Confluence Problems for Trace Rewriting Systems

Markus Lohrey

Universitit Stuttgart, Institut fur Informatik,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany

E-mail: lohreyms@informatik.uni-stuttgart.de

Rewriting systems over trace monoids, briefly trace rewriting systems,
generalize both semi-Thue systems and vector replacement systems. In
[21], a particular trace monoid M is presented such that confluence is un-
decidable for the class of length-reducing trace rewriting systems over M.
In this paper, we show that this result holds for every trace monoid, which
is neither free nor free commutative. Furthermore we show that confluence
for special trace rewriting systems over a fixed trace monoid is decidable

in polynomial time.

Key Words: Confluence, trace monoids, undecidability results

1. INTRODUCTION

The theory of free partially commutative monoids generalizes both, the theory
of free monoids and the theory of free commutative monoids. In computer science,
free partially commutative monoids are commonly called trace monoids and their
elements are called traces. Both notions are due to Mazurkiewicz [20], who recog-
nized traces as a model of concurrent processes. [14] gives an extensive overview
about current research trends in trace theory.

The relevance of trace theory for computer science can be explained as follows.
Assume a finite alphabet ¥. An element of the free monoid over X, i.e., a finite
word over X, may be viewed as the sequence of actions of a sequential process.
In addition to a finite alphabet ¥, the specification of a trace monoid (over X)
requires a binary and symmetric independence relation on X. If two symbols a and
b are independent then they are allowed to commute. Thus, the two words sabt
and sbat, where s and t are arbitrary words, denote the same trace. This trace
may be viewed as the sequence of actions of a concurrent process where the two
independent actions a and b may occur concurrently and thus may be observed
either in the order ab or in the order ba.

This point of view makes it interesting to consider identities between traces. If
two traces of a concurrent process are semantically equivalent because they always
transform the same initial state into the same final state, then these two traces

1

should be equated. Then two traces that can be transformed into each other by
a sequence of replacement steps, where in each step a subtrace is replaced by an
equivalent trace, also represent semantically equivalent traces. For the algorithmic
treatment of such trace identities it is useful to direct these identities. This leads to
the notion of a trace rewriting system [12], which is thus a finite set of rules, where
the left-hand side and right-hand side of each rule are traces. Trace rewriting
systems are also interesting because they generalize both, semi—Thue systems (see
[16, 7] for a detailed study) and vector replacement systems which are equivalent
to Petri nets.

For all kinds of rewriting systems, termination and confluence are of central inter-
est. Together, these two properties guarantee the existence of unique normal forms
and thus the solvability of the word problem. Several decidability and undecidabil-
ity results are known for the confluence problem for the different types of rewriting
systems mentioned above. Let us just mention a few of these results. It is known
that for terminating semi—Thue systems confluence is decidable [23]. In contrast
to this result there exists a trace monoid such that confluence is undecidable for
length-reducing trace rewriting systems over this trace monoid [21]. On the other
hand in [12] several subclasses of trace rewriting systems were defined for which
confluence is decidable. Finally for vector replacement systems it was shown in [24]
that confluence is decidable for the class of all vector replacement systems.

In this paper we continue the investigation of the confluence problem for trace
rewriting systems. First we will show that confluence is decidable for length-
reducing trace rewriting systems over a trace monoid M if and only if M is free or
free commutative. This sharpens the undecidability result of Narendran and Otto
mentioned above. Moreover since there exists a trace monoid which is generated by
three symbols and which is neither free nor free commutative, this result also solves
the question for the minimal number of symbols for which the confluence problem
for length-reducing systems becomes undecidable, see [12, p 117] and [4, Problem
6]. Our undecidability result also motivates the question for restricted subclasses
of length-reducing trace rewriting systems for which confluence becomes decidable.
In particular in [12, p 154] it was asked whether confluence is decidable for special
trace rewriting systems, where special means that all right-hand sides are the empty
trace. In Section 4 we answer this question positively. More precisely we prove that
for a fixed trace monoid confluence is decidable in polynomial time for a class of
trace rewriting systems that properly contains the class of special trace rewriting
systems. Some results of this paper already appeared in a preliminary form in [18]
and [19].

2. PRELIMINARIES

With N we denote the set of natural numbers {0,1,2,...}. The identity relation
{(a,a) | a € A} on a set A is denoted by Id4. An alphabet is a finite non-empty
set, whose elements are also called symbols. Let ¥ be an alphabet. The set of all
finite words over X is denoted by X*. The empty word is denoted by 1. The set
Y*\{1} of all non-empty finite words over X is denoted by £*. The concatenation
of two words s,t € ¥* is denoted by st. The length of a word s € ¥* is denoted by
|s|. For n € N we define X" = {s € ¥* | |s| = n}. The set of all symbols from ¥
that occur in the word s € £* is denoted by alph(s). If s = tu for ¢,u € ¥* then we

say that ¢ is a prefix of s and u is a suffiz of s, and we write s =¢--- or s = - - u.
If furthermore u # 1 (respectively ¢ # 1) then ¢ (respectively u) is called a proper
prefiz (respectively proper suffiz) of s.

In this paper a deterministic Turing-machine M is a tuple (Q,%,0,6,qo, ¢y),
where () is the finite set of states, ¥ is the finite tape alphabet, O € X is the
blank symbol, § : Q\{gs} x ¥ = @ x ¥ x {L, R} is the total transition function,
go € @ is the initial state, and gy € @ is the unique final state. The symbols L and
R indicate, whether the read-write head moves left or right. Configurations and
transitions between configurations are defined as usual. An input for M is a word
w € (X\{O})*. The cells of the one-sided infinite tape of M can be identified with
the natural numbers N. In the initial configuration that corresponds to the input
w € (E\{O})*, the tape content is wOO - - -, the state is go and the head is scanning
cell 0. We assume that M marks cell 0 in its first move somehow such that it never
makes a left-move while scanning cell 0. The machine M terminates on the input
w if and only if a final configuration (i.e., a configuration, where the state is gy)
is reached after a finite number of transitions from the initial configuration that
corresponds to w.

2.1. Trace monoids and trace rewriting systems

For a good introduction into the theory of traces see [12] or [14]. An indepen-
dence alphabet is a pair (X,I), where ¥ is a finite alphabet and I C ¥ x ¥ is
an irreflexive and symmetric binary relation, which is also called an independence
relation. Thus an independence alphabet is an undirected graph without loops,
and will be represented in this form in diagrams. In the following let (¥,I) be an
independence alphabet. The complement (¥ x £)\T of I is also called a dependence
relation. It is a reflexive and symmetric relation. The pair (X, (2 x ¥)\I) is also
called a dependence alphabet. The smallest (with respect to set inclusion) congru-
ence relation on ¥*, which contains all pairs from {(ab,ba) | a I b}, is denoted by
=s. Since I is symmetric, = is the reflexive and transitive closure of the relation
{(sabt, sbat) | s,t € T*,aIb}. For s € ¥* we denote by [s]; = {t € £¥* | s =1 t} the
equivalence class with respect to =y, which contains the word s. Such an equiva-
lence class is called a trace. If [s]r = {s} for a word s € ¥£*, which holds for instance
for s € {1} UX, then we identify the trace [s]r with the word s. The set of all traces
is denoted by M(X,I) = {[s]r | s € ¥*}. Since =; is a congruence relation on ¥*,
we can define the concatenation of two traces [s]; and [t]r by [st];. The concate-
nation of traces defines a monoid structure on the set M(X, I) of all traces, where
the empty trace [1]; = {1} is the neutral element. This monoid is called the trace
monoid generated by (X,) and will be denoted by M(X, I) as well. Thus the trace
monoid M(X, T) is the quotient monoid X*/=;. If T = () then M(X, I) is isomorphic
to the free monoid ¥*. On the other hand, if I = (¥ x X)\Idy then M(X,) is
isomorphic to the free commutative monoid N*, where n = |X|. Finally if (X,) is
of the form (X; UX5, ¥ X X U Xy x Xy) then M(X, I) is isomorphic to the direct
product of the free monoids X7 and ¥3. In this case we identify traces from M(X, I)
with pairs of words.

