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Part 1: basics

In the following we explain some basics:

▸ Turing machines (non-deterministic, deterministic)

▸ configurations

▸ computations,...

Most of this stuff we do not really need later, because:

▸ Turing machines can be defined in several equivalent ways.

▸ Turing machiens can be replaced by other equivalent computation
models (e.g. register machines).
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Turing machines: definition
Notation: With P≠∅(A) = 2A ∖ {∅} we denote the set of all non-empty
subsets of the set A.

Definition 1

A non-deterministic k-tape Turing machine is a tuple
M = (Q,Σ,Γ, δ,q0 ,qJ ,qN ,◻).

▸ Q ∶ a finite set of state

▸ q0 ∈ Q ∶ initial state

▸ qJ ∈ Q: accepting state

▸ qN ∈ Q: rejecting state with qJ ≠ qN
▸ Γ ∶ finite tape alphabet

▸ Σ: finite input alphabet with ▷,◁ /∈ Σ

▸ ◻ ∈ Γ: blank symbol

▸ δ ∶ (Q ∖ {qJ ,qN}) × (Σ ∪ {▷,◁}) × Γk → P≠∅(Q × Γk × {−1,1}k+1):
transition function. −1 (1): move tape head to the left (right).
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Turing machines: definition

For all instructions (p, c1, . . . , ck ,d0, . . . ,dk) ∈ δ(q,a,b1, . . . ,bk) we have:

▸ a =▷ ⇒ d0 = 1

▸ a =◁ ⇒ d0 = −1

For a deterministic k-tape Turing machine M we require

δ ∶ (Q ∖ {qJ ,qN}) × (Σ ∪ {▷,◁}) × Γk → Q × Γk × {−1,1}k+1

A Turing machine with output is defined as a deterministic Turing
machine, except that there is an additional output alphabet Σ′ and
for δ we have:

δ ∶ (Q ∖ {qJ ,qN}) × (Σ ∪ {▷,◁}) × Γk → Q × Γk × {−1,1}k+1 × (Σ′ ∪ {λ})

(λ is the empty word).
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Turing machines: configurations

Definition 2

A configuration α of the Turing machine M for input w ∈ Σ∗ is a tuple
α = (q, i ,u1, i1, . . . ,uk , ik) with:

▸ q ∈ Q ∶ current state of the Turing machine

▸ 1 ≤ i ≤ ∣w ∣ + 2: the read head for the input tape is currently scanning
the i -th symbol of ▷w◁.

▸ ∀j ∈ {1, . . . ,k} ∶ uj ∈ Γ+,1 ≤ ij ≤ ∣uj ∣: the j-th work tape has the
content ⋯◻◻uj ◻ ◻⋯ and the j-th read-write head is currently
scanning the ij -th symbol of uj .
If ij < ∣uj ∣ (resp., ij > 1) then uj is not allowed to end (resp., begin)
with ◻.

The length ∣α∣ of the configuration α = (q, i ,u1, i1, . . . ,uk , ik) is
∣α∣ = max{∣uj ∣ ∣ 1 ≤ j ≤ k}.
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Turing machines: start configuration, transitions, . . .

1. For an input w ∈ Σ∗, the corresponding start configuration is

Start(w) = (q0,2,◻,1, . . . ,◻,1).

Note: ∣Start(w)∣ = 1.

2. For some ũ ∈ Q × Γk × {−1,1}k+1 and configurations

α = (q, i ,u1, i1, . . . ,uk , ik) and β

we write α ⊢ũ β if

ũ ∈ δ(q, (▷w◁)[i],u1[i1], . . . ,uk[ik])
and the application of the “instruction” ũ to the configuration α

yields the configuration β.

Exercise: define this formally.

3. We write α ⊢M β if there is ũ ∈ Q × Γk × {−1,1}k+1 with α ⊢ũ β.
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Turing machines: computations, protocols

1. AcceptM (resp., RejectM) is the set of configurations where the
current state is qJ (resp., qN).
Note: for α there is no configuration β with α ⊢M β if and only if
α ∈ AcceptM ∪ RejectM .

2. Note: α ⊢M β ⇒ ∣α∣ − ∣β∣ ∈ {−1,0,1}
3. A computation of M for input w is a sequence of configurations

α0, α1, . . . , αm with

▸ Start(w) = α0

▸ ∀1 ≤ i ≤ m ∶ αi−1 ⊢M αi

The computation is accepting if αm ∈ AcceptM .

4. The protocol for this computation is the unique sequence

ũ0ũ1⋯ũm−1 ∈ (Q × Γk × {−1,1}k+1)∗
with αi ⊢ũi αi+1.
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Turing machines: accepted set, duration and space

1. The duration (resp,. space) of the computation α0, α1, . . . , αm is m
(resp., max{∣αi ∣ ∣ 0 ≤ i ≤ m}).

2. On input w , the machine M uses time (resp., space ) at most N ∈ N,
if every computation of M on input w has duration (resp., space) ≤ N.

3. Let f ∶ N→ N be a monotone growing function.

M is f -time-bounded if M uses time at most f (∣w ∣) for every input w .

M is f -space-bounded if M uses space at most f (∣w ∣) for every input
w .

4. L(M) = {w ∈ Σ∗ ∣ ∃ accepting computation of M on input w} is the
set accepted by M.
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Turing machines: counting configurations

The following simple lemma will be used many times:

Lemma 3

Let M be a non-deterministic Turing machine. There are constants c ,d
such that for all inputs w for M with n = ∣w ∣ large enough and all m ≥ 1
we have:

▸ There are at most c ⋅ n ⋅ dm configurations of length ≤ m with w as
input.

▸ Let M be f -space-bounded. Then the number of configurations that
can be reached from Start(w) is at most c ⋅ n ⋅ d f (n).

▸ In particular: if f ∈ Ω(log(n)) then the number of configurations that
can be reached from Start(w) is at most 2O(f (n)).
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Complexity classes

Let f ∶ N→ N be a monotone growing function.

DTIME(f ) = {L(M) ∣M deterministic & f -time-bounded}
NTIME(f ) = {L(M) ∣M non-deterministic & f -time-bounded}

DSPACE(f ) = {L(M) ∣M deterministic & f -space-bounded}
NSPACE(f ) = {L(M) ∣M non-deterministic & f -space-bounded}
For a class C of languages, we define CoC = {L ∣ Σ∗ ∖ L ∈ C} as the set of
complements of languages in C.
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Complexity classes

We will consider the classes DTIME(t) and NTIME(t) only for functions
t(n) with ∀n ∈ N ∶ t(n) ≥ n.
This allows to read the whole input in time t(n).
We will consider the classes
DSPACE(s) and NSPACE(s) only for functions s(n) ∈ Ω(log(n)).
This allows to store a position i ∈ {1, . . . ,n} in the input tape on a work
tape.
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Important complexity classes

Some widely used abbreviations:

L = DSPACE(log(n)) (1)

NL = NSPACE(log(n)) (2)

P = ⋃
k≥1

DTIME(nk) (3)

NP = ⋃
k≥1

NTIME(nk) (4)

PSPACE = ⋃
k≥1

DSPACE(nk) = ⋃
k≥1

NSPACE(nk) (5)

The equality = in (5) follows from Savitch’s theorem (comes later).
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Relationships between complexity classes

PSPACE = IP
? ≠

NP

NP ∩CoNP

P

?

?

NSPACE(n) = CoNSPACE(n)
DSPACE(n)

⋃k≥1DSPACE(logk(n)) = ⋃k≥1NSPACE(logk(n))

? (1. LBA problem)

≠

? ≠
NL

L
?

There are many other complexity classes: visit the complexity zoo
(https://complexityzoo.net/Complexity_Zoo)
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Examples

▸ {anbncn ∣ n ≥ 1} ∈ L
▸ {w$w ∣ w ∈ Σ∗} ∈ L
▸ The set PRIM = {p ∈ 1{0,1}∗ ∣ p is the binary encoding of a prime

number } is in DSPACE(n).
Agrawal, Kayal and Saxena proved in 2002 that PRIM ∈ P, see e.g.
the book Primality Testing in Polynomial Time of M. Dietzfelbinger,
Springer 2004.

Note: In PRIM we ask for a binary encoded integer, whether it is a
prime number. For a unary encoded integer n (represented by n many
a’s) it is easy to check in polynomial time whether it is a prime
number.
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Variants of algorithmic problems

Example 1: Traveling Salesman Problem (TSP)

A traveller wants to visit a set of cities without visiting a city twice. He
wants to take the shortest route. The map is represented by a directed
graph, whose nodes are the cities. A street from city A to city B with
distance w ∈ N is represented by an edge from A to B with weight w .

Let G = (V ,E , γ ∶ E → N) be a directed graph with set of nodes
V = {1, . . . ,n}, set of edges E ⊆ V ×V and edge weights γ(e) ∈ N ∖ {0}
for all e ∈ E .

A (Hamilton) circuit W is a sequence W = (x0, . . . , xn), x0 = xn, xi ≠ xj for
1 ≤ i < j ≤ n and (xi−1, xi) ∈ E for 1 ≤ i ≤ n.

The cost γ(W ) of the circuit W is the sum of all edge weights in the
circuit: γ(W ) = ∑n

i=1 γ(xi−1, xi).
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Variants of algorithmic problems

(A) the decision problem:

input: G = (V ,E , γ ∶ E → N) and k ≥ 0.

question: Does there exist a circuit with cost ≤ k?

(B) the computation variant:

input: G = (V ,E , γ ∶ E → N) and k ≥ 0.

output: a circuit W with γ(W ) ≤ k if it exists, otherwise no.

(C) the optimization variant:

input: G = (V ,E , γ ∶ E → N).
output: circuit with smallest possible cost if a circuit exists, otherwise no.

The input size is (up to some constant factor)∣V ∣2 +∑e∈E(⌊log γ(e)⌋ + 1) + ⌊log(k)⌋ + 1 for (A) and (B), and∣V ∣2 +∑e∈E(⌊log γ(e)⌋ + 1) for (C).
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Variants of algorithmic problems

From a practical point of view, variant (C) (optimization problem) is the
most important.

But: (A) can be solved in polynomial time Ô⇒
(C) can be solved in polynomial time.

Proof:

Step 1: Check whether there exists a (Hamilton) circuit in G :

For this, we call (A) with kmax = ∣V ∣ ⋅max{γ(e) ∣ e ∈ E}.
Note: there is a circuit if and only if there is a circuit with cost ≤ kmax.

In the following, we assume that there is a circuit in G .
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Variants of algorithmic problems

Step 2: Compute kopt = min{γ(W ) ∣W is a circuit} using binary search:

FUNCTION kopt
kmin ∶= 1 (or alternatively kmin ∶= ∣V ∣)
while kmin < kmax do

kmid ∶= kmin + ⌈kmax−kmin

2 ⌉
if ∃ circuit W with γ(W ) ≤ kmid then kmax ∶= kmid

else kmin ∶= kmid + 1
endif

endwhile
return kmin

ENDFUNC

Note: the number of iterations for the while-loop is bounded by
log2(kmax) = log2(∣V ∣ ⋅max{γ(e) ∣ e ∈ E})

= log2(∣V ∣) + log2(max{γ(e) ∣ e ∈ E}) ≤ input size.
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Variants of algorithmic problems

Step 3: Compute the optimal circuit:

FUNCTION optimal circuit
Let e1, e2, . . . , em be an arbitrary enumeration of E
G0 ∶= G
for i ∶= 1 to m do

if ∃ circuit W in Gi−1 ∖ {ei} with γ(W ) ≤ kopt then
Gi ∶= Gi−1 ∖ {ei}

else
Gi ∶= Gi−1

endif
endfor
return Gm

ENDFUNC
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Variants of algorithmic problems
Claim: For all i ∈ {0, . . . ,m}:
1. in Gi there is a circuit W with γ(W ) = kopt ;
2. every circuit W in Gi with γ(W ) = kopt contains all edges from{e1, . . . , ei} ∩ E [Gi] (E [Gi ] = set of edges of Gi ).

Proof:

1. Follows directly by induction on i .

2. Assume that there is a circuit W in Gi with γ(W ) = kopt and an edge
ej (1 ≤ j ≤ i) with:
▸ ej belongs to Gi and
▸ ej does not belong to the circuit W .

W is also a circuit in Gj−1. ⇒
W is a circuit in Gj−1 ∖ {ej}. ⇒
ej ∉ E [Gj ] and hence ej ∉ E [Gi ]. contradiction!

Consequence: Gm has a circuit W with γ(W ) = kopt and every edge of Gm

belongs to W , which implies Gm =W .
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Variants of algorithmic problems
Example 2: vertex cover (VC)
Let G = (V ,E) be an undirected graph (i.e. E ⊆ (V2)).
A subset C ⊆ V is a vertex cover for G if for every edge {u, v} ∈ E we have{u, v} ∩ C ≠ ∅.

(A) the decision variant:

input: G = (V ,E) and k ≥ 0.

question: Does G have a vertex cover C with ∣C ∣ ≤ k?
(B) the computation variant:

input: G = (V ,E) and k ≥ 0.

output: a vertex cover C with ∣C ∣ ≤ k if it exists, otherwise no.

(C) the optimization variant:

input: G = (V ,E).
output: a smallest possible vertex cover for G .
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Variants of algorithmic problems

Again we have: (A) can be solved in polynomial time Ô⇒ (C) can be
solved in polynomial time.

Proof this as an exercise.
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The graph accessibility problem
The graph accessibility problem (GAP) is a central decision problem in
complexity theory:

input: a directed graph G = (V ,E) and two nodes s, t ∈ V .
question: is there a path in G from s to t?

GAP belongs to P: GAP can be solved in O(∣V ∣) using breadth-first
search.

Sharper statement: GAP belongs to NL (later we will prove NL ⊆ P):

FUNCTION GAP
var v ∶= s
while v ≠ t do

nondeterministically choose an edge (v ,w) ∈ E
v ∶= w

endwhile
return

”
there is a path from s to t.“

ENDFUNC
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The graph accessibility problem
This is a nondeterministic algorithm that can be easily implemented on a
nondeterministic Turing machine.

