algorithm completes N iterations of the while loop.

Note: sub0 := [] and subN is the output of the algorithm (if it exists).

Claim:

(1) For every unifier sub′ of L and for all 0 ≤ i ≤ N, there exists a
substitution si such that sub′ = subi si .

(2) In the i-th iteration of the while loop (1 ≤ i ≤ N), the algorithm
either terminates successfully (and outputs the substitution subN) or
enters both else branches.
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Proof of the Correctness of the Unification Algorithm

Proof of the Claim:

Let sub′ be a unifier of L.

We first consider by induction over i the case where L and
{y sub′ | y ∈ Def(sub′)} have no common variables.

We will choose si as a restriction of sub′, i.e., Def(si ) ⊆ Def(sub′) and
si (x) = sub′(x) for all x ∈ Def(si ).

Then, L and {y si | y ∈ Def(si )} also have no common variables.

Base Case: i = 0.

It holds that sub′ = [] sub′ = subi sub
′. Thus, we can set s0 = sub′.
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Proof of the Correctness of the Unification Algorithm

Inductive Step: Let i > 0 and assume that (1) and (2) have already been
proven for i − 1.

By the induction hypothesis, there exists a restriction si−1 of sub′ such
that sub′ = subi−1si−1.

If |L subi−1| = 1, then the algorithm terminates in the i-th iteration.

Now, let |L subi−1| > 1.

Consider the first position p where two literals L1 and L2 from L subi−1

differ.

Since |L subi−1si−1| = |L sub′| = 1, it holds that L1si−1 = L2si−1.

Thus, at position p in L1 and L2, there cannot be two different function
symbols.

Suppose that in L1 at position p there is a variable x , and in L2 at position
p, a term t 6= x begins.
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Proof of the Correctness of the Unification Algorithm

Then x si−1 = t si−1 holds.

The variable x cannot appear in t:

This is clear if t is a variable (since t 6= x) or a constant.

If t has the form f (t1, . . . , tn) with n ≥ 1, then it must hold that
x si−1 = t si−1 = f (t1si−1, . . . , tnsi−1).

If x appeared in one of the terms ti , then f (t1si−1, . . . , tnsi−1) would
contain more symbols than x si−1.

Thus, the two else branches in the body of the while loop are entered
(this proves (2)).

It holds that subi = subi−1[x/t].

Let si be the restriction of si−1 to all variables different from x .
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Proof of the Correctness of the Unification Algorithm

Then the following holds:

subi si = subi−1 [x/t] si

= subi−1 si [x/tsi ] (since x 6∈ Def(si ) and x does not appear in any of the

terms y si for y ∈ Def(si ))

= subi−1 si [x/t si−1] (since x does not appear in t)

= subi−1 si [x/x si−1] (since x si−1 = t si−1)

= subi−1 si−1 (definition of si and x does not appear in any of the

terms y si for y ∈ Def(si ))

= sub′ (inductive hypothesis)

This proves (1).

Thus, the case where L and {y sub′ | y ∈ Def(sub′)} have no common
variables is concluded.
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Proof of the Correctness of the Unification Algorithm

In the general case (sub′ is any unifier of L), let X be the set of all
variables that appear in {y sub′ | y ∈ Def(sub′)}.

Let Y be a set of variables with |X | = |Y |, such that Y and L have no
common variables.

Let u : X → Y be any bijection between X and Y .
We call u a variable renaming.

Then sub′u is also a unifier of L, such that L and
{y sub′u | y ∈ Def(sub′)} have no common variables.

Thus, for all 0 ≤ i ≤ N, there exists a substitution si such that
sub′u = subi si .

Therefore, sub′ = subi (siu
−1) holds.
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Proof of the Correctness of the Unification Algorithm

From (1) and (2), it now follows:

The algorithm terminates after N iterations through the while loop with a
unifier sub = subN .

If sub′ is any unifier of L, then, due to (1), there exists a substitution s
such that sub′ = sub s.