Since for all words s,t € X* with s =; ¢ the identities |s| = || and alph(s) =
alph(t) hold, we can define |[s];| = |s| and alph([s];) = alph(s). In the rest of
this work we will use the following conventions: Words over some alphabet will be

denoted by lower-case letters, possibly with a subscript or superscript. Traces will
be denoted by bold lower-case letters, possibly with a subscript or superscript. The
independence relation I can be lifted to the set M(X, I) in the following way: uw I v
if alph(wu) x alph(v) C I. Obviously it holds 11w for every trace u. For a trace
u € M(X,]I) we define min(u) = {a € ¥ | s € £* : u = [as]1} as the the set all
minimal symbols of u and max(u) = {a € ¥ | Is € T* : u = [sa]r} as the set all
mazximal symbols of u. The following generalization of the well known Levi’s lemma
for traces [9] can be found for instance in [14, p 74].

LEmMA 2.1. Let uy,...,Up,01,...,0, € M(X,I). Then
ULUD -~ - WUy = V1V2 - -V,

if and only if there are traces w;; € M(X,I) (i € {1,...,m}, j € {1,...,n}) such
that

& U; = W;1W;2 - Win for all i € {1,...,m},
® vV =W Wy - Wy, forall j€{l,...,n}, and
o w; i Jwp;ifl<i<k<mandl1<I<j<n.

The situation in Lemma 2.1 can be visualized by a diagram of the following
form, where m = 5 and n = 4. The i-th column corresponds to u;, the j-th row
corresponds to v;, and the square that results from intersecting the -th column
with the j-th row corresponds to the trace wj; ;. Finally it holds w; ; I wg,, if w; ;
is right-above of wy ;.

Vg | W14 | W24 | W34 | Wy | W54

V3 | W13 | W23 | W33 | W43 | W53

Va2 | W12 | W22 | W32 | We2 | W52
V1 | W11 | W21 | W31 | Wye1 | W51

Ui U2 us Uy Us

Trace rewriting systems were first considered in [10]. A trace rewriting system,
briefly TRS, over the trace monoid M(X, I) is a finite subset of M(X,I) x M(X, I).
Trace rewriting systems will be denoted by the letters R and P, possibly with
a subscript. In the following let R be a TRS over the trace monoid M(X, I).
Elements of R are also called trace rewriting rules, or briefly rules, over M(X, I).
A rule (£,7) € R will be also denoted by £ — r. We define the set dom(R) of all
left-hand sides of R by dom(R) = {£ | Ir € M(Z,I) : (£,7) € R}. The set ran(R)
of all right-hand sides of R is defined by ran(R) = {r | I € M(X,]) : (£,7) € R}.
Let ¢ = (£,7) € R be a rule. The binary relation —. is defined by

—.={(s,t) e M(Z,I) x M(Z,]) | Fu,v e M(Z,]) : s = ubv,t = urv}.

The one-step rewrite relation — is defined by =g = U,cr =c- T =0, ie,
M(X,I) ~ * then R is called a semi-Thue system over . A detailed introduction
into the theory of semi-Thue systems can be found in [16] and [7]. If on the
other hand I = (£ x £)\Idx, i.e., M(Z,I) ~ N*|, then R is also called a wvector
replacement system.

In the rest of this section we omit the subscript R in the relation —5. For —
we usually use the infix notation, i.e., instead of (s,t) € » we write s — ¢. The
transitive closure and the transitive reflezive closure of — are denoted by —1 and
—* respectively. The TRS R is terminating on s, if there does not exist an infinite
chain of the form s = s; — 83 = 83 — -+ in M(X, I). The TRS R is terminating
if R is terminating on every s € M(X,I). A trace s is irreducible with respect to R
if there does not exist a trace ¢t with s — ¢t. The set of all traces that are irreducible
with respect to R will be denoted by IRR(R). The trace ¢ is a normal form of s
(with respect to R) if s =»* t € IRR(R). A pair (s,t) of traces is confluent (with
respect to R) if there exists a trace u with s —»* u and ¢ —* u. We say that R
is confluent on s if for all ¢t,u € M(X,I) with s »* ¢t and s —* u there exists a v
with t =* v and u —* v. The TRS R is confluent if R is confluent on every s.
The TRS R is locally confluent if for all s,t,u € M(X,I) with s —» ¢t and s > u
there exists a v with £ =* v and v —»* v. Newman’s lemma [22] implies that if
R is terminating then R is locally confluent if and only if R is confluent. If R is
terminating and confluent then every trace has a unique normal form and the word
problem can be decided by computing and normal forms. This well-known fact
motivates the interest in terminating and confluent systems. The TRS R is called
length-reducing if |€] > |r| for all (£,7) € R. A length-reducing TRS is obviously
terminating. The TRS R is called special if ran(R) = {1} and 1 ¢ dom(R). Finally
the length of a TRS R is defined by

IRI="3 (el +Ir).

(£,7)ER

It is known that termination, confluence, and local confluence are all decidable
properties for vector replacement systems: Termination can be easily decided by
using Dickson’s lemma, local confluence can be reduced to the decidable reacha-
bility problem, and confluence was shown to be decidable in [24]. On the other
hand these three properties are undecidable for semi-Thue systems [15, 1]. If only
terminating semi-Thue systems are considered, local confluence and hence conflu-
ence can be decided by considering so called critical pairs [23]. Furthermore for a
length-reducing semi-Thue systems R, it can be decided in time O(|R|?) whether
R is confluent [17]. Unfortunately these positive results cannot be extended to
trace rewriting systems. In [21] a trace monoid M(X, I) was presented such that it
is undecidable whether a length-reducing TRS over M(X, I) is confluent. In par-
ticular this implies that in contrast to semi-Thue systems, there does not exist a
definition of critical pairs for trace rewriting systems that results in finite sets of
critical pairs.

The main goal of this paper is to continue the investigation of the confluence
problem for trace rewriting systems. For this, we define the following decision
problems:

e COLR(M(X,I)) is the following decision problem:
INPUT: A length-reducing TRS R over M(X,I).
QUESTION: Is R confluent?

e COSP(M(X,])) is the following decision problem:
INPUT: A special TRS R over M(X, I).
QUESTION: Is R confluent?

In these problems the input length is the length |R| of the input TRS R.

2.2. Critical pairs

For trace rewriting systems quite unusual phenomenons may be observed, which
cannot occur for semi-Thue systems. One of these phenomenons concerns dis-
joint left-hand sides. Let R be a semi-Thue system over the alphabet X, and let
(Lo,719),(£1,71) € R be two rules. Assume that the word s € X* contains two
disjoint occurrences of o and ¢;. Then s can be factorized as s = tloufiv. By
applying the two rules we obtain the words troufiv and tlyuriv. By applying to
each of these words the other rules, both words can be rewritten into the word
trouriv. This trivial fact is in general no longer true for trace rewriting systems.
The application of a rule £y — ro may destroy the occurrence of another left-hand
side £; which is disjoint to the replaced occurrence of £y, see the following example.
Here we will not give the formal (but obvious) definition of an occurrence of a trace
in another trace.

EXAMPLE 2.1. Let M = M({a, b, c}, {(a,c), (c,a)}), and let Ry be the TRS R; =
{¢ = b,aa — 1} over M. In the trace [caa]; = [aca]r there exist unique disjoint
occurrences of the left-hand sides ¢ and aa. But it holds [aca]r —r, aba and
[aca)r = [caa]r =R, ¢, and the pair (aba,c) is not confluent with respect to R;.

A second example is the one-rule TRS Ry = {[ac]; — b} over the same trace
monoid. Let u = [aacc]r. If we mark in [aacc]r the different occurrences of a and
¢ in the form [ajazcicz]r, we see that in u there are four different occurrences of
the left-hand side [ac];. But it holds [aiazcica]r =R, a1bez and [a1azcico]r =
[c1a1c2a2]1 =R, c1baz, and again the pair (abc, cba) is not confluent with respect
to RQ.

In the following we will define a class of trace rewriting systems for which the
phenomenon from Example 2.1 cannot occur. For this we define the following
technical property (A).

A TRS R over M(X, I) satisfies condition (A) if the following holds:

(A1) For all (£,7) € R and all a € ¥ with a I £ it holds ar = ra.

(A2) For all (£y,70),(£1,71) € R and all factorizations £y = poqo, €1 = P1q1
such that p; #1 # q; for i € {0,1}, po I p1, and go I ¢; it holds:
There exist factorizations rq = sgtg, 71 = s1t; such that for all a € ¥ and
i € {0,1} it holds: If aIp; then als;, and if a Il g; then alt;.

The TRS R, from Example 2.1 does not satisfy condition (A1) for the rule ¢ — b:
It holds a I ¢ and [ab]; # [ba]r. On the other hand, R, satisfies condition (A2). The
TRS R» from the same example satisfies condition (A1) but it violates condition
(A2): For instance if we choose pg = a, go = ¢, p1 = ¢ and g1 = a it holds po I p;
and go I q1. Let soto be a factorization of the right-hand side b. Then either so = b
or to = b. In the first case it holds ¢Ipo but ¢ sg does not hold. In the second

case we have a I go but again a Ity does not hold. On the other hand it is trivial
that every special TRS satisfies condition (A). The importance of condition (A)
results from the following technical lemma.

