Exercise 4

Task 1. Show that the theorem of Immerman and Szelepcsényi (slide 51) is equivalent to NL = coNL by giving a suitable padding argument.

Task 2. Consider the complexity classes

$$\mathbf{EXP} = \bigcup_{k \in \mathbb{N}} \mathbf{DTIME}(2^{n^k}) \quad \text{and} \quad \mathbf{NEXP} = \bigcup_{k \in \mathbb{N}} \mathbf{NTIME}(2^{n^k}).$$

Prove that P = NP implies EXP = NEXP using the padding technique.

Task 3. Let $L \subseteq \Sigma^*$ be any language and let $f(n) = n^k$. Show that

$$\mathsf{Pad}_f(L) \leq_m^{\log} L.$$

Task 4. Which of the following statements are true provided that $L_1 \leq_m^{\log} L_2$?

- If L_1 is in \mathbf{P} , then L_2 is in \mathbf{P} .
- If L_1 is **NL**-hard, then L_2 is **NL**-hard.
- If L_2 is in \mathbf{L} , then L_1 is in \mathbf{L} .
- If L_2 is **NP**-complete, then L_1 is **NP**-complete.