Thus, sub is a most general unifier of L.
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Example of the Unification Algorithm

Consider L = {P(f (z , g(a, y)), h(z)), P(f (f (u, v),w), h(f (a, b)))}

P(f (z , g(a, y)), h(z))

P(f (f (u, v),w), h(f (a, b))) sub = []

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v),w), h(f (a, b))) sub = [z/f (u, v)]

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v),w), h(f (a, b))) sub = [z/f (u, v)]

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v), g(a, y)), h(f (a, b))) sub = [z/f (u, v)][w/g(a, y)]
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Example of the Unification Algorithm

Consider L = {P(f (z , g(a, y)), h(z)), P(f (f (u, v),w), h(f (a, b)))}

P(f (z , g(a, y)), h(z))

P(f (f (u, v),w), h(f (a, b))) sub = []

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v),w), h(f (a, b))) sub = [z/f (u, v)]

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v),w), h(f (a, b))) sub = [z/f (u, v)]

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v), g(a, y)), h(f (a, b))) sub = [z/f (u, v)][w/g(a, y)]
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Example of the Unification Algorithm

P(f (f (u, v), g(a, y)), h(f (u, v)))

P(f (f (u, v), g(a, y)), h(f (a, b))) sub = [z/f (u, v)][w/g(a, y)]

P(f (f (a, v), g(a, y)), h(f (a, v)))

P(f (f (a, v), g(a, y)), h(f (a, b))) sub = [z/f (u, v)][w/g(a, y)][u/a]

P(f (f (a, v), g(a, y)), h(f (a, v)))

P(f (f (a, v), g(a, y)), h(f (a, b))) sub = [z/f (u, v)][w/g(a, y)][u/a]

P(f (f (a, b), g(a, y)), h(f (a, b)))

P(f (f (a, b), g(a, y)), h(f (a, b))) sub = [z/f (u, v)][w/g(a, y)][u/a][v/b]
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Complexity of the Unification Algorithm

Although the number of iterations through the while-loop in the
unification algorithm is bounded by the input length, the following applies:

Repeated substitution of terms can lead to the creation of very large terms.

In fact, the runtime of our unification algorithm is generally exponential in
the input length.

On the other hand, the following result holds:

Paterson, Wegman 1976

There exists a unification algorithm whose runtime is bounded linearly in
the input length.
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Predicate Logic Resolution

A clause R is called a predicate logic resolvent of two clauses K1 and K2 if
the following holds:

There exist variable renamings s1 and s2 such that K1s1 and K2s2

have no common variables.

There exist m, n ≥ 1 and literals L1, . . . , Lm from K1s1 and literals
L′1, . . . , L

′
n from K2s2 such that

L = {L1, . . . , Lm, L
′
1, . . . , L

′
n}

is unifiable. Let sub be the most general unifier of L.
(L denotes the negation of the literal L)

It holds that

R = ((K1s1 \ {L1, . . . , Lm}) ∪ (K2s2 \ {L′1, . . . , L′n}))sub.
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Example of a Predicate Logic Resolvent

Let
K1 = {P(f (x)), ¬Q(z), P(z)}
K2 = {¬P(x), R(g(x), a)}

For the variable renamings s1 = [] and s2 = [x/u], we have:

K1s1 = {P(f (x)), ¬Q(z), P(z)}
K2s2 = {¬P(u), R(g(u), a)}

These clauses have no common variables.

Let L1 = P(f (x)) ∈ K1s1, L2 = P(z) ∈ K1s1, and L′1 = ¬P(u) ∈ K2s2.

The set L = {L1, L2, L
′
1} = {¬P(f (x)),¬P(z),¬P(u)} is unifiable.

A most general unifier is sub = [z/f (x)][u/f (x)].