LEMMA 2.2. Let R be a TRS over M(X, I), which satisfies condition (A). Let
wo, w1 € M(X, 1) and (poqo, 7o), (P1q1,71) € R such that

pPolp, qolqi, wolwi, wolIpiqo, wilpoq:.

Then the pair (p1w1rowoq1, Powor1wige) is confluent with respect to R.

Proof. First we consider the case that pp = 1. We have to show that the
pair (pl’wl”‘owoql, worl'wlqo) is confluent. Because of Pogo = qgo —R To We
have woriwiqo —r weriwiry. We claim that also pywirowoq; = WeriwiTy
holds. Since R satisfies condition (A1) and woqi I go and (go,70) € R we have
ToWoq, = Woq17To- Thus

PLW1IToWoq1 = P1wWiWoeq1To (since rowoq1 = Woq17T0)
= wop1qL1w1iTg (since wo I w1, wo I p; and wq I q1)

—R WoTr1wWw1Tq.-

Analogous arguments apply if one of the traces qg, p1, or q; is empty. Thus, in
the following we may assume that p; # 1 # q; for i € {0,1}. Then condition (A2)
implies that there exist factorizations rq = soto and r; = s1¢; such that for all
a € ¥ and i € {0,1} it holds: If alp; then als;, and if algq; then alt;. In
particular we obtain p; I sg, w1 I8g, Polsi, wolsy, qiIty, wolty, qolty,
wi I t;. Furthermore it holds s; I 8¢ because of py I sg, and similarly ¢; I £, because
of q1 I'ty. Together we obtain

P1w1ToWoq1 = P1wiSotowoq1 = SowoP1q1 w1ty =R

Sowosi1tiwity = sSywiSotowoty

and powor1wW1go = PowoS1t1Wi1go = S1W1PoGoWoti =R S1wiSotowot;. M

For every semi-Thue system R there exists a finite set of so called critical pairs
such that R is locally confluent if and only if all critical pairs of R are confluent
[23]. These critical pairs result from overlapping left-hand sides of rules. In [11],
see also [12, p 120], the notion of a critical pair was generalized to trace rewriting
systems and it was shown that a TRS is confluent if and only if all its critical pairs
are confluent. But with the definition in [11], the set of critical pairs associated to
a TRS is in general an infinite set. But this is not an insufficiency of the definition,
given in [11]. It is a principal limitation, since as already mentioned in Section
2.1 there exists a trace monoid such that confluence is already undecidable for
length-reducing trace rewriting systems over this trace monoid. In this section we
will present a definition of critical pairs for trace rewriting systems which differs in
some details from the definition given in [11]. In contrast to [11] our critical pairs
can be only used for trace rewriting systems, which satisfy condition (A), in order

to check confluence. This restriction is motivated by our applications in the later
sections of this paper. But also our definition will in general lead to infinite sets of
critical pairs. In fact in Section 3 we will prove that confluence is also undecidable
for length-reducing trace rewriting systems that satisfy the condition (A).

DerFINITION 2.1. Let R be a TRS over M(X,I). The set CS(R) of all critical
situations of R is the set of all triples (£o,%,t1) that satisfy the following condition:
There exist rules (€o,70),(£1,71) € R and seven traces p;,q;,w; (i € {0,1}) and
s # 1 such that:

1. €o = posqo, £ = p1sqi,

2.polIp1, qlq, wolw;, slwowi, wolgqep, wilpeq:

3. For all i € {0,1} there does not exist an a € min(w;) with a I p;, and there
does not exist a b € max(w;) with b1 qi_;.

4. t = prw1PoSGowoq1 = PoWoP1Sg1W1qo,"

5. to = prwi1rewoq1, 1 = PoWoTri1Wigo

This critical situation is generated by the rules (£o,7¢) and (£1,71). The set CP(R)
of all critical pairs of R is CP(R) = {(to,t1) | 3t : (to,¢,t1) € CS(R)}. The set
CT(R) of all critical traces of R is CT(R) = {t | Ito,t1 : (to,t,t1) € CS(R)}.

We do not distinguish the critical situations (to,%,%1) and (¢1,%,%9) as well as
the critical pairs (¢o,t1) and (1, %0). The following lemma corresponds to Theorem
3.3 in [11].

LEmMA 2.3. Let R be a TRS over M(X, I), which satisfies condition (A). Then
R is locally confluent if and only if all pairs in CP(R) are confluent.

Proof. Let R be a TRS over M(X, I'), which satisfies condition (A). First note
that t = to and t =5 t; for all (¢o,t,¢t1) € CS(R). This proves one direction
of the lemma. For the other direction let us assume that all pairs in CP(R) are
confluent and let ¢,tq,t1 € M(X, I) be such that ¢ - t; and t - t;. We have
to show that the pair (o, %;) is confluent.

First there have to exist rules (£o,79),(£1,71) € R and traces ug,u1,vg,v1 €
M(2,1I) with t = uglovo = u1€1v1, to = urovo, and t; = uir1v;. Lemma 2.1
applied to the identity uolovo = w111 gives nine traces p;, q;, w;,y; (i € {0,1}),
s such that

o L =pisqi, Ui =YoP1—iWi—i, Vi =wiqi_y1 (i€ {0,1}),
epolp, qlqi, wolwi, slIwowi, wolpiqe, wilpoqs,

see also the following diagram:

V1 | w1 | 9o | Y1
Li | p1 | s | @
U1 | Yo | Po | Wo
Uo eo Vo

INote that the equality of these two factorizations of ¢ follows from the independencies listed
in the first point.

We have to show that the pair

(uorovo, U1T11) = (YoP1W1ToW0G1Y1, YoPoWoT1W1goY1) (1)

is confluent. For this it suffices to show that the pair

(lelTowotha P0w0T1w1CIO) (2)

is confluent, because the confluence of the pair in (2) implies the confluence of the
pair in (1). If s = 1, i.e., £; = p;q; for i € {0,1} then the pair (2) is conflu-
ent by Lemma 2.2. Hence let us assume that s # 1. We will show that for all
wo, w1 € M(2,1) with wo w1, sIwewi, wo I p1qo, and w; I pog: the pair in
(2) is confluent. We will prove this by an induction on |wew |:

First let us assume that there does not exist an a € min(w;) with a I p; and there
does not exist a b € max(w;) with b1 q;_; for i € {0,1}. Note that this case also in-
cludes the case jwowi| = 0. Then the pair in (2) is contained in CP(R) and is there-
fore by assumption confluent. Next let us assume that for instance wo = aw and
a I py for some a € ¥, the other cases can be dealt analogously. From wg I sqy and
Lo = posqo it follows a I £y. Since R satisfies condition (A1) it follows arg = rea.
Hence it holds pywirgawq; = apiwirewq; and poawriwiqy = APeWriWiqo-
Since w satisfies at least the same independencies as wy = aw, the induction
hypothesis implies that the pair (pwirowq:, Powri;w1qo) is confluent. But then

also the pair (ap;wirowqy, apowriwiqo) is confluent. M

Lemma 2.3 shows that in order to check whether a terminating TRS R that
satisfies condition (A) is confluent, it suffices to check the confluence of all critical
pairs of R. Let (%g,t,t1) be a critical situation of R. Since R is terminating, we
can calculate an (arbitrary) normal form w; of ¢;. If ug = u; then the critical pair
(to,t1) is confluent. On the other hand if ug # u; then R is not confluent, since

t =R to —):;2 Ug € IRR(R) and t gt —)% u; € IRR(R)

ExaMPLE 2.2. We want to apply Lemma 2.3 in order to show that the special
TRS R = {ba — 1,ab — 1,¢ — 1} over M({a,b,c},{(a,c),(c,a)}) is confluent.
Since R satisfies condition (A), we can apply Lemma 2.3. Let £y = posqo and
£1 = p13qy be left-hand sides of R, where s # 1, po I p1, and qo I q1. If we exclude
the trivial case £y = s = £; then only the following two cases remain.

Case 1. €y =ab, €1 =ba,s=b,pgo=a=¢qi,and p =1=qo
We have to consider all pairs (piwiwog1, Powow1qo) = (wiwpa, awow;), where
(among other independencies) s I wow;. From s = b it follows wg = 1 = w;.
Hence we obtain the confluent pair (a, a).