Why does the algorithm only use logarithmic space?

▸ At every time instant, the algorithm only has to store the current
node v ∈ V .

▸ If there are n nodes, then we can identify the nodes with the numbers
1, . . . ,n. Therefore, the variable v only needs log2(n) = log2(∣V ∣)
many bits.

Remarks:

▸ Savitch’s theorem (comes later) implies GAP ∈ DSPACE(log2(n)).
▸ Omer Reingold proved in 2004 that the graph accessibility problem for

undirected graphs (UGAP) belongs to the class L, see
https://eccc.weizmann.ac.il/eccc-reports/2004/TR04-094/index.html
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Part 2: Relationsships between complexity classes
The proofs for the theorems in this section can be found for instance in
Hopcroft, Ullman; Introduction to Automata Theory, Languages and

Computation, Addison Wesley 1979.
We will only sketch some of the proofs.

For a function f ∶ N→ N let DTIME(O(f )) = ⋃c∈NDTIME(c ⋅ f ), and
analogously for NTIME,DSPACE,NSPACE.

Theorem 4

Let f ∶ N→ N.

1. For X ∈ {D,N} we have XSPACE(O(f )) = XSPACE1-tape(f ).
2. ∃ǫ > 0 ∀n ∶ f (n) ≥ (1 + ǫ)n Ô⇒ DTIME(O(f )) = DTIME(f ).
3. NTIME(O(f )) = NTIME(f ).
4. DTIME(n) ⊊ DTIME(O(n)).

Point 1 combines tape reduction with tape compression.
Point 2 and 3 are sometimes called time compression.
Markus Lohrey (Universität Siegen) Complexity Theory I WS 2025/2026 25 / 166



The theorem of Hennie and Stearns (1966)

The theorem of Hennie and Stearns is a tape reduction theorem for time
complexity classes.

Theorem 5

Let k ≥ 1 and assume that ∃ε > 0 ∀n ∶ f (n) ≥ (1 + ε)n. Then we have
DTIMEk-tape(f ) ⊆ DTIME2-tape(f ⋅ log(f )).
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DTIME(f ) ⊆ NTIME(f ) ⊆ DSPACE(f )

Theorem 6

If ∀n ∶ f (n) ≥ n, then DTIME(f ) ⊆ NTIME(f ) ⊆ DSPACE(f ).
Proof: We only have to show NTIME(f ) ⊆ DSPACE(f ).
Let M = (Q,Σ,Γ, δ,q0 ,qJ ,qN ,◻) be a non-deterministic f -time-bounded
Turing machine.

An input w ∈ Σ∗ of length n is accepted by M if and only if there is a
protocol ũ1ũ2⋯ũm with m ≤ f (n) and

Start(w) ⊢ũ1 c1 ⊢ũ2 c2⋯ ⊢ũm cm ∈ AcceptM .

We search systematically (e.g. in length lexicographic order) through all
protocols of length at most f (n) and check whether such a protocol leads
to an accepting configuration.
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DTIME(f ) ⊆ NTIME(f ) ⊆ DSPACE(f )

Note:

▸ Every from Start(w) reachable configuration only needs space f (n).
▸ A protocol of length at most f (n) can be stored in space O(f (n)).

Total space needed: O(f ) +O(f ) = O(f ).
FUNCTION protocol-search(w)

for all protocols ũ1ũ2⋯ũm with m ≤ f (∣w ∣) do
compute the unique configuration cm (it it exists) with
Start(w) ⊢ũ1 c1 ⊢ũ2 c2⋯ ⊢ũm cm
if cm ∈ AcceptM then

return M accepts w
endfor
return M does not accept w

ENDFUNC
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DSPACE(f ) ⊆ NSPACE(f ) ⊆ DTIME(2O(f ))

Theorem 7

If f (n) ∈ Ω(log(n)) then DSPACE(f ) ⊆ NSPACE(f ) ⊆ DTIME(2O(f )).
Proof: We only have to prove NSPACE(f ) ⊆ DTIME(2O(f )).
Let M be an f -space bounded non-deterministic Turing machine and
w ∈ Σ∗ an input of length n.

By Lemma 3 the number of configurations that can be reached from
Start(w) is bounded by 2O(f (n)).

We compute the set R of all configurations that can be reached from
Start(w).
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DSPACE(f ) ⊆ NSPACE(f ) ⊆ DTIME(2O(f ))

FUNCTION set of reachable configurations
var R ∶= {Start(w)}
while ∃ configurations α,β ∶ α ∈ R ∧ β /∈ R ∧ α ⊢M β do

R ∶= R ∪ {β}
endwhile
if AcceptM ∩ R ≠ ∅ then return M accepts w

ENDFUNC

How much time does this algorithm need for an input of length n.

▸ R contains at most 2O(f (n)) configurations of length ≤ f (n).
▸ The condition ∃ configurations α,β ∶ α ∈ R ∧ β /∈ R ∧ α ⊢M β can

therefore by checked in time 2O(f (n)) ⋅ 2O(f (n)) ⋅ O(f (n)2) ⊆ 2O(f (n)).
▸ Total time needed: 2O(f (n))
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Consequences

▸ L ⊆ NL ⊆ DTIME(2O(log(n))) = P
▸ CS = LBA = NSPACE(n) ⊆ DTIME(2O(n))

Here, CS denotes the class of context-senstive languages and LBA
the class of languages accepted by a linear bounded automaton.
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Savitch’s theorem (1970)

Theorem 8

If s ∈ Ω(log(n)) then NSPACE(s) ⊆ DSPACE(s2).

We prove Savitch’s theorem under the assumption that the function s is
space constructible:

▸ A function s ∶ N→ N with s ∈ Ω(log(n)) is space constructible, if
there is a deterministic s-space bounded Turing machine that on input
an (i.e., the unary encoding of n) computes as(n) on the output tape.

▸ A function t ∶ N→ N with t ∈ Ω(n) is time constructible if there is a
deterministic Turing machine that on input an terminates after
exactly t(n) steps.
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Proof of Savitch’s theorem

Let M be an s-space bounded non-deterministic Turing machine and w an
input for M.

Let Conf(M,w) be the set of all configurations α such that:

▸ the content of the input tape is w and
▸ ∣α∣ ≤ s(∣w ∣).

Hence, Conf(M,w) contains all configurations that can be reached from
Start(w).
Without loss of generality, we can assume that AcceptM contains at most
one configuration αf that can be reached from Start(w).
For α,β ∈ Conf(M,w) and i ≥ 0 we define:

Reach(α,β, i) ⇐⇒ ∃k ≤ 2i , α0, α1, . . . , αk ∈ Conf(M,w) ∶
α0 = α,αk = β,

k

⋀
i=1

αi−1 ⊢M αi
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Proof of Savitch’s theorem

By Lemma 3 and s(n) ∈ Ω(log(n)), there is a constant c such that for all
inputs w we have

w ∈ L(M) ⇐⇒ Reach(Start(w), αf , c ⋅ s(∣w ∣)).
Our goal is to compute the predicate Reach(α,β, i) for α,β ∈ Conf(M,w)
and 0 ≤ i ≤ c ⋅ s(∣w ∣) in space O(s2) on a deterministic machine.

For i > 0 we will use the following recursion:

Reach(α,β, i) ⇐⇒ ∃γ ∈ Conf(M,w) ∶Reach(α,γ, i − 1) ∧
Reach(γ,β, i − 1).

Implementation by a deterministic algorithm:
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Proof of Savitch’s theorem

FUNCTION Reach(α,β, i) (where α,β ∈ Conf(M,w) and i ≤ c ⋅ s(∣w ∣)
var b ∶= false

if i = 0 then
b ∶= [(α = β) ∨ (α ⊢M β)]

else
forall γ ∈ Conf(M,w) do

if not b and Reach(α,γ, i − 1) then
b ∶= Reach(γ,β, i − 1)

endif
endfor

endif
return b

ENDFUNC
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Proof of Savitch’s theorem

Claim: There is a constant ̺ such that a call of Reach(α,β, i) needs
space at most ̺ ⋅ (i + 1) ⋅ s(∣w ∣).
We prove the claim by induction on i ≥ 0:

i = 0: The condition [(α = β) ∨ (α ⊢M β)] can be checked in space
̺ ⋅ s(∣w ∣) for a certain constant ̺.

i > 0: By induction, the 1st call Reach(α,γ, i − 1) needs space ̺ ⋅ i ⋅ s(∣w ∣).
The same holds for the 2nd call Reach(γ,β, i − 1).
Note: During the 2nd call Reach(γ,β, i − 1) one can reuse the space used
for the 1st call Reach(α,γ, i − 1).
In addition, we need space 3 ⋅ s(∣w ∣) + c ⋅ s(∣w ∣) ≤ ̺ ⋅ s(∣w ∣) (if ̺ ≥ c + 3) for
the configurations α,β, γ and the number i (in unary encoding). This
proves the claim.
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Proof of Savitch’s theorem

In order to decide w ∈ L(M) we call Reach(Start(w), αf , c ⋅ s(∣w ∣)).
Note: in order to do this, we have to compute the unary encoding of
s(∣w ∣). This is possible since we assume that s is space constructible.

Total space needed: O(c ⋅ s(∣w ∣) ⋅ s(∣w ∣)) = O(s(∣w ∣)2).
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Remarks concerning Savitch’s theorem

Savitch’s theorem says that a non-deterministic space-bounded Turing
machine can be simulated on a deterministic Turing machine with a
quadratic blow-up in space. But this space efficient simulation causes a
large blow-up in time.

Exercise: What is the running time of the algorithm in our proof of
Savitch’s theorem?

In order to get rid of the assumption that the function s is space-
constructible, one has to show that the actual space needed by an s-space
bounded non-deterministic Turing machine on a certain input can be
computed in DSPACE(s2).
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Consequences of Savitch’s theorem

Theorem 9

GAP belongs to DSPACE(log2(n)).

Follows from GAP ∈NL and Savitch’s theorem.

Theorem 10

PSPACE = ⋃k≥1DSPACE(nk) = ⋃k≥1NSPACE(nk)

Follows from NSPACE(nk) ⊆ DSPACE(n2k).
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Hierarchy theorems

Theorem 11 (space hierarchy theorem)

Let s1, s2 ∶ N→ N be functions, s1 ∉ Ω(s2), s2 ∈ Ω(log(n)) and assume that
s2 is space constructible. Then DSPACE(s2) ∖DSPACE(s1) ≠ ∅ holds.

Remarks:

▸ s1 ∉ Ω(s2) means that ∀ǫ > 0 ∃ infinitely many n with s1(n) < ǫ ⋅ s2(n).
For instance, let s1(n) = n and s2(n) = { n2, if n is even

log n, otherwise.

Then s2 ∉ Ω(s1) and s1 ∉ Ω(s2) hold.
▸ The space hierarchy theorem implies

L ⊊ DSPACE(log2(n)) ⊊ DSPACE(n)
⊆ NSPACE(n) ⊊ DSPACE(n2,1) ⊊ PSPACE
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Proof of the space hierarchy theorem

The proof of the space hierarchy theorem is similar to the proof of the
undecidability of the halting problem and is based on diagonalization.

First we fix a suitable binary encoding of deterministic 1-tape Turing
machines with input alphabet {0,1}. The encoding must allow a space
efficient simulation (we will make this more precise).

Every word x ∈ {0,1}∗ must be the encoding of a Turing machine Mx (if x
is not “well formed” then x encodes some fixed defaultTuring machine).

Important convention: for all x ∈ {0,1}∗ and k ∈ N we have Mx =M0kx ,
i.e., x and 0kx encode the same machine.

Consequence: if a Turing machine M has encoding of length k then for
every ℓ ≥ k , M has an encoding of length ℓ.

Goal: a deterministic s2-space bounded Turing machine M with
L(M) ∉ DSPACE(s1).
s2 ∈ Ω(log(n)) À ∃δ > 0 ∃m ∀n ≥ m ∶ log2(n) ≤ δ ⋅ s2(n)
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Proof of the space hierarchy theorem

We start with a (deterministic) universal Turing machine U.

The input for U is the binary encoding x of a 1-tape Turing machine Mx

together with and input w ∈ {0,1}∗ for Mx .

U simulates Mx on input w .

We can choose the encoding of Turing machines and U such that for every
x ∈ {0,1}∗ there is a constant kx that only depends on Mx such that:

If Mx is s-space bounded, then on input ⟨x ,w⟩ the machine U uses space
at most kx ⋅ s(∣w ∣) + 1

1+δ log2(∣w ∣).
By Lemma 3 there is a constant c such that there are at most n ⋅ cm

configurations of U with work space ≤ m and a fixed input of length n.

Our machine M works for an input y ∈ {0,1}∗ of length n = ∣y ∣ as follows:
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Proof of the space hierarchy theorem
1. Mark space s2(n) on the work tapes and install a counter C with

initial value 2n ⋅ cs2(n) + 1 (needs space ≤ s2(n) after appropriate
tape compression).

This is possible since s2 is space constructible.

2. Execute the universal machine U with input ⟨y , y⟩ (has length 2n)
and set C ∶= C − 1 after every transition of U.

3. If thereby U wants to leave the marked space on the work tapes, the
machine M stops in the rejecting state qN .

This enforces M to be s2-space bounded.

4. If C reaches the value 0 before the simulation of My on input y
terminates, then U must be trapped in a cycle.

This implies that My does not terminate on input y .

Then M accepts the input y .

5. If the simulation does terminate before C reaches 0, then M accepts
the input y if and only if My does not accept y .
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Proof of the space hierarchy theorem

Claim: L(M) ∉ DSPACE(s1)
Proof by contradiction: Assume that L(M) ∈ DSPACE(s1).
Let M ′ be an s1-space bounded deterministic 1-tape Turing machine with
L(M ′) = L(M) (exists!).
Let M ′ =Mx (where x ∈ {0,1}∗ does not start with 0).