Thus,

((K1s1 \ {L1, L2}) ∪ (K2s2 \ {L′1}))sub = {¬Q(f (x)),R(g(f (x)), a)}

is a resolvent of K1 and K2.
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Correctness and Completeness

Two Questions:

If one can derive the empty clause 2 from a formula F using
predicate logic resolution, is F then unsatisfiable? (Correctness)

Can one always derive the empty clause from an unsatisfiable formula
F using predicate logic resolution? (Completeness)
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Exercise

Are these clauses resolvable?
How many possible resolvents are there?

K1 K2 Possibilities

{P(x),Q(x , y)} {¬P(f (x))}
{Q(g(x)),R(f (x))} {¬Q(f (x))}
{P(x),P(f (x))} {¬P(y),Q(y , z)}
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Exercise

Are these clauses resolvable?
How many possible resolvents are there?

K1 K2 Possibilities

{P(x),Q(x , y)} {¬P(f (x))} 1

{Q(g(x)),R(f (x))} {¬Q(f (x))}
{P(x),P(f (x))} {¬P(y),Q(y , z)}
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Exercise

Are these clauses resolvable?
How many possible resolvents are there?

K1 K2 Possibilities

{P(x),Q(x , y)} {¬P(f (x))} 1

{Q(g(x)),R(f (x))} {¬Q(f (x))} 0

{P(x),P(f (x))} {¬P(y),Q(y , z)}
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Exercise

Are these clauses resolvable?
How many possible resolvents are there?

K1 K2 Possibilities

{P(x),Q(x , y)} {¬P(f (x))} 1

{Q(g(x)),R(f (x))} {¬Q(f (x))} 0

{P(x),P(f (x))} {¬P(y),Q(y , z)} 2
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Lifting-Lemma

A ground instance of a literal L is a literal Lsub that contains no variables.

A ground instance of a clause K = {L1, . . . , Ln} is a clause
K sub = {L1sub, . . . , Lnsub}, which contains no variables.

Example: P(f (a), f (f (a)), g(a, b)) is a ground instance of the literal
P(x , f (x), g(a, y)).

Lifting-Lemma

Let K1,K2 be two predicate logic clauses and let K ′1,K
′
2 be two ground

instances of these clauses that are satisfiably resolvable and yield the
resolvent R ′.
Then there exists a predicate logic resolvent R of K1,K2, such that R ′ is a
ground instance of R.
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Lifting-Lemma

Visualization of the

Lifting-Lemma:

K1

��

K2

��

K ′1 R

��

K ′2

R ′

—: Resolution
→: Substitution

Example:

{¬P(f (x)),Q(x)}

[x/g(a)]
��

{P(f (g(y)))}

[y/a]
��

{¬P(f (g(a))),Q(g(a))} {Q(g(y))}

[y/a]
��

{P(f (g(a)))}

{Q(g(a))}
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Proof of the Lifting-Lemma

Proof:

Let s1 and s2 be variable renamings such that K1s1 and K2s2 have no
common variables.

K ′i is a ground instance of Ki . =⇒ K ′i is a ground instance of Ki si .

Let subi be a substitution such that K ′i = Ki si subi .

Assuming without loss of generality for i ∈ {1, 2}:
1 Def(subi ) is the set of variables occurring in Ki si .

2 For all x ∈ Def(subi ), the term subi (x) contains no variables (i.e.,
subi is a ground substitution).

From (1), it follows in particular that Def(sub1) ∩Def(sub2) = ∅.

Let sub = sub1sub2 = sub2sub1.

It holds that K ′i = Ki si subi = Ki si sub.

By assumption, R ′ is a propositional resolvent of K ′1 and K ′2.
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Proof of the Lifting-Lemma

Thus, there exist L ∈ K ′1 = K1s1 sub and L ∈ K ′2 = K2s2 sub such that

R ′ = (K ′1 \ {L}) ∪ (K ′2 \ {L}).

Let L1, . . . , Lm ∈ K1s1 (with m ≥ 1) be all literals from K1s1 satisfying

L = L1sub = · · · = Lmsub.