Case 2. £y=ba, i =ab,s=a,po=b=¢qq,and py =1=qp
We have to consider all pairs (piwiwoq1, powowiqo) = (wiwoeb, bwow,), where
(among other independencies) s I wqy and w; I py. From w; I pg, i.e., wyIb, it
follows w1 = 1. From s I wo, i.e., a I wy it follows wo = ¢™ for some n € N. Thus,
for all n € N we have to consider the pair (¢b, bc™), which is confluent due to the
rule ¢ — 1.

2.3. Coding of trace rewriting systems

If o : M — M' is a monoid morphism between the trace monoids M and M’,
and R is a TRS over M, then we can define a TRS o(R) over M' by o(R) =
{o(€) = o(r) | ({,7) € R}. In general it is of course possible that R is confluent
but o(R) is not confluent or vice versa. For instance for the terminating and
confluent semi-Thue system R = {a — b} and the injective morphism o with
o(a) = aa and o(b) = b the semi-Thue system o(R) = {aa — b} is not confluent.
On the other hand if the morphism ¢ maps every symbol to the empty trace then
o(R) is confluent for every (also non-confluent) TRS R. The following lemma gives
conditions that exclude these possibilities.

LEMMA 2.4. Let ¢ : M — M' be a monoid morphism between the trace
monoids M and M', and let R be a TRS over M. Furthermore assume that
the following four conditions hold.

1. o is injective.
2. o(R) is terminating and satisfies condition (A).

3. If £ € dom(R) and o(s) = u'c(£)v’ then there exist u,v € M with v’ = o(u)
and v' = o(v).
4. If t' € CT(0(R)) then there exists a t € M with t' = o(¢).

Then R is confluent if and only if o(R) is confluent.

Proof. Let o : M — M’ be a monoid morphism between the trace monoids M
and M’, and let R be a TRS over M, which satisfies the four conditions from the
lemma. First we show the following claim:

If 0(s) =y(r) t' then t' = o(t) and s —x t for some t € M. 3)

In order to prove this claim, assume that o(s) = u'c(£)v’ and t' = u'c(r)v’ for a
rule (£,7) € R. Condition (3) from the lemma implies that there exist u,v € M
with ' = o(u) and v’ = o(v). Thus o(s) = o(ufv) and therefore s = ulw, since
o is injective. It follows s = urv and o(urv) = u'o(r)v’ = t', which proves (3).

Now we prove the statement of the lemma. First let o(R) be confluent and let
s,t,u € M such that s =% t and s =% u. Since ¢ is a monoid morphism, it
follows o(s) —} %, o(t) and o(s) =7z, o(u). Since o(R) is confluent, there
exists a v’ € M’ with o(t) —o(R) v’ and o(u) —5(R) v'. An inductive extension of
(3) gives v1,v2 € M with v' = 0(v1), t =% v1 and v' = o(v2), u =% v>. Finally
v; = vy follows from o(v1) = v' = o(v2) and the injectivity of 0. Hence R is
confluent. Note that up to now we did not use the assumptions (2) and (4) from
the lemma.

Now let R be confluent. We have to show that also o(R) is confluent. Since o(R)
is terminating, it suffices to show that ¢(R) is locally confluent. Furthermore since
o(R) satisfies condition (A), it suffices to show that all critical pairs are confluent.
Let (u/,t',v") € CS(6(R)). Because of the fourth condition from the lemma there
exists a t € M with t' = o(t). Thus o(t) —=(w) v’ and o(t) =4 r) v'. From (3) it
follows that there exist u,v € M with v’ = o(u), v' = o(v) and t = u, t 2% v.

Since R is confluent, there exists a w € M with u =3 w and v =3, w. This implies
u' = o(u) =y g o(w) and v' = 0(v) =7z, o(w). Hence o(R) is confluent. M

The last lemma, of this section only deals with free monoids. The coding function
¢ from the following lemma will be used twice in the next section. Let £y, ¢; € ¥*
be two words with £y # 1 # £;. We say that a word t is an overlapping of £y and
4, if one of the following two cases holds for j =0 or j = 1.

e Ju,v e Xt =4; =uly_jv

e Ju,v € X*:t="ljv=uli_; and |{;| > |u| (and thus |¢1_;| > |v]).

See also the following picture:

6 #1 u |6 #1
U |€1_j761| v lj#ll v

LEmMmA 2.5. Let ¥ = {a1,...,am,b1,...,bpand T = {a4,...,am,b1, b2}, where
m € N and n > 2. Define the monoid morphism ¢ : ¥* — T'* by

#(a;) = a; for i € {1,...,m} and ¢(b;) = bibyb1b3" " for i € {1,...,n}.

Then the following holds:

1. ¢ is injective.

2. If ¢(s) = s19(£)s2 and £ # 1 then there exist ui,us € X* with s1 = ¢(u1),
s2 = ¢(u2), and s = uqlus.

3. If ¢(¢1) = s15 and ¢(€2) = ssy then there exist u,u;,us € * with £ = uqu,
Lo = uus, ¢(u) = s, ¢(u1) = s1, and ¢(us2) = ss.

Note that ¢ was chosen such that |¢(b;)| =2n+ 3 for all i € {1,...,n}.

Proof. Since the set ¢(X) is a biprefix code [2], the injectivity of ¢ is clear. The
other two statements of the lemma follow immediately from the following statement,
see also [7, p 60]:

For all ¢,d € X, if t is an overlapping of ¢(c) and ¢(d) then ¢ = d.

It should be noted that from this fact it easily follows that the set ¢(X) is a comma-
free code [2, p 336]. W

3. LENGTH-REDUCING SYSTEMS

In this section we prove that COLR(M(X,I)) is undecidable if neither I = {)
(i.e. M(Z,I) ~ %) nor I = (T x £)\Ids (i.e. M(Z,I) ~ N*/) holds. For this let
COLR1 (M(X, I)) be the following stronger version of COLR(M(X, I)):

INPUT: A length-reducing TRS R over M(X, I) such that 1 ¢ ran(R).

QUESTION: Is R confluent?

Obviously if COLR,q(M(X,I)) is undecidable then also COLR(M(X, I)) is un-
decidable. Our proof will consist of two main steps. In Section 3.1 we will prove
that COLR1 (M({a,b,c},I)) is undecidable for I = {(a,c), (¢, a), (b,c), (¢,b)} and

I = {(a,c¢),(c,a)}. The corresponding trace monoids are the smallest trace monoids
(measured in |X|) that are neither free nor free commutative. In a second step we
prove in Section 3.2 that the undecidability of COLR. (M(T', (T' x I') N 1)) for some
I' C ¥ implies that also COLR (M(X, I)) is undecidable. Only for this last step
the condition 1 ¢ ran(R) is important.

3.1. Independence alphabets with three symbols
If (£,1) is an independence alphabet with |X| = 2 then either M(X, I) ~ {a, b}*
or M(2,I) ~ N2. In both cases we can decide confluence for terminating trace
rewriting systems. If |X| = 3 then there exist up to isomorphism two independence
alphabets whose corresponding trace monoids are neither free nor free commutative.
These are the following two independence alphabets:

a—c—b a—c b
In the next two sections we will consider these independence alphabets.

3.1.1. The case a—c—Db

Let (X,I) = ({a,b,c}, {(a,¢), (¢,a), (b,c), (c,b)}). Then the trace monoid M(X, I)
is isomorphic to {a,b}* x {c}*. In this section we will prove that the problem
COLR ({a,b}* x {c}*) is undecidable. First we prove that COLR; (I'* x {c}*) is
undecidable for a particular alphabet I', which contains more than two symbols. In
a second step we show that the alphabet I' can be coded into the alphabet {a,b}.

First we study the structure of critical situations from CS(R), if R is a TRS over
a direct product Xj x ¥3 of free monoids. In the following let ¥; and ¥» be two
non-empty finite alphabets. For a trace u = (u;,us) € $% x B4 we write u() = u,
and u(? = us in the following. The next lemma is obvious.

LEMMA 3.1. Let R be a TRS over £} x ¥5. Then R satisfies condition (A) (from
Section 2.2) if £ = 1 implies r(¥ = 1 for all rules (£,7) € R and all i € {1,2}.