Then, U simulates the machine M ′ =Mx on an input of length n in space
kx ⋅ s1(n) + 1

1+δ log2(n).
Here, kx is a constant that only depends on M ′ (but not on n).

Since s1 ∉ Ω(s2), there exists an n ≥ ∣x ∣ with
kx(1 + δ) ⋅ s1(n) + log2(n) ≤ s2(n) + log2(n) ≤ (1 + δ) ⋅ s2(n)

and hence

kx ⋅ s1(n) + 1

1 + δ
log2(n) ≤ s2(n).

Let y = 0n−∣x ∣x .
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Proof of the space hierarchy theorem

Hence, during the simulation of M ′ =Mx =My on input y (of length n),
the machine M does not leave the space marked in step 1.

We therefore obtain:

y ∈ L(M) ⇐⇒ M accepts y

⇐⇒ My does not accept y

⇐⇒ M ′ does not accept y

⇐⇒ y /∈ L(M ′) = L(M)
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Time hierarchy theorem

By the theorem of Hennie and Stearns, an arbitrary number of work tapes
can be simulated with a logarithmic blow-up in time on two work tapes.

This can be used to prove analogously to the space hierarchy theorem a
deterministic time hierarchy theorem.

Theorem 12 (deterministic time hierarchy theorem (without proof))

Let t1, t2 ∶ N→ N, t1 ⋅ log(t1) ∉ Ω(t2), t2 ∈ Ω(n log(n)) and assume that t2
is time constructible. Then DTIME(t2) ∖DTIME(t1) ≠ ∅ holds.

As a consequence we get:

DTIME(O(n)) ⊊ DTIME(O(n2)) ⊊ P
⊊ DTIME(O(2n)) ⊊ DTIME(O((2 + ε)n))
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Borodin’s theorem

The hierarchy theorems that we have discussed all need certain (space or
time) constructibility assumptions. This is not avoidable due to the
following gap theorem.

Theorem 13 (Borodin’s theorem (1972))

Let r be a total, computable and monotonic function, r(n) ≥ n for all n.
Then there exists effectively a total and computable function s ∶ N→ N

such that s(n) ≥ n + 1 for all n and DTIME(s) = DTIME(r ○ s).

Remarks:

▸ The composition r ○ s is defined by r ○ s(x) = r(s(x)).
▸ That the total and computable function s ∶ N→ N exists effectively

means that from a Turing machine that computes r one can compute
a Turing machine that computes s.
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Proof of Borodin’s theorem

Let M1,M2, . . . be an enumeration of all deterministic Turing machines.

Let tk(n) ∈ N ∪ {∞} be the maximal computation time that Mk needs on
an input of length at most n.

Define the set
Nn = {tk(n) ∣ 1 ≤ k ≤ n} ⊆ N ∪ {∞}.

This is a finite set. Hence, for every n there is a number s(n) with
Nn ∩ [s(n), r(s(n))] = ∅.

A value s(n) that would satisfy this condition would be

s(n) = 1 +max{tk(n) ∣ 1 ≤ k ≤ n, tk(n) <∞}.
But this value would in general be too big and not computable.
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Proof of Borodin’s theorem

A better computable value s(n) can be found on input n by the following
algorithm:

FUNCTION s(n)
s ∶= max{n + 1, s(n − 1)}
repeat

s ∶= s + 1
until ∀k ≤ n ∶ [tk(n) < s or tk(n) > r(s)]
return s

ENDFUNC

Remark: the function n ↦ s(n) is computable and monotonic.
But in general, s(n) is not time constructible.

Claim: DTIME(s) = DTIME(r ○ s)
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Proof of Borodin’s theorem

Proof of the claim:

Since r(n) ≥ n for all n, DTIME(s) ⊆ DTIME(r ○ s) holds.
Now assume that L ∈ DTIME(r ○ s).
Let Mk be a (r ○ s)-time bounded deterministic Turing machine with
L = L(Mk).
We have ∀n ∶ tk(n) ≤ r(s(n)).
The way we computed s(n) implies tk(n) < s(n) for all n ≥ k .
We therefore obtain L ∈ DTIME(s), because for all inputs of length < k (a
constant) a Turing machine can directly output the correct answer after
reading the input (this needs n + 1 ≤ s(n) steps).
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The theorem of Immerman and Szelepcsényi (1987)

The classes DTIME(f ) and DSPACE(f ) are closed under complement.
Whether this is also true for classes NSPACE(f ) was open for a long time.

Already in 1964, Kuroda asked whether the class of context-sensitive
languages is closed under complement (2nd LBA problem).

Equivalently: does NSPACE(n) = CoNSPACE(n) hold?
After more than 20 years, this question was answered independently by
R. Szelepcsényi and N. Immerman:

Theorem 14 (Theorem of Immerman and Szelepcsényi)

Let f ∈ Ω(log(n)) be monotonic. Then NSPACE(f ) = CoNSPACE(f )
holds.
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Proof of the theorem of Immerman and Szelepcsényi

Proof technique: inductive counting

Let M be a non-deterministic f -space bounded 1-tape Turing machine and
w ∈ Σ∗ an input word of length n.

Goal: Check non-deterministically in space O(f (n)), whether w /∈ L(M).
W.l.o.g. let α0 be the only accepting configuration; e.g. α0 = (qJ ,1,◻,1)
(in particular ∣α0∣ = 1).
We need an enumeration α0 ≺ α1 ≺ α2 ≺ ⋯ of all configurations of M with
input w such that:

▸ α0 is the smallest configuration with respect to ≺.
▸ α ≺ α′ implies ∣α∣ ≤ ∣α′∣.
▸ α ≺ α′ can be checked in space ∣α∣ + ∣α′∣.
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Proof of the theorem of Immerman and Szelepcsényi

We can define ≺ for instance as follows, where α = (q, i ,u, j),
α′ = (q′, i ′,u′, j ′) are configurations of M on input w :

▸ If ∣u∣ < ∣u′∣ then α ≺ α′.

▸ If ∣u∣ = ∣u′∣ and u <lex u′ then α ≺ α′.

Here fix an arbitrary order on the tape symbols of M such that ◻ is
the smallest tape symbol.

▸ If u = u′ and j < j ′ then α ≺ α′.

▸ If u = u′, j = j ′ and i < i ′ then α ≺ α′.

▸ If u = u′, j = j ′, i = i ′ and q < q′ then α ≺ α′.

Here fix an arbitrary order on the set of states of M such that qJ is
the smallest state.
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Proof of the theorem of Immerman and Szelepcsényi
Let k ≥ 0:

R(k) = {α ∣ ∃i ≤ k ∶ Start(w) ⊢i
M α}

r(k) = ∣R(k)∣ (number of configurations that can be reached

from Start(w) in ≤ k steps)

r(∗) = max{r(k) ∣ k ≥ 0}
(number of configurations reachable from Start(w))

Note: Due to Lemma 3 we have

r(k) ≤ r(∗) ∈ 2O(f (n)).
Since f is not assumed to be space constructible, we also need the value

m(k) = max{∣α∣ ∣ α ∈ R(k)}.
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Proof of the theorem of Immerman and Szelepcsényi

We will describe a non-deterministic O(f (n))-space bounded machine
with the following properties:

▸ If w ∉ L(M) then the machine will output on at least on computation
path the correct value r(∗).
On other computation paths, the machine can stop without output.

▸ If w ∈ L(M) then the machine will stop on all computation paths
without output.
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Proof of the theorem of Immerman and Szelepcsényi

Computation of r(∗) under the assumption that r(k + 1) can be computed
in space O(f (n)) from r = r(k) using the function compute-r(k + 1, r):

FUNCTION r(∗)
k ∶= 0
r ∶= 1 (∗ contains r(k) ∗)
while true do

r ′ ∶= compute-r(k + 1, r)
if r = r ′ then return r

else k ∶= k + 1; r ∶= r ′

endwhile
ENDFUNC

Space: Since r(∗) ∈ 2O(f (n)), only space O(f (n)) is needed to store k , r ,

and r ′.
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Proof of the theorem of Immerman and Szelepcsényi
The computation of compute-r(k + 1, r) is divided into three steps.

Step 1: Compute m(k) from r = r(k) using the function compute-m(k , r).
FUNCTION compute-m(k , r)

α ∶= α0; m ∶= 1(= ∣α0∣)
repeat r times

compute nondeterministically an arbitrary α′ ∈ R(k)
if α ≺ α′ then

α ∶= α′

m ∶= ∣α′∣ (∗ = max{m, ∣α′∣} due to properties of ≺ ∗)
else

”
FAILURE “ ⇒ computation stops

endif
endrepeat
return m

ENDFUNC
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Proof of the theorem of Immerman and Szelepcsényi

Note:

▸ If compute-m(k , r) does not stop with
”
FAILURE“ (and r = r(k)

holds), then the correct value m(k) will be computed.

▸ If α0 ∈ R(k) (and hence w ∈ L(M)) then compute-m(k , r) stops with
”
FAILURE“ on all computation paths, since R(k) does not contain r

many configurations that are strictly larger than α0.

In particular: If w ∈ L(M), then there is a k such that
compute-m(k , r) stops with

”
FAILURE“on all computation paths.

Then also the computation of r(∗) stops without output.
▸ If w /∈ L(M) then there is a computation path on which

compute-m(k , r) does not stop with
”
FAILURE“(and hence

outputs m(k)).
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Proof of the theorem of Immerman and Szelepcsényi

Space needed by compute-m(k , r): the following has to be stored:

▸ configurations α, α′ with ∣α∣, ∣α′ ∣ ≤ f (n).
▸ m ≤ f (n)
▸ binary counter up to k (in order to compute an arbitrary α′ ∈ R(k)

nondeterministically)

▸ binary counter up to r = r(k) (for repeat r times).

For this, space O(f (n)) is sufficient.
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Proof of the theorem of Immerman and Szelepcsényi
Step 2: Let β be an arbitrary configuration. The procedure
Reach(r ,k + 1, β) tests nondeterministically, using the value
r = r(k), whether β ∈ R(k + 1) holds:

FUNCTION Reach(r ,k + 1, β)
α ∶= α0

repeat r times
compute nondeterministically an arbitrary α′ ∈ R(k)
if α′ ≺ α ∨ α′ = α then

”
FAILURE“ ⇒ computation stops

elseif α′ = β ∨ α′ ⊢M β then return true (∗ β ∈ R(k + 1) holds ∗)
else α ∶= α′

endif
endrepeat
return false (∗ β ∉ R(k + 1) holds ∗)

ENDFUNC
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Proof of the theorem of Immerman and Szelepcsényi

Note:

▸ If Reach(r(k),k + 1, β) does not stop with
”
FAILURE“, a correct

answer will be produced.

▸ If w /∈ L(M) (and hence α0 /∈ R(k)), then there is a computation path
on which Reach(r(k),k + 1, β) does not stop with

”
FAILURE“.

Space: the following has to be stored:

▸ configurations α, α′ with ∣α∣, ∣α′ ∣ ≤ f (n).
▸ binary counter up to k (in order to compute an arbitrary α′ ∈ R(k)

nondeterministically)

▸ binary counter up to r = r(k) (for repeat r times).

For this, space O(f (n)) is sufficient.
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Proof of the theorem of Immerman and Szelepcsényi
Step 3: Compute r(k + 1) using the function compute-r(k + 1, r) from
r = r(k).

FUNCTION compute-r(k + 1, r)
r ′ ∶= 0 (∗ contains r(k + 1) at the end ∗)
m ∶= compute-m(k , r)
forall configurations β with ∣β∣ ≤ m + 1 do

if Reach(r ,k + 1, β) then
r ′ ∶= r ′ + 1

endif
endforall
return r ′

ENDFUNC

We only have to consider configurations β with ∣β∣ ≤ m(k) + 1, since
m(k + 1) ≤ m(k) + 1.
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Proof of the theorem of Immerman and Szelepcsényi

A successful computation of r(∗) is possible if and only if w ∉ L(M).
For this note that if w ∈ L(M), then on every computation path the
function r(∗) stops with

”
FAILURE“, since the function m(k) stops on

every computation path with
”
FAILURE“ as soon as k reaches a value

such that α0 ∈ R(k).
Therefore, as soon as the value r(∗) is computed, we can be sure that
w ∉ L(M), and therefore can accept w .

Total space needed: from the previous considerations it follows that the
total space needed by the algorithm is O(f (n)).
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Translation techniques

With a translation theorem one can deduce an inclusion between small
complexity classes from an inclusion between large complexity classes.

Idea: padding of languages

Let

▸ L ⊆ Σ∗ be a language,

▸ f ∶ N→ N a function with ∀n ≥ 0 ∶ f (n) ≥ n, and
▸ $ ∉ Σ a new symbol.

Define the language

Padf (L) = {w$
f (∣w ∣)−∣w ∣ ∣ w ∈ L} ⊆ (Σ ∪ {$})∗.

Note: to every word from L of length n we assign a word from L$
∗ of

length f (n).
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Translation theorem for time classes

Theorem 15 (Translation theorem for time classes)

Let f and g be monotone functions such that f (n) ≥ n, g(n) ≥ n for all n
and f and g are time constructible. Then, for every L ⊆ Σ∗ we have

1. Padf (L) ∈ DTIME(O(g)) ⇐⇒ L ∈ DTIME(O(g ○ f )),
2. Padf (L) ∈ NTIME(O(g)) ⇐⇒ L ∈ NTIME(O(g ○ f )).

Proof: We show the theorem only for DTIME; the proof for NTIME is
analogous.

⇒: Let Padf (L) ∈ DTIME(O(g)) and w ∈ Σ∗ be an input, ∣w ∣ = n.
We decide w ∈ L in time O(g(f (n))) as follows:
1. Compute the word w$

f (n)−n in time f (n) ∈ O(g(f (n)))
(possible since f is time constructible).