Let L′1, . . . , L
′
n ∈ K2s2 (with n ≥ 1) be all literals from K2s2 satisfying

L = L′1sub = · · · = L′nsub.

Thus, sub is a unifier of the literal set

L = {L1, . . . , Lm, L
′
1, . . . , L

′
n}

and the clauses K1 and K2 are predicate-logically resolvable.

Let sub0 be a most general unifier of L.
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Proof of the Lifting-Lemma

Then,

R = ((K1s1 \ {L1, . . . , Lm}) ∪ (K2s2 \ {L′1, . . . , L′n}))sub0

is a predicate-logical resolvent of K1 and K2.

Since sub0 is the most general unifier of L and sub is a unifier of L, there
exists a substitution s such that sub0 s = sub. It follows that

R ′ = (K ′1 \ {L}) ∪ (K ′2 \ {L})
= (K1s1 sub \ {L}) ∪ (K2s2 sub \ {L})
= (K1s1 sub \ {L1sub, . . . , Lmsub}) ∪ (K2s2 sub \ {L′1sub, . . . , L′nsub})

=

(
(K1s1 \ {L1, . . . , Lm}) ∪ (K2s2 \ {L′1, . . . , L′n})

)
sub

=

(
(K1s1 \ {L1, . . . , Lm}) ∪ (K2s2 \ {L′1, . . . , L′n})

)
sub0s

= R s

Thus, it has been shown that R ′ is a ground instance of R.
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Resolution Theorem

Resolution Theorem of Predicate Logic

Let F be a formula in Skolem form with a matrix F ∗ in CNF. Then: F is
unsatisfiable if and only if 2 ∈ Res∗(F ∗).

For the proof of the resolution theorem, we need the following concept:

For a formula H with free variables x1, . . . , xn, we denote

∀H = ∀x1∀x2 · · · ∀xnH

as its universal closure.
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Lemmas on Universal Closure

Lemma

Let F be a formula in Skolem form, whose matrix F ∗ is in CNF. Then:

F ≡ ∀F ∗ ≡
∧

K∈F∗
∀K

Proof: Since F is a formula (i.e., has no free variables), we have F = ∀F ∗.
Since F ∗ is in CNF, it holds that

F ∗ ≡
∧

K∈F∗
K .

The lemma thus follows from the equivalence
∀y(G ∧ H) ≡ ∀yG ∧ ∀yH.

Example:

F ∗ = P(x , y) ∧ ¬Q(y , x)

F ≡ ∀x∀y(P(x , y) ∧ ¬Q(y , x)) ≡ ∀x∀yP(x , y) ∧ ∀x∀y(¬Q(y , x))
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Lemmas on Universal Closure

Lemma

Let R be the resolvent of two clauses K1 and K2. Then ∀R is a
consequence of ∀K1 ∧ ∀K2.

Proof:

Let A be a model of ∀K1 and ∀K2: A(∀K1) = A(∀K2) = 1.

Let
R = ((K1s1 \ {L1, . . . , Lm}) ∪ (K2s2 \ {L′1, . . . , L′n}))sub

where L1, . . . , Lm ∈ K1s1, L′1, . . . , L
′
n ∈ K2s2, and sub is most general

unifier of
L = {L1, . . . , Lm, L

′
1, . . . , L

′
n}.

Let L = L1 sub = · · · = Lm sub = L′1 sub = · · · = L′n sub. Then we have

(K1s1 sub \ {L}) ∪ (K2s2 sub \ {L}) ⊆ R.
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Lemmas on Universal Closure

Assume that A(∀R) = 0.

Then there exists a structure A′ such that:

A′ is identical to A except for the values IA′(x) for the variables x
appearing in R.

A′(R) = 0.