Let 4y,41 € X} be two words with £y # 1 # £;. We say that a word t € X} is
generated disjointly by ly and £, if there exists a word u € X7 such that ¢t = fyul;
or t = f1uly. The next lemma is intuitively quite obvious. It says that for a critical
trace (£, ¢(?)) with respect to a TRS over X¥ x X} there exist left-hand sides £y
and £; such that at least one component t(?) € ¥ (¢ € {1,2}) is an overlapping of
£ and £ (in particular £5” # 1 # £{7). If this holds for instance for i = 1 then
the second component ¢(?) need not necessarily be an overlapping of K(()Q) and K?).
If Z((,z) #1# £§2) then it suffices that ¢(?) is generated disjointly by £é2) and £§2).
On the other hand if say E(()Q) = 1 then we can restrict to the case t(2) = £§2).

LEMMA 3.2. Let R be a TRS over £} x ¥3 such that £ = 1 implies r() = 1
for all rules (£,7) € R and all i € {1,2}. Let (to,t,t;) € CS(R). Then there exist
rules (€o,70), (£1,71) € R such that for both i = 1 and ¢ = 2 one of the following
four cases (1) to (4) holds.

) = t) = | V=
(1)) #1440 £ull) | rul? | g url?
(2) o0 £1 449 £ =uty | D ur{?y
(3) |£((Ji)| > |ul, |£§i)| > |v| Z(()i)v = uEY') r((f)v u'r'g)
@w| &= § | 0 | @

Furthermore for i = 1 or ¢ = 2 either case (2) or case (3) has to hold.

Note that in case (1) £(?) is generated dlstntly by Z(’) 75 1 and £ # 1, whereas
in case (2) and (3) t() is an overlapping of E # 1 and Z # 1. Furthermore if
one of the four cases above holds then t — t; for ¢ € {0,1}.

Proof. Let (to,t,t1) € CS(R). According to Definition 2.1 there exist rules
(£0,70), (£1,71) € R and pairs pj, g, w;,s € X x X5 (j € {0,1}) such that

e s#1, fy=posqo, L1 =pisq,

epolp, qlq, wolwi, slIwowi, wolIpiqy, wilpoqs,
e p;Tw; or g1_; [w; implies w; = 1 for j € {0,1},?

® t = p1wi1PoSgoWog1 = PoWoP15¢1W14o,

o {) = prwiToWoqi, t1 = PoWoT1W1go-

Because of s = (s(l),s(2)) # (1, 1), either s # 1 or s # 1. W.lo.g. assume that
s £ 1. Tt follows Z(l #£1# E D Next from s I wow; it follows w() = wgl)

and therefore t() = p(l)l b (1) = p(l)ﬂ(l) () Furthermore po I p1 implies p() =
1 for some j € {0,1}. Analogously qg) =1 for some j € {0,1}. For each of the

four possible combinations it is easy to see that () is an overlapping of E(()l) and
Zgl), i.e., for i = 1 case (2) or case (3) from the lemma holds. If also s # 1
then also ¢(® is an overlapping of £(2) and 8(2) Now assume that s(?) = 1. Since
w((f) #1# w) contradicts wo I wy, we can w.l.o.g. assume that w()= 1.
Case 1. wg (2) # 1: Tt follows that neither pg I wg nor gy I wg holds (f(og instance
=1, we

-1 _q(z)

by the third point above po I wo would imply wo = 1). Because of wy
obtain p(()2) £1# qg Finally from pg I p; and qo I q; it follows p(z)

Therefore
6 =ps@q) =pP £1# qY = p{Vs@q? = Y

and hence

£2) = p2) 4y p(® 521D D g2) _ pl2)1(2) oD _ p(2),2))

Thus ¢ is generated disjointly by 5(()2) and t?’, i.e., case (1) from the lemma holds
for ¢ = 2.

Case 2. w(()z) =1, ie., wo = (1,1) = w;: Because of poIp1, wlo.g. we
may assume pgz) =1, ie, t? = p(2)q(2)q(()2). If also q(z) = 1 then e?) =

2This weakening of the third condition from Definition 2.1 is sufficient for the following consid-
erations.

(la) 20 > 0forz el (2a) <y —» 0 for y € I'\{$}

(Ib) 0z - O0forz €T (2b) <%y — 0 for y € T'\{$}

(Ic) (0,¢) =0 (2¢) 2> >0 forz el

(3a) (GA®I+2) = pgowe (4a) aB$$ — a$8 forae X, B e T U{<}
(3b) (B,c) =0 (4b) a$3%$ — a$$B fora e X, B € T U {«}
(5a) g« 8% —» a'pa if §(g,0) = (p,a’, R)

(5b) bg<$$ — pba'<« if §(¢,0) = (p,a’,L),be X

(5¢) qa$$ — a'p if §(q,a) = (p,a’, R)

(5d) bqa$$ — pba' if §(q,a) = (p,a’,L), b€ X

FIG. 1. The TRS R from the proof of Lemma 3.3.

1 and t® = p()q(z) £(2) Thus we obtain case (4) from the lemma. On
the other hand if q 7£ 1 then q((J) = 1 follows from goIq;. Thus t® =

(2) (2) = £(2)£(2) Hence we obtain either case (1) (with w = 1) from the
lemma (if E(P2 p(2) # 1) or case (4) from the lemma (if l((]2) = p((f) =1). n

We now start to prove the undecidability of COLRLq({a,b}* x {c}*). In the
following let M = (Q,X,0, 4, go, g¢) be an universal deterministic Turing-machine.
Since M is universal, it is undecidable whether M terminates on a given input
word w € (X£\{O})*. Since M terminates if and only if M reaches the final state
g5, it is undecidable whether M reaches the final state gy after a finite number
of steps when started with a given input word w € (X\{O})*. For the further
considerations we fix an input w € (E\{O})* for M. First we will construct a TRS
R over a trace monoid of the form I'™* x {c}*, which is confluent if and only if M
terminates on the input w.

The following TRS R is a variante of a TRS, presented in [21]. Let ' = QUX U
{0,>,<, A, B,$}, where 0,>,<,4,B,$ ¢ QUX are new symbols. Furthermore let
¢ ¢ I" be another symbol. In the following we will work in the trace monoid I'* x {c}*.
A pair of the form (s, 1) with s € I'* will be briefly denoted by s. We define the TRS
R over I'* x {c}* by the rules in Figure 1. Note that R is length-reducing and that
1 & ran(R) holds. The rules in (1a), (1b), and (1c) make the symbol 0 absorbing,
whereas the rules in (5a) to (5d) simulate the Turing-machine M. Here the symbols
> and < operate as a left- and a right-end marker, respectively. The additional two $-
symbols in the rules in (5a) to (5d) make these rules length-reducing. Furthermore
note that since M is deterministic, there do not exist overlappings between the
left-hand sides of these rules. In order to apply the simulation-rules in (5a) to (5d),
the transport-rules in (4a) and (4b) are necessary. They shift $-symbols to the
left in configurations until a simulation-rule can be applied. In order to make the
transport-rules itself length-reducing, they consume one $ when shifting one $ to
the left. Finally, the rules (3a) and (3b) create the critical trace (>A/*'*2vB, ¢) for
every v € I'* by sharing the c¢ in the second component. In Lemma 3.3 we will prove
that R is confluent on all these critical traces if and only if the machine M does
not terminate on the input w. But the rules (3a) and (3b) also generate unwanted

critical traces like for instance (Bv > Al**2 ¢). Some of the resulting unwanted
critical pairs are made confluent with the rules in (2c). Finally the rules in (2a)
and (2b) generate the absorbing symbol 0 if the transport-rules in (4a) and (4b)
have consumed sufficiently many $-symbols.

Let Ry be the TRS, which consists of the rules in (1a), (1b), and (1c), and let
R4,5 be the TRS, which consists of the rules in (4a), (4b), and (5a) to (5d).

LEMMA 3.3. R is confluent if and only if M does not terminate on the input w.

Proof. First we assume that M terminates on the input w. Then there exist
m>0,ueX*[>0,a,...,a; € X, and k > 2 such that

GAMH2$™B) 5 (34) pgow <$™B —>7+€4’5

>ugra1$%a:$? - a_1$2a;$% <$FB =t (4)

holds. Since M cannot move out of the final state ¢y and because of k > 2,
the word ¢ is irreducible with respect to R. On the other hand, it also holds
(PAWHF2§mB ¢) — (3 AWM _)?_la,) 0, and the word 0 is also irreducible.
Thus R is not confluent.