2. Check in time O(g(f (n))) whether w$
f (n)−n ∈ Padf (L) holds.

By definition of Padf (L) we have w$
f (n)−n ∈ Padf (L) ⇐⇒ w ∈ L.
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Proof of the translation theorem for time classes

⇐: Let L ∈ DTIME(O(g ○ f )) and let x ∈ (Σ ∪ {$})∗ be an input of
length m.

We check in time O(g(m)) whether x ∈ Padf (L) as follows:
1. Check in time m ≤ g(m) whether x ∈ w$

∗ for some word w ∈ Σ∗.

Let x = w$
m−n with w ∈ Σ∗, ∣w ∣ = n.

2. Check in time g(m) whether f (n) = m holds:

Compute 1f (n) in time f (n). If thereby the machine wants
to do more than g(m) steps (this can be detected since g is time
constructible), then we can reject (since g is monotone, we have
g(f (n)) ≥ f (n) > g(m) → f (n) > m).

If 1f (n) is computed, one can compare 1f (n) with 1m.

Assume now that x = w$
f (n)−n.

3. Check in time O(g(f (n))) = O(g(m)) whether w ∈ L holds.
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Translation theorem for space classes

Theorem 16 (Translation theorem for space classes (without proof))

Let g ∈ Ω(log(n)) space constructible and f (n) ≥ n for all n ≥ 0. From the
unary input 1n one can compute the binary representation of f (n) in space
g(f (n)). Then, for every L ⊆ Σ∗ the following holds:

1. Padf (L) ∈ DSPACE(g) ⇐⇒ L ∈ DSPACE(g ○ f ),
2. Padf (L) ∈ NSPACE(g) ⇐⇒ L ∈ NSPACE(g ○ f ).

Consequence:
A collapse of complexity classes can be more likely to be expected at the
higher end of the complexity spectrum.
It might be easier to proof the separation of complexity classes at the
lower end of the complexity spectrum.
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Consequences of the translation theorem for space classes

Theorem 17 (Corollary of the translation theorem for space classes)

DSPACE(n) ≠ NSPACE(n) Ô⇒ L ≠ NL.

Proof: Assume that L = NL.

Let L ∈ NSPACE(n) = NSPACE(log ○ exp).
We get Padexp(L) ∈ NSPACE(log(n)) = NL = L = DSPACE(log(n)).
From the translation theorem for space classes we obtain
L ∈ DSPACE(log ○ exp) = DSPACE(n).
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Consequences of the translation theorems

Using the translation technique one can sometimes prove that complexity
classes are different.

Theorem 18 (Corollary of the translation theorems)

P ≠ DSPACE(n).
Proof: Choose a language L ∈ DSPACE(n2) ∖DSPACE(n) (exists by the
space hierarchy theorem) and the padding function f (n) = n2.
We obtain Padf (L) ∈ DSPACE(n).
Assume now that DSPACE(n) = P.
We obtain Padf (L) ∈ DTIME(nk) for some k ≥ 1 and
L ∈ DTIME(O(n2k)) ⊆ P = DSPACE(n).
This is a contradiction.
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Consequences of the translation theorems

Remarks:

▸ In particular, P is different from the class of deterministic
context-sensitive languages.

▸ DSPACE(log(n)) = P, DSPACE(n) ⊂ P and P ⊂ DSPACE(n) are all
possible according to our current knowledge.
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Part 3: Reductions and complete problems
Let L ⊆ Σ∗ and L′ ⊆ Σ′∗ be two languages.

A reduction of L to L′ is a total and computable mapping f ∶ Σ∗ → Σ′∗

with x ∈ L ⇐⇒ f (x) ∈ L′ for all x .
Assume that we have an algorithm for deciding membership in L′. Then
we can check whether x ∈ L as follows:

1. Compute the word f (x) ∈ Σ′∗.
2. Check, using the algorithm for L′, whether f (x) ∈ L′ holds.

x ✲ Mf
✲

f (x)
ML′

✲ yes

✲ no

ML
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Polynomial time reductions

A reduction f ∶ Σ∗ → Σ′∗ of L to L′ is a polynomial time reduction, if f can
be computed by a deterministic polynomial time bounded Turing machine.

Proposition 19

L′ ∈ P and ∃ polynomial time reduction f of L to L′ Ô⇒ L ∈ P.

Proof: Assume that L′ belongs to DTIME(nk) and that f can be
computed in time nℓ.

For an input x ∈ Σ∗ of length n, we first compute f (x) in time nℓ.

We must have ∣f (x)∣ ≤ nℓ.
Therefore one can decide in time (nℓ)k = nk⋅ℓ whether f (x) ∈ L′
(i.e., x ∈ L) holds.

This algorithm works in time nℓ + nk⋅ℓ.
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Logspace reductions

Many important reductions can be computed in logarithmic space
⇒ logspace reductions

Definition logspace transducer

A logspace transducer is a deterministic Turing machine M with the
following properties:

▸ M has a read-only input tape,

▸ M has a work tape whose length is O(log n) for an input of length n,

▸ M has a write-only output tape.

In each computation step of M, the machine
▸ either writes a new symbol on the output tape and the head for the

output tape moves on cell to the right, or
▸ no new symbol is written on the output tape and the head for the

output tape does not move.
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Logspace reductions

Definition

1. A function f ∶ Σ∗ → Σ′∗ is logspace computable, if the following holds:
∃ logspace transducer M ∀x ∈ Σ∗ ∶

M finally stops on input x with f (x) ∈ Σ′∗ on the output tape.

2. A language L ⊆ Σ∗ is logspace reducible to L′ ⊆ Σ′∗ if there is a
logspace computable function f ∶ Σ∗ → Σ′

∗

such that

∀x ∈ Σ∗ ∶ x ∈ L ⇐⇒ f (x) ∈ L′.
We briefly write L ≤logm L′.

The lower index m stands for many-one. This refers to the fact that
many words from Σ∗ can be mapped by f to the same word from Σ′∗.
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Logspace reductions

Remarks:

▸ Let L,L′ ∈ P, L ⊆ Σ∗, L′ ⊆ Σ′∗, ∅ ≠ L ≠ Σ∗ and ∅ ≠ L′ ≠ Σ′∗.

Then there is a polynomial time reduction of L to L′ as well as a
polynomial time reduction of L′ to L:

Let x0 ∈ Σ′
∗ ∖ L′ and x1 ∈ L′.

Define the function f ∶ Σ∗ → Σ′∗ by

f (x) = ⎧⎪⎪⎨⎪⎪⎩
x0 if x ∈ Σ∗ ∖ L

x1 if x ∈ L

Then, f is a polynomial time reduction of L to L′.
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Logspace reductions

Remarks:

▸ Logspace reductions can be also used for complexity classes below P
and lead to a finer classification than polynomial time reductions.

▸ Every logspace computable function f ∶ Σ∗ → Σ′∗ can be also
computed in polynomial time.

In particular: ∃k ≥ 0 ∀x ∈ Σ∗ ∶ ∣f (x)∣ ≤ ∣x ∣k .
▸ Logspace reductions and polynomial time reductions have equal

power if and only if L = P holds.

Markus Lohrey (Universität Siegen) Complexity Theory I WS 2025/2026 76 / 166



≤logm is transitive

Proposition 20

L ≤logm L′ ≤logm L′′ Ô⇒ L ≤logm L′′ (≤logm is transitive)

Note: The corresponding statement for polynomial time reductions is
trivial.

But when computing the composition of logspace reductions f ∶ Σ∗ → Σ′
∗

and g ∶ Σ′∗ → Σ′′
∗

in the naive way (first compute f (x), then compute
g(f (x))) the following problem arises:

▸ for input w ∈ Σ∗ with ∣w ∣ = n we have ∣f (w)∣ ≤ nk (k is a constant).

▸ The application of g to f (w) therefore needs space
O(log(nk)) = O(log(n)).

▸ But: we cannot store f (w) in logarithmic space on the work tape.
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≤logm is transitive
Proof of Proposition 20:

We compute g(f (w)) in space O(log(∣w ∣) as follows:
▸ Start the logspace transducer that computes g (without computing

f (w) before).
▸ When during the computation of g the i−th symbol of f (w) is

needed, then we run the logspace transducer for computing f starting
from the initial configuration (with input w) until the i -th symbol of
f (w) is finally computed.

The symbols of f (w) at positions 1, . . . , i − 1 are not written on the
output tape.

To do this, we need a binary counter that is incremented each time
the logspace transducer for f produces a new output symbol.

▸ Note: this binary counter needs space
O(log(∣f (w)∣)) = O(log(∣w ∣)
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≤logm is transitive

Example: Let f (n) = nk .
The function $

n ↦ $
f (n) is logspace computable.

This implies that also the function w ↦ w$
∣w ∣k−∣w ∣ for w ∈ Σ∗ is logspace

computable.

Consequence: L ≤logm Padf (L) for L ⊆ Σ∗ ($ ∉ Σ)

Vice versa, we also have Padf (L) ≤logm L for L ≠ Σ∗.
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Complete problems

Definition

Let C be a complexity class and let L ⊆ Σ∗ be a language.

1. L is hard for C, C-hard for short, (with respect to logspace reductions)
if ∀K ∈ C ∶ K ≤logm L.

2. L is C-complete (with respect to logspace reductions) if L is C-hard
and in addition L ∈ C holds.

Markus Lohrey (Universität Siegen) Complexity Theory I WS 2025/2026 80 / 166



GAP is NL-complete
Here is a first example:

Theorem 21

The graph reachability problem GAP is NL-complete.

Proof: GAP ∈NL was already shown.

Let L ∈ NL and let M be a non-deterministic log(n)-space bounded Turing
machine with L = L(M).
We define a reduction f as follows: for w ∈ Σ∗ let f (w) = (G , s, t), where:
▸ G = (V ,E) is the directed graph with

V = {c ∣ c is a configuration for M with input w , ∣c ∣ ≤ log(∣w ∣)},
E = {(c ,d) ∣ c ,d ∈ V , c ⊢M d}

▸ s = Start(w)
▸ t = is the (w.l.o.g.) unique accepting configuration of M.
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GAP is NL-complete
The graph G is represented by its adjacency matrix.

The following holds:

w ∈ L(M) ⇐⇒ in G there is a path from s to t.

The function f is logspace computable.

The following algorithm computes the adjacency matrix of G in
logarithmic space.

forall c ∈ V in length-lexicographic order do
forall d ∈ V in length-lexicographic order do

if c ⊢M d then write 1
else write 0
endif

endfor
write #

endfor

Markus Lohrey (Universität Siegen) Complexity Theory I WS 2025/2026 82 / 166



Part 4: NP-completeness

Theorem 22

If there is an NP-complete language, then there is an NP-complete
language in NTIME(n):

∃L ∶ L is NP-complete ⇒ ∃L̃ ∈ NTIME(n) ∶ L̃ is NP-complete.

Proof: Let L be an NP-complete language.

There is a constant k > 0 with L ∈ NTIME(nk).
The translation theorem for time classes yields Padnk (L) ∈ NTIME(n).
Take any language K ∈NP.

⇒ K ≤logm L ≤logm Padnk(L)
Since ≤logm is transitive, we have K ≤logm Padnk (L).
⇒ Padnk (L) is NP-complete.
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The generic NP-complete problem
Let ⟨w ,M⟩ be the encoding of a word w ∈ Σ∗ and a non-deterministic
Turing machine M.

LGen = {⟨w ,M⟩ $m ∣ w ∈ Σ∗,M non-deterministic Turing machine,

m ∈ N,M has on input w an accepting

computation of length ≤ m}
Theorem 23

LGen is NP-complete.

Proof:

LGen ∈NP:

For an input ⟨w ,M⟩$m one simulates M on input w non-deterministically
for at most m steps.

This is a non-deterministic polynomial time algorithm for LGen.
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The generic NP-complete problem

LGen is NP-hard:

Let L ∈ NP and M a nk-time bounded non-deterministic Turing machine
with L = L(M) (k is a constant).

The reduction of L to LGen computes in logarithmic space on input w ∈ Σ∗

the output

f (w) = ⟨w ,M⟩$∣w ∣k .
We get: w ∈ L(M) ⇐⇒ f (w) ∈ LGen.
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Cook’s theorem
Let Σ0 = {¬,∧,∨,⇒,⇔,0,1, (, ), x}.
Let A ⊆ Σ∗0 be the set of all propositional formulas with variables from the
set V = x1{0,1}∗ .
A ⊆ Σ∗0 is a deterministic context-free language and therefore belongs to
DTIME(n).
A propositional formula F is satisfiable if there is a mapping
B ∶ Var(F )→ {true, false} from the variables that appear in F to truth
values such that F evaluates to true when each variable y ∈ Var(F ) is
replaced by B(y).
Let SAT = {F ∈ A ∣ F is satisfiable}.
Theorem 24 (Cook’s theorem)

SAT is NP-complete.
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Proof of Cook’s theorem

(A) SAT ∈NP: For a word F ∈ Σ∗0 we verifiy “F ∈ SAT” as follows:

1. Check in time O(∣F ∣) whether F ∈ A holds.

2. If “YES”, guess a mapping B ∶ Var(F )→ {true, false}.
3. Accept, if F evaluates to true under B.

(B) SAT is NP-complete.

Let L ∈ NP.

Given w ∈ Σ∗, we construct a formula f (w) with
w ∈ L ⇐⇒ f (w) is satisfiable.

The mapping f must be logspace computable.
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Proof of Cook’s theorem

Let M = (Q,Σ,Γ, δ,q0 ,qJ ,qN ,◻) be a p(n)-time bounded
non-deterministic Turing machine with L = L(M)
(p(n) > n is a polynomial).

Let w = w1w2⋯wn ∈ Σ∗ be an input of length n (w.l.o.g. n ≥ 1).

W.l.o.g. M has the following properties:

1. M has only one tape, whose initial content is ⋯◻◻w ◻ ◻⋯, and the
cells on the tape can be read and written during the computation.

2. The end markers ▷ and ◁ are not needed.

3. M accepts w if and only if M is in state qJ after exactly p(n) steps,
and the read/write head returns to its initial position, where a ◻ is in
the cell.