Thus, it follows that

A′(K1s1 sub \ {L}) = A′(K2s2 sub \ {L}) = 0. (17)

From A(∀K1) = A(∀K2) = 1, we conclude

A′(K1s1 sub) = A′(K2s2 sub) = 1. (18)

Equations (17) and (18) together imply: A′(L) = A′(L) = 1.
Contradiction!
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Proof of the Resolution Theorem

Proof of the Resolution Theorem:

(A) Correctness: If 2 ∈ Res∗(F ∗), then F is unsatisfiable.

Assume 2 ∈ Res∗(F ∗).

From the lemmas just proven, it follows that 2 = ∀2 is a consequence of∧
K∈F∗ ∀K ≡ F .

Since 2 has no model, F cannot have a model either.

(B) Completeness: If F is unsatisfiable, then 2 ∈ Res∗(F ∗).

Assume F is unsatisfiable.

Markus Lohrey (Univ. Siegen) BuL Winter 23/24 414 / 419



Proof of the Resolution Theorem

From the basic resolution theorem, it follows that there is a sequence of
clauses K ′1, . . . ,K

′
n with the following properties:

K ′n is the empty clause.

For i = 1, . . . , n it holds:

K ′i is a ground instance of a clause K ∈ F ∗, i.e.,
K ′i = K [y1/t1] . . . [yk/tk ] with ti ∈ D(F ).
or K ′i is (propositional) resolvent of two clauses K ′a,K

′
b with a < i and

b < i .

For all i ∈ {1, . . . , n}, we provide a clause Ki such that K ′i is a ground
instance of Ki , and (K1, . . . ,Kn) is a predicate logical resolution derivation
of the empty clause Kn = 2 from the clauses in F ∗.

Consider an i ∈ {1, . . . , n} and let K1, . . . ,Ki−1 be already constructed.
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Proof of the Resolution Theorem

Case 1: K ′i is a ground instance of a clause K ∈ F ∗.

Define Ki = K .

Case 2: K ′i is a propositional resolvent of two clauses K ′a,K
′
b with a < i

and b < i .

From the lifting lemma, we obtain a predicate logical resolvent R of Ka

and Kb, such that K ′i is a ground instance of R.

Define Ki = R.
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Example I

Is the set of clauses

{{P(f (x))}, {¬P(x),Q(x , f (x))}, {¬Q(f (a), f (f (a)))}}

i.e., the statement

∀x
(
P(f (x)) ∧ (¬P(x) ∨ Q(x , f (x))) ∧ ¬Q(f (a), f (f (a)))

)
unsatisfiable?

Yes, here is a resolution derivation of the empty clause:

{P(f (x))} and {¬P(x),Q(x , f (x))} yield the resolvent {Q(f (x), f (f (x)))}

{Q(f (x), f (f (x)))} and {¬Q(f (a), f (f (a)))} yield the resolvent {} = 2.
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Example I

Is the set of clauses

{{P(f (x))}, {¬P(x),Q(x , f (x))}, {¬Q(f (a), f (f (a)))}}

i.e., the statement

∀x
(
P(f (x)) ∧ (¬P(x) ∨ Q(x , f (x))) ∧ ¬Q(f (a), f (f (a)))

)
unsatisfiable?

Yes, here is a resolution derivation of the empty clause:

{P(f (x))} and {¬P(x),Q(x , f (x))} yield the resolvent {Q(f (x), f (f (x)))}

{Q(f (x), f (f (x)))} and {¬Q(f (a), f (f (a)))} yield the resolvent {} = 2.
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Example II

We consider the following set of clauses
(example from Schöning’s book):

F = {{¬P(x),Q(x),R(x , f (x))}, {¬P(x),Q(x), S(f (x))}, {T (a)},
{P(a)}, {¬R(a, x),T (x)}, {¬T (x),¬Q(x)}, {¬T (x),¬S(x)}}
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Refinement of Resolution (Outlook)

Problems with predicate logical resolution:

Too many choices

Still too many dead ends

Combinatorial explosion of the search space

Solutions:

Strategies and Heuristics: Prohibiting certain resolution steps, thereby
restricting the search space

Caution: Completeness must not be lost in the process!
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