Now we assume that M does not terminate on the input w. We will show that
R is confluent. Since R is terminating and satisfies condition (A) by Lemma 3.1,
it suffices to show that all pairs in CP(R) are confluent. Thus, by Lemma 3.2
it suffices to consider all overlappings in at least one component that can occur
between left-hand sides of R. The following critical situations exist:

1. Since the symbol 0 cannot be deleted by rules from R, (s,t) - (u,v) and
0 € alph(s) implies 0 € alph(u). Since each pair of the form (s0¢,u) can be reduced
to the absorbing symbol 0 with the rules in (1a), (1b), and (1c), the following holds:
If (5,t) =4, (51,%1) and (s,t) =g, (s2,t2), and {di,d2} N {(1a),(1b), (1c)} # 0
then the pair ((s1,t1), (s2,t2)) is confluent. The same observation also holds if
dy,ds € {(2a),(2b), (2¢)}.

It remains to consider all critical situations that are generated by two rules from
R\R1, where not both rules belong to {(2a), (2b), (2c)}. The following four cases
deal with overlappings in the first component.

2. For each rule d € R\R; of the form (¢,¢) — r (i.e. for the rules (3a) and
(3b)) and for all v € {c}* it holds (¢, cvc) =4 (r,vc) and (£, cvc) —4 (r,cv). The
resulting critical pair ((r,ve), (r, cv)) is trivially confluent because of cv = ve.

3. Let d € R be a rule of the form (y¢,c’) — r, where y € T'\{$} and i € {0,1}
holds. It follows (ayl,c') —q <r and (<yl,c') —(24) (0¢,¢"), and we obtain the
critical pair ((<r,1),(0¢,¢%)). This pair is confluent because on the one hand it
holds (0¢, ct) —)%1 0. On the other hand note that r is of the form zs for some
z € T\{$}. Thus it follows <r = 425 —(34) 0s —>?r1b) 0. The same arguments can be
used if a rule in (2b) instead of a rule in (2a) is applied.

4. Let d be an arbitrary rule from R of the form (¢z,c!) — r, where z € T’ and
i € {0,1}. Then it holds (fz>,c') —4 r> and (la>,c') — (o) (£0,¢'). Thus we
obtain the critical pair ((r>, 1), (€0,c?)). Since r is of the form sz for some z € T,
this pair is confluent.

5. (> A2 ¢) 53,) 2> gowa and (z > A2 ¢) 55 (0A1+2 ¢) for some
z € I: We obtain the critical pair ((z > gow<, 1), (041?112 ¢)), which is confluent
because of (0A*1+2 ¢) —%, 0 and z > gow< —(5¢) Ogow< —>ZL1b) 0.

The remaining four types of critical pairs are generated by the two main rules (3a)
and (3b) by sharing the ¢ in two left-hand sides of these rules.

6. (A2 AWH2 o) -5, B AT b gowa and
A2y A2) -5, bgow <v > AIY+2 where v € T'* is arbitrary: Since the
words >AI"1*2y b gow< and pgow < v > A%H2 both contain a factor of the form z>
(zx € T), we can apply a rule in (2¢) to both words. The resulting words can be
both reduced to 0 with the rules in (1a) and (1b).

7. (Bub Av+2 ¢) —(3a) Bv > qow< and
(Bv AlvI+2 ¢) = (3;) Ov> AlYIH2 where v € T'* is arbitrary: Again in the word
Buv > gow4 there exists a factor of the form x>, hence this word can be reduced to
0. But of course the same also holds for the word 0v > Alwl+2,

8. (bAlYI*2yB, ¢) —(3,) pgow <vB and
(>A*+2uB, ¢) — (3b) >A®+240, where v € T'* is arbitrary: This is the main case,
whose consideration will be postponed.

9. (BuB,c) =3y OvB and (BuB, c) =35y Bv0, where v € T'™* is arbitrary: trivial

Other critical pairs, which are not confluent for trivial reasons, do not exist. In
particular the rules in (5a) to (5d) do not generate further critical situations, since
M is deterministic. Thus it remains to show that for all v € I'* the critical pair
(bgow < vB,>Alv+290) is confluent. Since bA/®+240 _ﬁrla) 0, it suffices to prove
the following claim.

Claim. If M does not terminate on the input w then pgow < vB —>7J5 0 for all
vel™.

Case 1. v = $§™ for some m > 0: By simulating M long enough and thus
consuming enough $-symbols, we obtain
>gow < $™ B _);24,5 bugar$1as$ - - - a;_1$9-1q;$% < $4+1 B,
where u € ¥*, ¢ € Q,1 >0, a1,...,4; € ¥, and iy,...,441 € {0,1}. Thus

b ugar$ a8 - - a_18% ' @$" 98" B = ((24) (20)}

> ugai$7as$® - - a;_1$%-1a;$40 —>EL1G) 0.
Case 2. v =8§"yv', where m > 0,y € I'\{$}, and v' € T'*: We obtain
bgow < $myv'B _);24 ; buqa1$i1a2$i2 . a1,1$i’—1al$i’ q $’il+1y,UIB’

where u € £*, ¢ € Q,1 > 0, a1,...,a44 € %, and 41,...,941 € {0,1}. Since
y € T'\{$}, it follows

> ’l,an1$i1 a2$i2 s a171$i1_1a1$il < $il+1 yv'B _>{(2a),(2b)}

>ugai$ ax$® - a1—1$-1q;$"0v'B _>{+(1a),(1b)} 0.

Now we have considered all critical situations of R and the proof of the lemma is

complete. W

The previous lemma implies that COLR (I'* x {c}*) is undecidable. This result
is sharpened by the following lemma. Furthermore this lemma solves an open
question from [12], p 117, namely whether confluence for length-reducing trace
rewriting system is already undecidable for independence alphabets with only three
symbols.

LeMMA 3.4. COLRi({a,b}* x {c}*) is undecidable.

Proof. Take R and I' from the previous proof. We will make use of the coding
function from Lemma 2.5. Let ' = {b1,...,b,}. Then define ¢(b;) = ablab®"+1¢
fori € {1,...,n} and o(s,t) = (¢(s),t) for (s,t) € I'* x {c}*. But now we cannot
immediately apply Lemma 2.4, since the fourth condition from this lemma is not
fulfilled for the TRS o(R). For instance, it holds (¢(B)s¢(B),c) € CT(s(R)) for
all s € {a,b}*, but if s is not contained in the image of ¢, then also (¢(B)s¢(B),c)
is not contained in the image of . We solve this problem by introducing additional
rules. Let P be the TRS that consists of the rules in o(R) plus the following rules,
where z € {a,b} and s € {a,b}?"*3\{¢(z) | z € T} are arbitrary: 3

(6a) z¢(0) = ¢(0) (6c) ¢(<)s = #(0) (6e) zp(>) = ¢(0)
(6b) ¢(0)z = #(0) (6d) $(<8)s = ¢(0)

If arule d € R has the form (¢, c') — r (i € {0,1}) then we denote the corresponding
rule (¢(£), ') — ¢(r) of P by o(d). For instance o(3a) is the rule (¢p(>Al*1+2), ¢) —
¢(>gow<). The rules in (6a), (6b), and (6e) correspond to the rules o(1la), o(1b),
and ¢(2c) from o(R). In fact the latter three rules are superfluous in P (but they
do not lead to problems). Obviously the TRS P is length-reducing, and it holds
1 ¢ ran(P). Furthermore P satisfies condition (A). Now the lemma immediately
follows from the following claim:

Claim. P is confluent if and only if the Turing-machine M does not terminate
on the input w.

First we assume that the machine M terminates on the input w. By (4) from
the proof of Lemma, 3.3 there exists an m > 0 with

(GAYH2$Mm B) 5% bugra $2aa$? -4 182082 <$¥B =1t,

where u € ¥*,1 > 0,a1,...,a; € X, k > 2, and t € IRR(R). An application of o
gives

(p(-AH28™B),) =% ¢(>ugrai$2as$® - - a;-1$%a;$% < $¥ B) = ¢(t).

We claim that ¢(t) € IRR(P). Irreducibility with respect to the rules from ¢(R) C
P follows from the irreducibility of ¢ with respect to R and statement (2) in Lemma

3Note that each word ¢(z) for z € T has the same length 2n + 3.

2.5. Furthermore, the word ¢(¢) is also irreducible with respect to the additional
rules (6a) to (6e), since ¢(t) does not contain a factor of the form ¢(0), zé(>), or
#(<$%)s, where z € {a,b}, i € {0,1}, and s € {a,b}>"*t3\{é(x) | z € T}. This
follows again from the statement (2) in Lemma 2.5. Since (>A*+2§™ B, ¢) -1 0,
ie., (p(>AYT28mB) () =% ¢(0), and since also ¢(0) € IRR(P), the TRS P is not
confluent.