4. If (p1,a1,d1), (p2,a2,d2) ∈ δ(q,a) then a1 = a2 and d1 = d2.
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Proof of Cook’s theorem

Point 4 from slide 88 can be ensured as follows: define a new
non-deterministic Turing machine

M ′ = (Q ′,Σ,Γ, δ′,q0,qJ ,qN ,◻)
with

▸ Q ′ = Q ∪ (Q × Γ × {−1,0,1}),
▸ for all q ∈ Q,a ∈ Γ let

δ′(q,a) = {((p,b,d),a,0) ∣ (p,b,d) ∈ δ(q,a)},
▸ for all (p,b,d) ∈ Q × Γ × {−1,0,1} and all a ∈ Γ let

δ′((p,b,d),a) = {(p,b,d)}.
We have L(M) = L(M ′) and M ′ is polynomial time bounded.
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Proof of Cook’s theorem

Every configuration that can be reached from the start configuration can
be described by a word of the form

Conf = {◻u(q,a)v◻ ∣ (q,a) ∈ Q × Γ, uv ∈ Γ2p(n)}.
The start configuration is ◻p(n)+1(q0,w1)w2⋯wn◻

p(n)−n+2.

Let Ω = (Q × Γ) ∪ Γ.

Notation: For α ∈ Conf we write

α = α[−p(n) − 1]α[−p(n)]⋯α[p(n)]α[p(n) + 1],
where

▸ α[−p(n) − 1] = α[p(n) + 1] = ◻ and

▸ α[−p(n)], . . . , α[p(n)] ∈ Ω.
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Proof of Cook’s theorem
Assume that α,α′ ∈ Conf with α ⊢M α′ and −p(n) ≤ i ≤ p(n).
α[i − 1], α[i] and α[i + 1] determine which symbols are possible for α′[i].
Example:

If (p,a′,−1) ∈ δ(q,a) then the following local tape modification is possible:

position i−2 i−1 i i+1 i+2

α = ⋯ ⋯ b′ b q,a c c ′ ⋯ ⋯

α′ = ⋯ ⋯ b′ p,b a′ c c ′ ⋯ ⋯

If (p,a′,+1) ∈ δ(q,a) then the following local tape modification is possible:

position i−2 i−1 i i+1 i+2

α = ⋯ ⋯ b′ b q,a c c ′ ⋯ ⋯

α′ = ⋯ ⋯ b′ b a′ p, c c ′ ⋯ ⋯
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Proof of Cook’s theorem

We define ∆ ⊆ Ω4 as the set of all such 4-tuples(α[i − 1], α[i], α[i + 1], α′[i]):
▸ (a,b, c ,b) with a,b, c ∈ Γ

▸ (b, c , (q,a), (p, c)), (b, (q,a), c ,a′), ((q,a),b, c ,b),
where (p,a′,−1) ∈ δ(q,a), b, c ∈ Γ

▸ (b, c , (q,a), c), (b, (q,a), c ,a′), ((q,a),b, c , (p,b)),
where (p,a′,+1) ∈ δ(q,a), b, c ∈ Γ

We then obtain for all α,α′ ∈ ◻Ω∗◻ with ∣α∣ = ∣α′∣:
α,α′ ∈ Conf and α ⊢M α′

⇐⇒
α ∈ Conf and ∀i ∈ {−p(n), . . . ,p(n)} ∶ (α[i − 1], α[i], α[i + 1], α′[i]) ∈∆.

For this, point 4 from slide 88 is important!
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Proof of Cook’s theorem

A computation of M can be described by a matrix of the following form:

α0 = ◻ α0,−p(n) α0,−p(n)+1 . . . α0,p(n) ◻

α1 = ◻ α1,−p(n) α1,−p(n)+1 . . . α1,p(n) ◻

⋮
αp(n) = ◻ αp(n),0 αp(n),1 . . . αp(n),p(n) ◻

For every triple (a, i , t) (a ∈ Ω, −p(n) − 1 ≤ i ≤ p(n) + 1, 0 ≤ t ≤ p(n)) let
x(a, i , t) be a propositional variable.

Interpretation: x(a, i , t) = true if and only if at the configuration at time
t, the i -th symbol is an a.
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Proof of Cook’s theorem

At positions −p(n) − 1 and p(n) + 1 there is always a ◻:

G(n) = ⋀
0≤t≤p(n)

(x(◻,−p(n) − 1, t) ∧ x(◻,p(n) + 1, t))

For every pair (i , t), exactly one variable x(a, i , t) is true (at every time
instant, a tape cell contains exactly one symbol):

X (n) = ⋀
0≤t≤p(n)

−p(n)−1≤i≤p(n)+1

⎛
⎝⋁a∈Ω(x(a, i , t) ∧ ⋀

b∈Ω∖{a}

¬x(b, i , t))⎞⎠
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Proof of Cook’s theorem

At time instant t = 0, the configuration is ◻p(n)+1(q0,w1)w2⋯wn◻
p(n)−n+2:

S(w) = p(n)

⋀
i=1

x(◻,−i ,0) ∧ x((q0,w1),0,0) ∧ n−1

⋀
i=1

x(wi+1, i ,0) ∧ p(n)

⋀
i=n

x(◻, i ,0)

The computation “respects” the local relation ∆:

D(n) = ⋀
−p(n)≤i≤p(n)
0≤t≤p(n)−1

⋁
(a,b,c,d)∈∆

⎛
⎝

x(a, i − 1, t) ∧ x(b, i , t) ∧
x(c , i + 1, t) ∧ x(d , i , t + 1)

⎞
⎠
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Proof of Cook’s theorem

Finally, we define the formula

f (w) = G(n) ∧ X (n) ∧ S(w) ∧D(n) ∧ x((qJ ,◻),0,p(n)).
Then there is a natural bijection between set of all satisfying assignments
for f (w) and the set of all accepting computations of M on input w .

Therefore we have:

f (w) is satisfiable ⇐⇒ w ∈ L.

Number of variables in f (w): O(p(n)2)
Length of f (w): O(p(n)2 log p(n))
The factor O(log p(n)) is needed since the indices of the variables need
log p(n) many bits.
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Further NP-complete problems: (1) SAT ∩ CNF

Definition: literals, CNF

A literal x̃ is a propositional variable or a negated propositional variable.

Instead of ¬x , we also write x . Moreover, we set x = x .

Let CNF (resp. DNF) be the set of all propositional formulas in
conjunctive normal form (resp. disjunctive normal form):

DNF = {F ∣ F is a disjunction of conjunctions of literals}
CNF = {F ∣ F is a conjunction of disjunctions of literals}

Fact: For every propositional formula F there is an equivalent formula
DNF(F ) ∈ DNF and CNF(F ) ∈ CNF.
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Further NP-complete problems: (1) SAT ∩ CNF

Example:

F = ⋀
i=1,...,k

⎛
⎝ ⋁j=1,...,m

x̃i ,j
⎞
⎠ ≡ ⋁

f ∈{1,...,m}{1,...,k}

⎛
⎝ ⋀i=1,...,k

x̃i ,f (i)
⎞
⎠ = F ′

Note:

▸ ∣F ∣ = m ⋅ k , whereas ∣F ′∣ = mk ⋅ k . Thus, a CNF-formula with k

disjunctions of length m can be transformed into an equivalent
DNF-formula consisting of mk conjunctions of length k .

▸ For DNF-formulas, satisfiability can be checked deterministically in
quadratic time.

▸ In a moment we will see that satisfiability for CNF-formulas is
NP-complete.
Therefore the exponential blow-up in the transformation from CNF to
DNF is not surprising.
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SAT ∩ CNF is NP-complete

Theorem 25

SAT ∩ CNF is NP-complete.

Proof:

(1) SAT∩CNF ∈ NP: clear, because (i) SAT ∈ NP and (ii) for a formula of
length n it can be checked in time O(n) whether the formula is in CNF.

(2) SAT ∩CNF is NP-hard:

Proof 1: In the proof of the NP-hardness of SAT, we have constructed a
formula that is already in CNF up to subformulas of constant length.

Using a logspace transducer we can transform those constant-size
subformulas into CNF and thereby obtain a CNF-formula.
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SAT ∩ CNF is NP-complete

Proof 2: We show SAT ≤logm SAT ∩CNF.

For this we have to come up with a logspace-computable mapping
f ∶ A→ CNF such that:

F ∈ SAT ⇐⇒ f (F ) ∈ SAT ∩ CNF.

We can view a formula F ∈ A as a tree T (F ) that can be built recursively
as follows:

1. For a variable x let T (x) = x .
2. If F is the negation of a formula A, i.e., F = ¬A, then T (F ) has the

following form:

¬

T(A)
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SAT ∩ CNF is NP-complete

3. If F has the form F = A ○B for formulas A, B and ○ ∈ {⇔,⇒,∧,∨},
then T (F ) has the following form:

○

T(A) T(B)

Example: For the formula

F = (( (¬(¬¬x1 ∧ x2))⇔ (x2 ∨ x3)) ∧ (x1 ⇒ (¬x2 ∨ x3)))
we obtain the tree T (F ) from the next slide.
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SAT ∩ CNF is NP-complete
∧

⇔ ⇒

¬ ∨ ∨

∧ ¬

¬

¬

x1

x2 x3 x3

x2 x2

x1

To each node of T (F ) we assign a new variable v(A), where A is the
subformula of F represented by the node.
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SAT ∩ CNF is NP-complete
∧

⇔ ⇒

¬ ∨ ∨ v(¬x2 ∨ x3)

∧ ¬

¬

¬

x1

x2 x3 x3

x2 x2

x1

To each node of T (F ) we assign a new variable v(A), where A is the
subformula of F represented by the node.
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SAT ∩ CNF is NP-complete

Define an auxiliary function f ′ ∶ A→ SAT∩CNF recursively as follows:

1. If F = x then f ′(F ) ∶= CNF(v(x)⇔ x).
2. If F = A ○B with ○ ∈ {⇔,⇐,∧,∨} then

f ′(F ) ∶= (CNF(v(F )⇔ (v(A) ○ v(B))) ∧ f ′(A) ∧ f ′(B)).
3. If F = ¬A then

f ′(F ) ∶= (CNF(v(F )⇔ ¬v(A)) ∧ f ′(A)).
The latter formula is equivalent to

f ′(F ) = (( v(F ) ∨ v(A)) ∧ (¬v(F ) ∨ ¬v(A) ) ∧ f ′(A)).
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SAT ∩ KNF is NP-complete

Note: In the definition of f ′ (which is not the actual reduction), we apply
CNF only to formulas of constant length.

In the following, let V (G) be the set of all variables that appear in a
formula G ∈ A.

Note: V (G) ⊆ V (f ′(G))
Lemma

1. f ′(F ) is always satisfiable.
2. Let σ ∶ V (f ′(F ))→ {0,1} such that σ(f ′(F )) = 1 and let σ′ be the

restriction of σ to V (F ). We then have σ′(F ) = σ(v(F )).
3. For every σ′ ∶ V (F )→ {0,1} there is some σ ∶ V (f ′(F ))→ {0,1}

with σ(f ′(F )) = 1 and σ′(x) = σ(x) for all x ∈ V (F ).
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SAT ∩ KNF is NP-complete

Proof of (2): Let σ ∶ V (f ′(F )) → {0,1} such that σ(f ′(F )) = 1 and let
σ′ be the restriction of σ to V (F ).
Using induction over the structure of F , we show that σ′(F ) = σ(v(F )):
Case 1: F = x ∈ V (F ). We have

σ(f ′(F )) = σ(CNF(v(x)⇔ x)) = σ(v(x)⇔ x) = 1
and hence σ(v(F )) = σ(v(x)) = σ(x) = σ′(x) = σ′(F ).
Case 2: F = A ○ B with ○ ∈ {⇔,⇐,∧,∨}. We have

σ(f ′(F )) = σ(CNF(v(F )⇔ (v(A) ○ v(B))) ∧ f ′(A) ∧ f ′(B))
= σ(v(F )⇔ (v(A) ○ v(B))) ∧ σ(f ′(A)) ∧ σ(f ′(B))
= 1.

By induction, we have σ′(A) = σ(v(A)) and σ′(B) = σ(v(B)).
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SAT ∩ KNF is NP-complete

Moreover, we have σ(v(F )) = σ(v(A) ○ v(B)).
We obtain σ(v(F )) = σ(v(A) ○ v(B)) = σ′(A ○ B) = σ′(F ).
Case 3: F = ¬A: analogous to Case 2.

Proof of (3): Let σ′ ∶ V (F )→ {0,1} be arbitrary.

Define σ ∶ V (f ′(F )) → {0,1} inductively as follows:

σ(x) = σ′(x) for all x ∈ V (F )
σ(v(x)) = σ′(x) for all x ∈ V (F )
σ(v(G)) = σ(v(A) ○ v(B)) if G = A ○ B
σ(v(G)) = σ(¬v(A)) if G = ¬A

Using induction over the structure of F , we directly obtain σ(f ′(F )) = 1.
Point (1) follows directly from point (3).
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SAT ∩ KNF is NP-complete
Finally, we define our reduction f ∶ A→ CNF as

f (F ) ∶= f ′(F ) ∧ v(F ).
Claim: f (F ) is satisfiable if and only if F is satisfiable.

Proof of the claim:

(A) Let σ′ ∶ V (F )→ {0,1} such that σ′(F ) = 1.
By point (3) of the lemma there is σ ∶ V (f ′(F )) → {0,1} such that
σ(f ′(F )) = 1 and σ(x) = σ′(x) for all x ∈ V (F ).
Point (2) implies σ(v(F )) = σ′(F ) = 1.
Hence, we have σ(f ′(F ) ∧ v(F )) = 1.
(B) Let σ ∶ V (f ′(F ) ∧ v(F ))→ {0,1} such that σ(f ′(F ) ∧ v(F )) = 1.
For the restriction σ′ to the variables in V (F ) we obtain from point (2):
σ′(F ) = σ(v(F )) = 1.
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3-SAT is NP-complete

Definition: 3-SAT

Let 3-CNF be the set of CNF-formulas with exactly three literals in each
clause:

3-CNF ∶= {F ∈ CNF ∣ every clause in F contains exactly three literals}
3-SAT is the set of satisfiable formulas from 3-CNF:

3-SAT ∶= 3-CNF ∩ SAT

Theorem 26

3-SAT is NP-complete.