Now we assume that the machine M does not terminate on the input w. Then
by Lemma 3.3 the TRS R is confluent. Let us take an arbitrary critical sit-
uation (%o,t,t1) € CS(P) where t,to,t1 € {a,b}* x {c}*. Let do and di be
the rules from P that generate this critical situation. The case that dy,d; €
{o(1a),0(1b),0(1c),0(2a),0(2b),0(2c), (6a),...,(6e)} is clear, since in this case
to and t; both contain ¢(0) as a factor and therefore can be reduced to ¢(0) with
the rules in (6a) and (6b).

Next we consider the case that for instance dy € {(6a),...,(6e)}, whereas d; €
{o(3a),0(3b),0(4a),0(4b),o(5a),...,0(5e)}. We only consider the case that dy
is the rule (6¢c), the other cases can be dealt similarly. Let di be of the form
(#(€),c?) — ¢(r), where £,r € TT and i € {0,1}. We have to consider all possible
overlappings between ¢(£) and ¢(<)s, where |s| = 2n+ 3 and s ¢ {¢(z) | z € T}.
Note that ¢(<) is not a suffix of ¢(€). Therefore the case that the prefix ¢(<) of
¢(<)s can be matched with an occurrence of ¢(<) in ¢(£) cannot occur, because
otherwise s would be a word of the form ¢(z) for some z € T', see the following
picture for the case £ = g <$$ (i.e., dy is the rule o(5a)):

6(@) | s
[9(0) [() [#3) | 4(9) |

Therefore because of Lemma, 2.5 the only possible overlappings between ¢(<)s and
@(£) are of the form ¢(<)ugp(f), where s = uv, ¢p(£) = vf', and u # 1 # v, see also
the following picture:

90
(o) [ulo] ¢

S

We obtain the critical pair ((¢(0)t,c?), (¢(<)up(r),1)). On the one hand it holds
(p(0)t, ct) _>—{"_<7(lc),(6b)} #(0). Furthermore Lemma 2.5(3) and 0 < |u| < 2n + 3
imply that the prefix of ug(r) of length 2n + 3 (which exists, since r # 1) does not
belong to {#(x) | € '}, because otherwise the prefix of ¢(r) of length 2n + 3 — |u|
would belong to the image of ¢. This implies also ¢(<)up(r) —(6c) ™ {6p) #(0).
Finally we consider the case that the situation (%o, ¢, %) is generated by two rules
do,di € o(R). Let d; be of the form (4(4;),ck) — ¢(r;), where k; € {0,1}. Let
t = (t,c*) for some k > 0. If t is an overlapping of ¢(o) and ¢(¢;) then Lemma
2.5 implies that this overlapping results from an overlapping of £y and ¢; and thus
t = ¢(s) for some s € T*. Thus there exist s, 8g,8; with t = o(8), t¢ = o(s¢),
t1 = o(s1), and s —»x s; for i € {1,2}. Since R is confluent, there exists a u
with 89 =} u and s; =} u. An application of o gives ¢y = 0(s¢) =} o(u) and
t1 = o(s1) =% o(u). Hence it suffices to consider the case that kg = k1 =k =1
and ¢ is disjointly generated by ¢(¢o) and ¢(€1). The case o(1c) € {dp,d;} is clear,

since in this case both to and ¢; contain ¢(0) in its first component. Thus only the
case do,d; € {0(3a),0(3b)} remains. The resulting critical situations correspond
to the cases (6) to (9) in the proof of Lemma 3.3. The cases that correspond to
(6), (7), or (9) can be dealt completely analogously to the corresponding cases from
the proof of Lemma 3.3 by applying the rules in (6a), (6b), and (6e). Thus the
only remaining case is the critical pair (¢(>gow<)vé(B), ¢p(>A”1F2)vp(0)), where
v € {a,b}* is arbitrary. The case that v = ¢(u) for some word u € I'* is clear, since
then tg = ¢(so) and t; = ¢(s1) for a (sp,s1) € CP(R). Thus we can assume that
v is not contained in the image of ¢. Let v = ¢(v')s for some v’ € T* and some
s € {a,b}T such that s does not have a prefix of the form ¢(z) with z € T'. Since
d(>AlY1+2)06(0) —>?éa) #(0), we have to show that also ¢(>gow av’)sp(B) =% ¢(0).
If o' = $™yv"” for some m > 0, y € I'\{$}, and v” € I'* then we can use the
arguments from case 2 at the end of the proof of Lemma 3.3. Thus it suffices to
consider all words of the form ¢(>gow < $™)sd(B) with m > 0. By simulating the
machine M long enough, we obtain

d(>gow 1$™)sd(B) =% P(bugar$az$®? - --a;_1$71a;$" < $+1)sp(B),

where u € ¥*, g € Q,1 >0, a1,...,a; € ¥, and 41,...,%941 € {0,1}. Since s # 1
does not have a prefix of the form ¢(z) for some x € T, the prefix of s¢(B) of length
2n + 3 does not belong to {¢(z) | z € T'}. Thus we can apply a rule in (6¢) or (6d),
which produces the factor ¢(0). The resulting word can be reduced to ¢(0) with the

rules in (6a) and (6b). W

3.1.2. The case a—c b
In this section we will deal with independence alphabets of the form

(EnaIn) = ({G,C, bla ey bn}a {(aa C), (C, a)})a

where n > 0. The goal of this section is to show that COLRx (M(X1,11)) is
undecidable. This result will we proven in three steps. First we will show that
a stronger version of COLR;(M(X,,I,)) for a particular n > 2 is undecidable
(Lemma 3.6). In a second step we will code the n > 2 many symbols by,...,b,
into the two symbols b; and by (Lemma 3.7) and thus prove the undecidability of
a stronger version of COLR.; (M(X2, I»)). The coding we are going to use for this
step is the morphism from Lemma 2.5 if we set m = 2, a; = a, and a3 = ¢ in
this lemma. Finally in the last step we will code the two symbols b; and by into
by via the morphism defined by b; — bybiaby, by — bibicby, a — a, and ¢ — ¢
(Lemma 3.8). For this last step it will be important that in the two previous steps
we considered stronger versions of COLRx1 (M(X,,, I,)) and COLR; (M(X., I»)),
respectively. The splitting of the whole coding into two steps makes the proof more
comprehensible. In both steps we will use Lemma 2.4 as well as the next Lemma
3.5, which applies to trace rewriting systems that fulfill the following property (B).

A TRS R over M(X,,, I,) (n > 0) satisfies condition (B), if for all £ € dom(R) it
holds: {b1,...,b,} Nalph(£) # 0.

It is easy to see that a TRS R over M(X,,, I,), which satisfies condition (B), also
satisfies condition (A): (i) There cannot exist an £ € dom(R) and a symbol b € X,

with b1 £. Thus R fulfills condition (A1). (ii) For all £y,£; € dom(R) it is not
possible that there exist factorizations £y9 = poqo, £1 = p1q1 with p; # 1 # q; for
i € {0,1} and po I p1, go I q1, because either py or go must contain a symbol from
{b1,...,bn}, which is therefore dependent from all other symbols. In the following
let @ = ¢ and € = a. Thus for = € {a,c} it holds z I, T.

LEMMA 3.5. Let n > 0. Let R be a TRS over M(X,,, I,,), which satisfies condi-
tion (B). If (to,t,t;) € CS(R) then there exist rules (£g,70), (£1,71) € R, natural
numbers a, 3,7,(> 0, traces po, P1, qo, g1, 8 with 8 # 1, and z,y € {a,c} such
that one of the following six cases holds:

b= | &= t= to = t =
(1) | zosy? | ZPsyS | Faxsy ¢ = z°TPsy<y? | FProyc | t1 = 2%r1y?
(2) | z%s | #Psqy ZPrsq, = 2°7Psq, 7Proqy o7
3) sz® | p1szP p182°TP = pysTP P17oT° %
(4) | sq0 | pis P1590 P170 140
(5) s | pisq P18 Pirod 190
6) | poz* | z°q | poz°T’qi = poTPxqy | roT’q1 | poE’T)

Note that the cases (4) and (6) do not exclude each other. Furthermore if one
of the six cases above holds then ¢t —% t; for ¢ € {0,1}.