Proof: Only the NP-hardness has to be shown.

We show: SAT ∩CNF ≤logm 3-SAT.

Let F be a CNF-formula. We distinguish three cases:Markus Lohrey (Universität Siegen) Complexity Theory I WS 2025/2026 108 / 166



3-SAT is NP-complete

1. F contains a clause (x̃) with only one literal.
We introduce a new variable y and replace the clause (x̃) by(x̃ ∨ y) ∧ (x̃ ∨ y).
This has no influence on the satisfiability of F .

2. F contains a clause (x̃ ∨ ỹ) with two literals.
We introduce a new variable z and replace (x̃ ∨ ỹ) by(x̃ ∨ ỹ ∨ z) ∧ (x̃ ∨ ỹ ∨ z).

3. F contains a clause c with more than three literals.
Let c = (x̃1 ∨ x̃2 ∨ ⋅ ⋅ ⋅ ∨ x̃k) with k ≥ 4.
We introduce k − 3 new variables v(x̃3), v(x̃4), . . . , v(x̃k−2), v(x̃k−1)
and replace c by

c ′ = (x̃1 ∨ x̃2 ∨ v(x̃3)) ∧ k−2

⋀
j=3

(¬v(x̃j) ∨ x̃j ∨ v(x̃j+1))
∧(¬v(x̃k−1) ∨ x̃k−1 ∨ x̃k).
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3-SAT is NP-complete
Note: c ′ can be also written as

c ′ = (x̃1 ∨ x̃2 ∨ v(x̃3)) ∧ k−2

⋀
j=3

( v(x̃j) ⇒ x̃j ∨ v(x̃j+1))
∧( v(x̃k−1) ⇒ x̃k−1 ∨ x̃k).

That (3) does not change the (non)satisfiability can be seen as follows:

(A) Assume that σ ∶ V (c)→ {0,1} satisfies c .
We must have σ(x̃l) = 1 for some 1 ≤ l ≤ k .

We extend σ to σ′ by:

σ′(v(x̃p)) =
⎧⎪⎪⎨⎪⎪⎩
1 falls p ≤ l

0 falls p > l

We then have σ′(c ′) = 1:
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3-SAT is NP-complete

The unique clause, in which x̃l appears is satisfied.

In all other clauses, either a v(x̃p) with p ≤ l or a ¬v(x̃p) with p > l
appears.

(B) Let σ′ ∶ V (c ′)→ {0,1} with σ′(c ′) = 1.
Assume that σ′(x̃i) = 0 for all 1 ≤ i ≤ k .

We must have σ′(v(x̃3)) = 1 (since σ′(x̃1 ∨ x̃2 ∨ v(x̃3)) = 1).
By induction, we get σ′(v(x̃i)) = 1 für all 3 ≤ i ≤ k − 1.

We obtain σ′(¬v(x̃k−1) ∨ x̃k−1 ∨ x̃k)) = 0. contradiction!
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Integer Programming

Let LinProg(Z) ∶= {⟨A,b⟩ ∣ A ∈ Zm×n, b ∈ Zm×1, ∃x ∈ Zn×1 ∶ Ax ≥ b}.
Numbers from Z are coded in binary notation.

Theorem 27

LinProg(Z) is NP-complete.

Proof:

(1) LinProg(Z) ∈ NP:

This is the hard part of the proof, which we skip; see e.g. Hopcroft,
Ullman; Introduction to Automata Theory, Languages and Computation,
Addison Wesley 1979.
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Integer Programming

(2) LinProg(Z) is NP-hard.

We show 3-SAT ≤logm LinProg(Z).
Let F = c1 ∧ c2 ∧ ⋅ ⋅ ⋅ ∧ cq be a 3-CNF formula.

Let x1, . . . , xn be the variables in F .

We construct a system S of linear inequalities with variables xi , xi ,1 ≤ i ≤ n
and coefficients from Z:

1. xi ≥ 0, 1 ≤ i ≤ n

2. xi ≥ 0, 1 ≤ i ≤ n

3. xi + xi ≥ 1, 1 ≤ i ≤ n

4. −xi − xi ≥ −1, 1 ≤ i ≤ n

5. x̃j1 + x̃j2 + x̃j3 ≥ 1 for every clause cj = (x̃j1 ∨ x̃j2 ∨ x̃j3).
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Integer Programming

(3) and (4) Ô⇒ xi + xi = 1

(1) and (2) Ô⇒ xi = 1, xi = 0 or xi = 0, xi = 1

(5) Ô⇒ in every clause cj at least one literal

x̃ij is 1

Hence: S is solvable if and only if F is satisfiable.

Size of S : 4n + q inequalities, 2n variables.

We can write S in matrix form Ax ≥ b so that A (resp. b) has(4n + q) × 2n (resp. 4n + q) entires of absolute value ≤ 1.

Remarks:

▸ The above proof shows that LinProg(Z) is already NP-hard if
numbers are given in unary encoding.

▸ LinProg(Q) ∈ P. This is a difficult result that was first shown by
Khachiyan using his ellipsoid method.
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Subset Sum
Subset Sum is the following problem:

input: a list of binary encoded numbers t,w1, . . . ,wk ∈ N

question: Does there exists a subset S ⊆ {w1, . . . ,wk} such that

∑w∈S w = t ?

Theorem 28 (without proof)

Subset Sum is NP-complete.

Note that in Subset Sum the input numbers are given in binary
representation.

This is important:

Theorem 29 (without proof)

The variant of Subset Sum, where the input numbers t,w1, . . . ,wk ∈ N are
given in unary encoding belongs to the complexity class L ⊆ P.
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Vertex Cover is NP-complete
A vertex cover for an undirected graph G = (V ,E) is a subset C ⊆ V such
that for every edge {u, v} ∈ E : {u, v} ∩ C ≠ ∅

Vertex Cover (VC) is the following problem:

input: An undirected graph G = (V ,E) and k ≥ 0.

question: Does G have a vertex cover C with ∣C ∣ ≤ k?
Theorem 30

VC is NP-complete.

Proof:

(1) VC ∈ NP: Guess a subset C of vertices with ∣C ∣ ≤ k and check in
polynomial time, whether C is a vertex cover.

(1) VC is NP-hard:

We show 3-SAT ≤logm VC.
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Vertex Cover is NP-hard
Let

F = c1 ∧⋯∧ cq

be a formula in 3-CNF, where

cj = (x̃j1 ∨ x̃j2 ∨ x̃j3).
We construct a graph G(F ):
First we construct for every clause cj = (x̃j1 ∨ x̃j2 ∨ x̃j3) the following graph
G(cj):

x̃j1 x̃j2

x̃j3
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Vertex Cover is NP-hard

The graph G(F ) is obtained from the disjoint union ⋃
q
j=1G(cj) of all

subgraphs G(cj) by adding all edges (x , x) (x is a variable from F ).

Example:
For the formula F = (x ∨ y ∨ z) ∧ (x ∨ s ∨ r) ∧ (y ∨ s ∨ z) ∧ (x ∨ s ∨ r) we
obtain the following graph G(F ):

x y

z

x s

r

y s

z

x s

r
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Vertex Cover is NP-hard

Note: Every vertex cover U for G(F ) must have at least 2q vertices, since
U must contain from each of the q triangles at least 2 vertices.

Claim: F ∈ 3-SAT if and only if G(F ) has a vertex cover U with ∣U ∣ = 2q.
(A) Let σ be a satisfying truth assignment for the variables in F : σ(F ) = 1.
Thus, for every clause cj at least one of the literals x̃ji is true.

Let U be a vertex set, that contains for every triangle graph G(cj) exactly
two literals such that all false literals belong to U.

We have ∣U ∣ = 2q and U is a vertex cover.
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Vertex Cover is NP-hard

(B) Let U be a vertex cover with ∣U ∣ = 2q.
U must contain from every triangle graph G(cj) exactly two vertices.

Define a truth assignment σ for the variables in F :

σ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if a copy of x does not belong to U.

0 if a copy of x does not belong to U.

0 if all copies of x and x belong to U.

Note: Since U is a vertex cover and the graph G(F ) contains all edges of
the form (x , x), a variable x cannot be set to 0 and at the same time to 1.

We have σ(F ) = 1!
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Hamilton Circuit and Hamilton Path are NP-complete

A Hamilton path in a finite directed graph G = (V ,E) is a sequence of
vertices v1, v2, . . . , vn with

▸ (vi , vi+1) ∈ E for all 1 ≤ i ≤ n − 1 and

▸ for every vertex v ∈ V there is exactly one 1 ≤ i ≤ n with v = vi .

A Hamilton circuit is a Hamilton path v1, v2, . . . , vn with (vn, v1) ∈ E .
Let

HP = {G ∣ G is a finite graph with a Hamilton path}
HC = {G ∣ G is a finite graph with a Hamilton circuit}

Theorem 31

HP and HC are NP-complete (even for undirected graphs).
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Hamilton Circuit and Hamilton Path are NP-complete
Proof: We show the NP-completeness of HC.

(A) HC ∈ NP: trivial.

(B) 3-SAT ≤logm HC:

Let F = ⋀c∈C c be a formula in 3-CNF. Every clause c ∈ C consists of 3
literals and we view c as a set of 3 literals.

We construct a graph G(F ) which contains a Hamilton circuit if and only
if F ∈ SAT.

We define for every clause c = (x̃ ∨ ỹ ∨ z̃) ∈ C the graph G(c):

c1

cx̃1 cx̃2 cx̃3 cx̃4 cỹ1 cỹ2 cỹ3 cỹ4 cz̃1 cz̃2 cz̃3 cz̃4

c0
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Hamilton Circuit and Hamilton Path are NP-complete

Claim 1:

▸ In G(c) there is no Hamilton path from c0 to c1.

▸ If one removes from G(c) at least one of the paths
cℓ1 − cℓ2 − cℓ3 − cℓ4, ℓ ∈ c , then there is a Hamilton path from c0 to c1.
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Hamilton Circuit and Hamilton Path are NP-complete

For a variable x let {c1, . . . , ck} be the set of clauses with x ∈ ci and let{d1, . . . ,dl} be the set of clauses with x ∈ dj .

For every x we define the graph G(x):

xc11 xc12 xc13 xc14 xck1 xck2 xck3 xck4

xd11 xd12 xd13 xd14 xdl 1 xdl 2 xdl 3 xdl 4
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Hamilton Circuit and Hamilton Path are NP-complete
The graph G(F ) is assembled from the graphs G(ci) and G(xj), where
C = {c1, . . . , ck} and x1, . . . , xn are the variables in F .

G(c1) G(ci) G(ck)

G(x1) G(xn)G(xj )

For every clause c , every literal x̃ ∈ c , and all 1 ≤ i ≤ 4 we connect cx̃ ,i (a
vertex from G(c)) and x̃c,i via an extra node.
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Hamilton Circuit and Hamilton Path are NP-complete

G(c)

G(x)
x̃c1 x̃c2 x̃c3 x̃c4 ỹc1 ỹc2 ỹc3 ỹc4

G(y)
z̃c1 z̃c2 z̃c3 z̃c4

G(z)

(let c = (x̃ ∨ ỹ ∨ z̃) ∈ C )
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Hamilton Circuit and Hamilton Path are NP-complete

Example: The graph G(F ) for F =
c1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(x1 ∨ x2 ∨ x3)∧

c2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(x1 ∨ x2 ∨ x3).

The Hamilton circuit that corresponds to x1 = 1, x2 = 0, x3 = 1 can be
found at https://www.eti.uni-siegen.de/ti/lehre/ws2021/komplexitaetstheorie/example-hamilton.pdf.
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Hamilton Circuit and Hamilton Path are NP-complete

Claim 2: F ∈ SAT ⇐⇒ G(F ) has a Hamilton circuit.

Ô⇒: Assume σ is a truth assignment that makes F true: σ(F ) = 1.
We obtain a Hamilton circuit for G(F ) as follows:
The circuit leads for every variable x via the x-branch (resp., the
x-branch), if σ(x) = 1 (resp., σ(x) = 0). Thereby it visits via the extra
nodes in every graph G(c) at least one of the paths cx̃1 − cx̃2 − cx̃3 − cx̃4,
where x̃ ∈ c is a literal with σ(x̃) = 1.
This is possible, since σ sets in each clause in each clause at least one
literal to 1.

When all graphs G(x) are traversed, the Hamilton circuit visits those
vertices from the subgraphs G(c) and G(x) that have not been visited so
far. This is possible by Claim 1.

The Hamilton circuit finally ends at the initial vertex.
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Hamilton Circuit and Hamilton Path are NP-complete

⇐Ô: Let C be a Hamilton circuit for G(F ).
C must traverse for each graph G(x) either the x-branch or the x -branch.

This defines a truth assignment for the variables in F and its not hard to
see that this assignment makes F true.
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Hamilton Circuit and Hamilton Path are NP-complete

Excercise: Would the following construction also work?
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Complete problems for P

Let Lcfe = {⟨G ⟩∣ G is a context-free grammar with L(G) ≠ ∅}.
Here, ⟨G ⟩ stands for a suitable encoding of the grammar G , cfe stands for
“context–free–empty”.

Theorem 32

Lcfe is P-complete.

Proof:

(A) Lcfe ∈ P

Check for a given context-free grammar G , whether the start non-terminal
S is productive.

Let P be the set of productions of G , Σ be the set of terminal symbols
and N be the set of non-terminals.

A non-terminal A is productive, if there is a word w ∈ Σ∗ with A⇒∗G w .
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Complete problems for P

The following algorithm computes the set of productive non-terminals in
polynomial time:

M ∶= {A ∈ N ∣ there is a (A → w) ∈ P with w ∈ Σ∗};
M ′ = ∅;
while M ≠M ′ do

M ′ ∶=M;
M ∶=M ′ ∪ {A ∈ N ∣ there is a (A → w) ∈ P with w ∈ (M ′ ∪Σ)∗};

endwhile

(B) Lcfe is P-hard.

Let L ∈ P and L(M) = L for a p(n)-time bounded deterministic Turing
machine M = (Q,Σ,Γ, δ,q0 ,qJ ,qN ,◻), p(n) > n a polynomial.

Let w = w1⋯wn ∈ Σ∗ be an input for M with ∣w ∣ = n ≥ 1.
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Emptiness for context-free grammars is P-complete

We make for M similar assumptions as in the proof of Cook’s theorem,
where Ω = (Q × Γ) ∪ Γ (see slide 88 and 90):

1. configurations of M are represented by words from the language
Conf = {◻u(q,a)v◻ ∣ (q,a) ∈ Q × Γ, uv ∈ Γ2p(n)}.

2. The start configuration is α0 ∶= ◻p(n)+1(q0,w1)w2⋯wn◻p(n)−n+2.

3. w ∈ L(M) if and only if M reaches the accepting state qJ after at
most p(n) steps from α0.

Since M is deterministic, the relation ∆ ⊆ Ω4 from the proof of Cook’s
theorem (slide 92) becomes a function ∆ ∶ Ω3 → Ω such that for all words
α,α′ ∈ ◻Ω∗◻ with ∣α∣ = ∣α′∣ we have:

α,α′ ∈ Conf and α ⊢M α′

⇐⇒
α ∈ Conf and ∀i ∈ {−p(n), . . . ,p(n)} ∶∆(α[i − 1], α[i], α[i + 1]) = α′[i].
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Emptiness for context-free grammars is P-complete

We define the grammar G(w) = (V ,∅,P ,S) with set of variables

V = {S} ∪ {V (a, t, j) ∣ a ∈ Ω, 0 ≤ t ≤ p(n), ∣j ∣ ≤ p(n) + 1},
an empty terminal alphabet, the start non-terminal S and the following set
of productions (λ = empty word):

▸ S → V ((qJ ,a), t, j) for 0 ≤ t ≤ p(n), ∣j ∣ ≤ p(n) + 1,a ∈ Γ

▸ V (a, t + 1, j) → V (b, t, j − 1)V (c , t, j)V (d , t, j + 1)
if ∆(b, c ,d) = a,0 ≤ t ≤ p(n) − 1, ∣j ∣ ≤ p(n)

▸ V (◻, t, j) → λ for 0 ≤ t ≤ p(n), ∣j ∣ = p(n) + 1,

▸ V ((q0,w1),0,0) → λ,

▸ V (wj+1,0, j) → λ for 1 ≤ j ≤ n − 1,

▸ V (◻,0, j) → λ for j ∈ {−p(n), . . . ,−1} ∪ {n, . . . ,p(n)}
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Emptiness for context-free grammars is P-complete

Claim: L(G(w)) ≠ ∅⇐⇒ w ∈ L.

Let α0 ⊢M α1 ⊢M ⋯ ⊢M αp(n) (αi ∈ Conf) be the unique computation that
begins with the start configuration α0.

For −p(n) − 1 ≤ j ≤ p(n) + 1 and 0 ≤ t ≤ p(n) let α(t, j) = αt[j].
We show the above claim by proving

L(V (a, t, j)) ≠ ∅ ⇐⇒ α(t, j) = a,
where L(V (a, t, j)) ⊆ {λ} ist the set of all terminal words that can be
derived from V (a, t, j):
⇐Ô: Let α(t, j) = a.
The cases t = 0 and j ∈ {−p(n) − 1,p(n) + 1} follow immediately from the
definition of G(w).
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Emptiness for context-free grammars is P-complete

If t ≥ 1 and −p(n) ≤ j ≤ p(n), then there are b, c ,d ∈ Ω with ∆(b, c ,d) = a
and

▸ α(t − 1, j − 1) = b,
▸ α(t − 1, j) = c ,
▸ α(t − 1, j + 1) = d .

Induction over t yields

▸ L(V (b, t − 1, j − 1)) ≠ ∅,
▸ L(V (c , t − 1, j)) ≠ ∅,
▸ L(V (d , t − 1, j + 1)) ≠ ∅.

Since G(w) contains the production

V (a, t, j) → V (b, t − 1, j − 1)V (c , t − 1, j)V (d , t − 1, j + 1),
we get L(V (a, t, j)) ≠ ∅.
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Emptiness for context-free grammars is P-complete

Ô⇒: Let L(V (a, t, j)) ≠ ∅.
The cases t = 0 and j ∈ {−p(n) − 1,p(n) + 1} follow from the definition of
G(w).
If t ≥ 1 and −p(n) ≤ j ≤ p(n), then there must exist a production

V (a, t, j)→ V (b, t − 1, j − 1)V (c , t − 1, j)V (d , t − 1, j + 1)
(in particular ∆(b, c ,d) = a) such that

▸ L(V (b, t − 1, j − 1)) ≠ ∅,
▸ L(V (c , t − 1, j)) ≠ ∅,
▸ L(V (d , t − 1, j + 1)) ≠ ∅.

Induction ⇒ α(t − 1, j − 1) = b, α(t − 1, j) = c , α(t − 1, j + 1) = d .
Since ∆(b, c ,d) = a, we get α(t, j) = a.
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Boolean circuits

Definition of a boolean circuit

A boolean circuit C is a directed labelled graph C = ({1, . . . ,o},E , s) for
some o ∈ N with the following properties:

▸ ∀(i , j) ∈ E ∶ i < j , i,e., C is acyclic.

▸ s ∶ {1, . . . ,o} → {¬,∧,∨,0,1}, where
s(i) ∈ {∧,∨} ⇒ indegree(i) = 2

s(i) = ¬ ⇒ indegree(i) = 1
s(i) ∈ {0,1} ⇒ indegree(i) = 0

s(i) is the type (or sort) of vertex i .

The vertices are also called gates.

The gate o is the output gate of C .
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Boolean circuits

We can evaluate the circuit C in the intuitive way (see example) and
thereby assign to every gate i a truth value v(i) ∈ {0,1}.
A circuit is called monotone, if it does not contain ¬-gates.

Circuit Value (CV) is the following problem:

input: A boolean circuit C

question: Does the output gate of C evaluate to 1?

Monotone Circuit Value (MCV) is the following problem:

input: A monotone boolean circuit C

question: Does the output gate of C evaluate to 1?
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Boolean circuits

Example:

∨

∧ ∨

∨ ∧

∨

∧

1

¬

0
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Boolean circuits

Example:

∨

∧ ∨

∨ ∧

∨

∧0

1

¬1

0
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Boolean circuits

Example:

∨

∧ ∨

∨ ∧

∨1

∧0

1

¬1

0
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Boolean circuits

Example:

∨

∧ ∨

∨1
∧0

∨1

∧0

1

¬1

0
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Boolean circuits

Example:

∨

∧1
∨1

∨1
∧0

∨1

∧0

1

¬1

0
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Boolean circuits

Example:

∨1

∧1
∨1

∨1
∧0

∨1

∧0

1

¬1

0
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Circuit Value is P-complete

Theorem 33

CV and MCV are P-complete.

Proof:

(i) CV ∈ P: evaluate the gate in the order 1,2, . . . ,o.

(ii) MCV is P-hard:

Recall the proof of the P-hardness of Lcfe .

For a language L ∈ P and every input w ∈ Σ∗ we constructed a context-free
grammar G(w) with: w ∈ L if and only if λ ∈ L(G(w)).
All productions of G(w) have the form A→ α, where α is a (possibly
empty) sequence of non-terminals.

Moreover, G(w) is acyclic (there are no derivations of the form
A⇒+ uAv).
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Circuit Value is P-complete
Step 1: Replace every production A→ A1A2⋯An with n ≥ 3 by

A→ A1A
′

2, A′i → AiA
′

i+1 (2 ≤ i ≤ n − 2), A′n−1 → An−1An

for new non-terminals A′2, . . . ,A
′

n−1.

Step 2: Replace every production A→ B by A→ BB .

Now, all productions are of type A→ λ or A→ BC .

Step 3: for every non-terminal A, which is the left-hand side of at least
two productions, i.e., A→ α1∣α2∣⋯∣αn for some n ≥ 2, we replace these n

productions by
A→ A1∣A2, A1 → α1, A2 → α2

if n = 2 (A1,A2 are new non-terminals), respectively

A→ A1∣A′2, A′i → Ai ∣A′i+1 (2 ≤ i ≤ n − 2),
A′n−1 → An−1∣An, Ai → αi (1 ≤ i ≤ n).

if n ≥ 3 (A1, . . . ,An,A
′

2, . . . ,A
′

n−1 are new non-terminals).
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Circuit Value is P-complete

Then, for every non-terminal A one of the following 4 cases holds:

1. There is no production for A.

2. For A there is exactly one production with A on the left-hand side.
This production is A→ λ.

3. For A there is exactly one production with A on the left-hand side.
This production is of type A→ BC .

4. A is the left-hand side for exactly two productions and these
productions are of type A→ B : A → B ∣C

The new grammar produces λ if and only if the old grammar produces λ.

We denote this new grammar again with G(w).
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Circuit Value is P-complete

We define the circuit C(w) as follows:
Every non-terminal of G(w) is a gate of C(w).
The start non-terminal of G(w) is the output gate of C(w).
1. A non-terminal A of type 1 becomes a 0-input gate.

2. A non-terminal A of type 2 becomes a 1-input gate

3. A non-terminal A of type 3 becomes a ∧-gate with entries B and C .

4. A non-terminal A of type 4 becomes a ∨-gate with entries B and C .
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Circuit Value is P-complete

The circuit C(v) produced in this way is acyclic because G(w) is acyclic.
We have: L(A) ≠ ∅ ⇐⇒ gate A evaluates in C(w) to 1.

Hence, L(G(w)) ≠ ∅ ⇐⇒ the output gate of C(w) evaluates to 1.

Remark: In a boolean circuit, a gate may have outdegree > 1. This seems
to be important for the P-hardness:

The set of all (variable-free) boolean expressions is defined by the
following grammar:

A ∶∶= 0 ∣ 1 ∣ (¬A) ∣ (A ∧A′) ∣ (A ∨A′)
Boolean expressions can be viewed as tree-shaped boolean circuits.

Buss 1987: The set of all boolean expressions that evaluate to the truth
value 1 is complete for the complexity class NC1 ⊆ L.
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Complete problems for PSPACE: quantified boolean

formulas

Quantified boolean formulas

The set M of quantified boolean formulas is the smallest set with:

▸ xi ∈M for all i ≥ 1

▸ 0,1 ∈M

▸ E ,F ∈M, i ≥ 1 Ô⇒ (¬E), (E ∧ F ), (E ∨ F ),∀xiE ,∃xiE ∈M
Alternatively: M can be defined by a context-free grammar with terminal
alphabet Σ = {x ,0,1, (, ),¬,∧,∨,∀,∃}.
Variables can be encoded by words from x1{0,1}∗ .
Example: ∀x1∃x2∃x3((x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3))
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Satisfiability of boolean formulas

Satisfiability of quantified boolean formulas is defined by the existence of a
satisfying assignment.

An assignment is a function b ∶ {x1, x2, . . .}→ {0,1}.
For a given formula F , the assignment can be restricted to those variables
that occur in F .

For z ∈ {0,1} and an assignment b let b[xj ↦ z] be the assignment with

▸ b[xj ↦ z](xi) = b(xi) for i ≠ j and
▸ b[xj ↦ z](xj) = z .
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Satisfiability of boolean formulas

Inductive definition of the satisfiability of the formula F with respect to
the assignment b:

The assignment b satisfies the formula F if and only if one of the following
conditions holds:

F = 1,

F = xj and b(xj) = 1,
F = (¬E) and b does not satisfy E ,

F = (F1 ∧ F2) and b satisfies F1 and F2,

F = (F1 ∨ F2) and b satisfies F1 or F2,

F = ∃xjE and b[xj ↦ 0] or b[xj ↦ 1] satisfies E ,
F = ∀xjE and b[xj ↦ 0] and b[xj ↦ 1] satisfy E .

If F is satisfied by every assignment then F is called valid.
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Satisfiability of boolean formulas

The set Free(F ) of free variables of F is defined as follows:

▸ Free(0) = Free(1) = ∅
▸ Free(xi) = {xi}
▸ Free(¬F ) = Free(F )
▸ Free((F ∧G)) = Free((F ∨G)) = Free(F ) ∪ Free(G)
▸ Free(∃xjF ) = Free(∀xjF ) = Free(F ) ∖ {xj}

A formula F with Free(F ) = ∅ is called closed.

Note: The satisfiability of a closed formula F does not depend on the
assignment. In other words: if there is a satisfying assignment for F then F

is already valid.

QBF is the set of all closed quantified boolean formulas that are valid.
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QBF is PSPACE-complete

Theorem 34

QBF is PSPACE-complete.

Proof:

(i) QBF ∈ PSPACE:

Let E be a closed quantified boolean formula in which the variables
x1, . . . , xn occur.

W.l.o.g. E is build from 1, x1, . . . , xn,¬,∧,∃ and there is no variable xi that
is quantified twice in E (the algorithm on the next slide would for instance
not yield a correct result for the formula ∃x((∃x 0) ∨ x)).
The following recursive deterministic algorithm algorithm uses x1, . . . , xn as
global variables and checks in polynomial space whether E is valid.
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QBF is PSPACE-complete

FUNCTION check(F )
if F = 1 then return(1)
elseif F = xi then return(xi)
elseif F = (¬G) then return(not check(G ))
elseif F = (F1 ∧ F2) then return(check(F1) and check(F2))
elseif F = ∃xiG then
xi ∶= 1
if check(G) = 1 then

return(1)
else

xi ∶= 0
return(check(G))

endif
endif

ENDFUNC
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QBF is PSPACE-complete

(ii) QBF is PSPACE-hard:

Let L ∈ PSPACE and L(M) = L for a p(n)-space bounded deterministic
Turing machine M = (Q,Σ,Γ, δ,q0 ,qJ ,qN ,◻),
p(n) > n is a polynomial.

Let w = w1⋯wn ∈ Σ∗ be an input for M with ∣w ∣ = n ≥ 1.
We assume for M conventions similar to those from the proof of Cook’s
theorem, where Ω = (Q × Γ) ∪ Γ:

1. configurations of M will be described by words from the language
Conf = {◻u(q,a)v◻ ∣ (q,a) ∈ Q × Γ, uv ∈ Γ2p(n)}.

2. Start(w) = ◻p(n)+1(q0,w1)w2⋯wn◻p(n)−n+2.

3. αf = ◻p(n)+1(qJ ,◻)◻p(n)+1 is w.l.o.g. the unique accepting
configuration, that is possibly reachable from Start(w).
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QBF is PSPACE-complete
There exists a function ∆ ∶ Ω3 → Ω such that for all α,α′ ∈ ◻Ω∗◻ with∣α∣ = ∣α′∣ we have:

α,α′ ∈ Conf and α ⊢M α′

⇐⇒
α ∈ Conf and ∀i ∈ {−p(n), . . . ,p(n)} ∶∆(α[i − 1], α[i], α[i + 1]) = α′[i].

Moreover, there is a constant c such that at most 2c⋅p(n) configurations
are reachable from Start(w) (Lemma 3).

Consider the approach from the proof of Savitch’s theorem:

Reach(Start(w), αf , c ⋅ p(n))⇐⇒ w ∈ L

Reach(α,β, i) = ∃γ (Reach(α,γ, i −1)∧Reach(γ,β, i −1)) for i > 0

Reach(α,β,0) = α ⊢
≤1
M β
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QBF is PSPACE-complete

An iterated application of this would lead to a formula of exponential
length.

Solution: We introduce configuration variables X ,Y ,U,V , . . . that take
values from Conf and define for i > 0:

Reach(X ,Y , i) ∶=
∃U ∀V ∀W( ((V = X ∧W = U) ∨ (V = U ∧W = Y ))

→ Reach(V ,W , i − 1) )
Step 1: Compute from the input w by iterated application of the above
recursion, starting with Reach(Start(w), αf , c ⋅ p(n)), a formula F of size
O(c ⋅ p(n)) in which configuration variables X ,Y , . . . occur.

F contains atomic formulas of the form Reach(X ,Y ,0) and X = Y as well
as the constants Start(w) and αf .
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QBF is PSPACE-complete

Step 2: We transform F into a closed quantified boolean formula:

▸ We encode a configuration X by an assignment for boolean variables
xa,i for a ∈ Ω and ∣i ∣ ≤ p(n) + 1.

Intuition: xa,i = 1 if and only if in the configuration X the symbol a is
at position i .

▸ There is a boolean formula γ((xa,i)a∈Ω,∣i ∣≤p(n)+1) of size O(p(n)) that
is satisfied for an assingment for the variables xa,i if and only if the
assignment describes a correct configuration.

▸ The constants Start(w) and αf can be replaced by concrete truth
values for the corresponding boolean variables.
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QBF is PSPACE-complete

▸ ∀X⋯, respectively ∃X⋯, is replaced by the following block of
quantifiers:

∀xa,i (a ∈ Ω, ∣i ∣ ≤ p(n) + 1) ∶ γ((xa,i)a∈Ω,∣i ∣≤p(n)+1)→ ⋯ resp.

∃xa,i (a ∈ Ω, ∣i ∣ ≤ p(n) + 1) ∶ γ((xa,i)a∈Ω,∣i ∣≤p(n)+1) ∧⋯
▸ X = Y is replaced by the formula ⋀a∈Ω,∣i ∣≤p(n)+1(xa,i ↔ ya,i).
▸ The atomic formula Reach(X ,Y ,0) becomes X = Y ∨X ⊢M Y ,

where X ⊢M Y is finally replaced by

⋀
∣i ∣≤p(n)

⋁
(a,b,c)∈Ω3

(xa,i−1 ∧ xb,i ∧ xc,i+1 ∧ y∆(a,b,c),i)

In this way, we obtain a closed quantified boolean formula that is valid if
and only if w ∈ L.
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Equivalence of regular expressions is PSPACE-complete

Recall: for a finite alphabet Σ, Reg(Σ) denotes the set of all regular
expressions of Σ. It is defined inductively as follows:

▸ ∅, ε ∈ Reg(Σ),
▸ Σ ⊆ Reg(Σ),
▸ if α,β ∈ Reg(Σ) then (α ∪ β), (α ⋅ β), α∗ ∈ Reg(Σ).

The language L defined by a regular expression α is inductively defined by

▸ L(∅) = ∅, L(ε) = {λ},
▸ L(a) = {a} for a ∈ Σ,
▸ L(α ∪ β) = L(α) ∪ L(β), L(α ⋅ β) = L(α)L(β), L(α∗) = L(α)∗.

Let

RegEquiv(Σ) = {(α,β) ∣ α,β ∈ Reg(Σ),L(α) = L(β)}
RegUniv(Σ) = {α ∣ α ∈ Reg(Σ),L(α) = Σ∗}

Markus Lohrey (Universität Siegen) Complexity Theory I WS 2025/2026 157 / 166



Equivalence of regular expressions is PSPACE-complete

Theorem 35

RegEquiv(Σ) and RegUniv(Σ) are PSPACE-complete for every finite
alphabet Σ with ∣Σ∣ ≥ 2.
Proof:

(1) RegEquiv(Σ) ∈ PSPACE.
Let α,β ∈ Reg(Σ).
First, we transform α,β into equivalent nondeterministic finite automata
A,B with L(A) = L(α), L(B) = L(β).
This can be done in polynomial time (see the construction from GTI).

We check in polynomial space whether L(A) ⊆ L(B) and L(B) ⊆ L(A).
We only show how to check L(A) ⊆ L(B), L(B) ⊆ L(A) can be verified in
the same way.

We have: L(A) ⊆ L(B) ⇔ L(A) ∩ (Σ∗ ∖ L(B)) = ∅
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Equivalence of regular expressions is PSPACE-complete

Let A = (QA,Σ, δA,q0,A,FA) and B = (QB ,Σ, δB ,q0,B ,FB).
The power set construction yields the following automaton for Σ∗ ∖ L(B):

B ′ = (2QB ,Σ, δ′B ,{q0,B},{P ⊆ QB ∣ P ∩ FB = ∅})
where for all a ∈ Σ, P ,R ⊆ QB we have:

(P ,a,R) ∈ δ′B ⇔ R = {q ∈ QB ∣ ∃p ∈ P ∶ (p,a,q) ∈ δB}.
We then obtain an automaton C for L(A) ∩ (Σ∗ ∖ L(B)) = L(A) ∩ L(B ′):

C = (QA × 2QB ,Σ, δC , (q0,A,{q0,B}),FA × {P ⊆ QB ∣ P ∩ FB = ∅})
where for all a ∈ Σ, p, r ∈ QA, P ,R ⊆ QB we have:

((p,P),a, (r ,R)) ∈ δC ⇔ (p,a, r) ∈ δA ∧ (P ,a,R) ∈ δ′B
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Equivalence of regular expressions is PSPACE-complete

We have to check in polynomial space whether L(C) ≠ ∅.
Caution: the automaton C (as well as B ′) cannot be explicitly
constructed; it does not fit into polynomial space!

Define the following directed graph

G = (QA × 2QB ,{((p,P), (r ,R)) ∣ ∃a ∈ Σ ∶ ((p,P),a, (r ,R)) ∈ δC}).
We have: L(C) ≠ ∅ if and only if in the graph G there is a path from(q0,A,{q0,B}) to a state from FA × {P ⊆ QB ∣ P ∩ FB = ∅}.
The latter can be checked nondeterministically in polynomial space:

▸ Guess a state (p,P) ∈ FA × {P ⊆ QB ∣ P ∩ FB = ∅} (can be stored in
polynomial space).

▸ Guess a path from (q0,A,{q0,B}) to (p,P). Thereby we only have to
store the current vertex from G , which fits into polynomial space.
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Equivalence of regular expressions is PSPACE-complete
(2) RegUniv(Σ) is PSPACE-hard.
Let L ∈ PSPACE and L(M) = L for a p(n)-space bounded deterministic
Turing machine M = (Q,Σ′,Γ, δ,q0 ,qJ ,qN ,◻),
p(n) > n a polynomial.

Let Ω = (Q × Γ) ∪ Γ.

Let w = w1⋯wn ∈ Σ∗ an input for M with ∣w ∣ = n ≥ 1.
Configurations of M are identified with words from the language
Conf = {◻u(q,a)v◻ ∣ (q,a) ∈ Q × Γ, uv ∈ Γ2p(n)} ⊆ Ω2p(n)+3.

There is a function ∆ ∶ Ω3 → Ω such that for all α,α′ ∈ ◻Ω∗◻ with∣α∣ = ∣α′∣ we have:

α,α′ ∈ Conf and α ⊢M α′

⇐⇒
α ∈ Conf and ∀i ∈ {−p(n), . . . ,p(n)} ∶∆(α[i − 1], α[i], α[i + 1]) = α′[i].
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Equivalence of regular expressions is PSPACE-complete

The initial configuration is α0 ∶= ◻p(n)+1(q0,w1)w2⋯wn◻p(n)−n+2.

An accepting computation (if it exists)

α0 ⊢M α1 ⊢M α2 ⊢M ⋯ ⊢M αl ∈ AcceptM

of M on input w is encoded by the word α0α1α2⋯αl ∈ Ω∗.

We construct from w a regular expression β(w) (with a logspace
transducer) such tat L(β(w)) is the set of all words over the alphabet Ω,
which do not describe an accepting computation of M on input w .

Hence: w /∈ L(M) if and only if L(β(w)) = Ω∗.
For C ⊆ Ω we identify the set C with the regular expression ⋃a∈C a.

Ωk denotes the regular expression Ω ⋅Ω⋯Ω´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k many

.
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Equivalence of regular expressions is PSPACE-complete
We have β(w) = β1 ∪ β2 ∪ β3 ∪ β4 ∪ β5, where the regular expressions βi
(1 ≤ i ≤ 5) are defined as follows:

(a) All words that do not have the right length:

β1 = ε ∪
2p(n)+2

⋃
i=1

(Ω2p(n)+3)∗Ωi

(b) All words that do not beginn with the initial configuraton
α0 = ◻p(n)+1(q0,w1)w2⋯wn◻p(n)−n+2:

β2 =
p(n)+1

⋃
i=−p(n)−1

Ωi+p(n)+1 ⋅ (Ω ∖ {α0[i]}) ⋅Ω∗

(c) All words, where a block of length 2p(n) + 3 does not begin or end
with ◻:

β3 = (Ω2p(n)+3)∗(Ω ∖ {◻}) ∪ (Ω2p(n)+3)∗Ω2p(n)+2(Ω ∖ {◻})
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Equivalence of regular expressions is PSPACE-complete
(d) All words that “do not respect ∆ somewhere”:

β4 =
2p(n)

⋃
i=0

(Ω2p(n)+3)∗Ωi( ⋃
u∈Ω3

u ⋅Ω2p(n)+1 ⋅ (Ω ∖ {∆(u)}))Ω∗
In the following picture we have u = abc and d ∉ Ω ∖ {∆(u)}:

a b c d

✲✛

2p(n) + 3
✲✛

2p(n) + 3
✲✛

2p(n) + 3
✲✛

2p(n) + 3

✲✛
i

✲✛
i

✲✛

2p(n) + 3

✲✛

2p(n) + 1

(e) All words that do not contain the accepting state qJ :

β5 = (Ω ∖ ({qJ} × Γ))∗
Claim: Ω∗ ∖ L(β(w)) = ⋂5

i=1(Ω∗ ∖ L(βi )) is the set of all words
α0α1α2⋯αl that describe an accepting computation of M on input w .
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Equivalence of regular expressions is PSPACE-complete

That x belongs to ⋂5
i=1(Ω∗ ∖ L(βi)) means:

▸ x has the form α0α1⋯αl with ∣αi ∣ = 2p(n) + 3 for all 1 ≤ i ≤ l and α0

is the initial configuration (due to β1 and β2).

▸ for all 1 ≤ i ≤ l , we have αi ∈ ◻Ω∗◻ (due to β3).

▸ for all 1 ≤ t ≤ l − 1 and all positions i with ∣i ∣ ≤ p(n) we have:
αt+1[i] =∆(αt[i − 1], αt[i], αt[i + 1]) (due to β4).

Due to the equivalence from slide 161 (bottom) and the above
points, this is equivalent to α0 ⊢M α1 ⊢M α2 ⊢M ⋯ ⊢M αl .

▸ One of the configurations αi must be accepting (due to β5).

This configuration must be αl (since our Turing machines terminate
when they reach the state qJ).

Together, these properties are equivalent to x being an accepting
computation of M on input w .
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Equivalence of regular expressions is PSPACE-complete

Finally, we encode the symbols from Ω = (Q ×Γ)∪Γ by bit strings, in order
to get PSPACE-hardness for every alphabet with at least two symbols.

Let us write Ω as Ω = {a1,a2, . . . ,ak}.
We replace in the regular expression β(w) every occurrence of the symbol
ai by aibk−i .

Let β′(w) be the resulting regular expression over the alphabet {a,b}.
In addition, we construct a regular expression β′′ over {a,b} such that

L(β′′) = {a,b}∗ ∖ {aibk−i ∣ 1 ≤ i ≤ k}∗.
We then have:

L(β′(w) ∪ β′′) = {a,b}∗ ⇔ L(β(w)) = Ω∗ ⇔ w ∉ L.
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