Proof. Let (to,t,t1) € CS(R). Thus there exist rules (£o,70),(€1,71) € R and
traces p;, qi, w; (i € {0,1}), s # 1 such that:

e o =posqo, €1 =pisq

e pol,p1, ql,q1, wol,w, sI,wowi, wol,pPi1q0, wil,poq1
e t = p1wi1PoSqoWog1 = PoWoP13¢1Wigo,

e o = prwirowoq1, t1 = Powoeriwiqo

Now we can separate the following cases:

Case 1. wo=1=w;i: Then t = poP18q19o, toc = P170q1, and t; = priqo-

Case 1.1. po # 1 # p1: Because of pg I, p; there exist z € {a,c} and o, >0
such that po = z® and p; = Z°. Case 1.1.1 qo # 1 # q1: Then go = y” and
q1 = 7 for some y € {a,c} and 7, ¢ > 0, and we obtain type (1) from the lemma.

Case 1.1.2. go = 1: We obtain type (2). The case g; = 1 is symmetric.

Case 1.2. po =1 (The case p; = 1 is symmetric.):

Case 1.2.1. qo # 1 # q1: Tt follows go = z* and q; = 7° for some = € {a,c}
and a, 8 > 0. We obtain type (3).

Case 1.2.2. q; = 1: We obtain type (4).

Case 1.2.3. qo = 1: We obtain type (5).

Case 2. wo # 1: Because of s # 1 and sI, wo, there exist z € {a,c} and
a, 8 > 0 such that s = z* and wy = Z°. But then swq I,, w; implies w; = 1. We
claim that also p; = go = 1. Assume that p; # 1. From wg I, p1 and wo = 7°
it follows p; = z7 for some v > 0. Thus £; = p;sq; = z7x%*qy. But because
of condition (B), £; must contain a symbol from {b1,...,b,}. Therefore q1 # 1.
Similarly, because of £y9 = posqo = Por*qo either pg or go must contain a symbol

(1) 208 >08forz el

(3a) AlI+3B - bgowa
(3b) BC$ — 0%

(2) <$¥C$ — 08 for k € {0,...,w —1}

(4) a$*B$~ — a$**13 for k € {0,...,w —

a€X, and f € ZU{q}

1},

(5a) ¢< 89 — a'pa if 6(¢,0) = (p,a’, R)
(5b) bg < $“ — pba'« if §(¢,0) = (p,a’,L), b€ X
(5¢) qa$* —a'p if 6(g,a) = (p,a’,R)
(5d) bga$“ — pba' if 6(q,a) = (p,a’,L),be X
FIG. 2. The TRS R from Lemma 3.6.
from {b1,...,bn}. The first possibility contradicts po I, p1 and p; # 1, whereas

the second possibility contradicts qo I, @1 and q1 # 1. Hence p; = 1. Analogously
we can prove that gg = 1. Thus we obtain type (6). The case w; # 1 is symmet-
ricc. H

Next we will show that a stronger version of COLR;(M(X2,,I,)) is undecidable
for a particular n > 2. For this let M = (Q,X,0,6,q0,qr) be the deterministic
universal Turing-machine from the last section, and let w € (X\{O})* be an input
for M. Let T = QUX U{0,>,<,A4,B,C,$}. We define an independence relation
ICTxTbyI={($,B),(B,%)}). Note that the independence alphabet (T',I)
is of the form (%,,I,) for an n > 2. We define the TRS R over M(I', I) by the
rules in Figure 2, where the exact value of the constant w > 2 will be fixed later.
The following Lemma 3.6 holds for every w > 2. Obviously the following properties
hold:

e R satisfies condition (B).
e R is length-reducing.
e For all (£,7) € R it holds max(£) C {B,$} and r # 1.

LEMMA 3.6. R is confluent if and only if M does not terminate on the input w.

Proof. The proof is similar to the proof of Lemma 3.3. Let R4 5 be the TRS
over M(T', I) that consists of the rules in (4) and (5a) to (5d). Assume that the
machine M terminates on the input w. Then there exist m > 0, u € ¥*, [> 0,
ai,...,a; € X, and k > w such that

[A¥F3BS™CS]r — (34) Pgow < $™C'$ s

> ugra1$9as$? - - ai—189 ;8% <« $¥C$ = v.

Since M cannot move out of the final state gy, none of the rules in (5a) to (5d) can
be applied to the trace v. Furthermore, since k£ > w, rules in (2) cannot be applied
to v. Finally, since also the rules in (1), (3a), (3b), and (4) cannot be applied
to v, we have v € IRR(R). On the other hand, since also [Al*I+3B$™C$]|; =

[Alw+3§m BCS| — (3 A¥IT3§m0$ —)?rl) 0$ € IRR(R), the TRS R is not confluent.

Now we assume that the machine M does not terminate on the input w. We
will to show that R is confluent. Since R satisfies condition (B) and therefore also
condition (A), it is sufficient to consider all critical pairs of R. Let (to,%,t1) €
CS(R) be a critical situation. Lemma 3.5 implies that ¢, o, and ¢; satisfy one of
the six cases, listed in this lemma. This leads to the following three types of critical
situations:

A critical situation of type (2) (according to the table in Lemma 3.5) results
from [B$0S]; —(1) B0$ and [B$0S]; = [$BOS]; —(1) $08. The resulting critical
pair (B0$,$08$) is confluent by the rule in (1).

A critical situation of type (6) (according to the table in Lemma 3.5) results as
follows: Let d = ([¢z]r — [r]r) be an arbitrary rule from R, where z € {B,$}. Then
for all m > 0 we have [(x™"z08]; —(1) [(2™08]r and [(x"x0$]; = [(2T™08]; —a
[rZ™08];. The resulting critical pair ([(Z™08]r, [rZ™0$];) is confluent by the rules
in (1).

The last type of possible critical situations is again of type (6). It is generated
by the two main rules (3a) and (3b):

[AlvI+3 B$™CS); —(3a) Pow <$™C$ and
[AH3 B§™ OS]y = [AIF3$m BCS)s — 5y AIH38™08.

Since Alwl+3gm(g —>a) 0$ we have to show that bqow<$™C$ —>£ 0$ for all m > 0.
Since the machine M does not terminate on the input w, we obtain

bgow <" C8 =%, , buqa;az™ - - - a; 18" a;8" <« $4+1CS$,

where u € ¥*, ¢ € Q,1 >0, a1,...,a; € ¥, and 4y,...,4541 € {0,...,w — 1}
Furthermore

> uqa1$i1 a2$i2 T al,1$""1al$i’ < $il+10$ —)(2)

>ugai$™as$® - - - ai_1$"1a;$40$ —>a) 0$.

These are all possible critical situations. In particular the rulesin (5a) to (5d) do not
generate further critical situations, since M is deterministic. W

In the following let Q UX U {0,>,<,4,C} = {b1,...,b,} and {B,$} = {a,c}.
Then R is a TRS over M(X,,,I,,). Let ¢ : £} — X3 be defined by

da) =a, ¢(c)=c, ¢b;)=Dbibibb> " forie {1,...,n}.

This is the morphism from Lemma 2.5 if we set m = 2, a; = a, and az = ¢ in Lemma,
2.5. Thus ¢ is injective. Since z I, y implies ¢(x) I ¢(y), ¢ can be extended to a
monoid morphism o : M(X,,,I,,) — M(Z2, 1) by o([s]r,) = [¢(s)]r,- Obviously
the following facts hold for the TRS o(R) over M(Zs, I5):

e o(R) satisfies condition (B).
e For all (£,7) € R it holds max(c(£)) C {a,c} and o(r) # 1.

Furthermore if we set w > 2n + 3 for the value of the constant w in R then also
a(R) is length-reducing.

LEMMA 3.7. o(R) is confluent if and only if M does not terminate on w.

This lemma immediately implies the undecidability of COLR(M(X;,I5)). A
weaker form of this lemma is also stated in [3].

Proof. Because of Lemma 3.6 it suffices to show the following claim.
Claim. R is confluent if and only if o(R) is confluent.

It suffices to show that R and o satisfy the four conditions from Lemma 2.4.
The injectivity of o follows immediately from the following fact together with the
injectivity of ¢.

If ¢(s) =1, s’ then there exists a t € £¥ with ¢t =7, s and ¢(t) = ¢'. (5)

This fact can be shown easily by an induction on the number of commutations that
are necessary to transform the word ¢(s) into the word s’. We already noted that
o(R) is length-reducing and satisfies condition (B) and hence also condition (A).
Thus also the second condition from Lemma 2.4 is satisfied. In order to show the
third condition we will prove the following more general statement for all u',v' € X3,
and s,f € X

If ¢(s) =1, v'¢(€)v' then v’ = ¢(u) and v' = ¢(v) for some u,v € X%. (6)

Note that (6) does not hold for £ = 1. So assume that ¢(s) =, uw'¢(£)v' and
£ # 1. By possibly replacing s by another word that represents the same trace, we
can assume by (5) that ¢(s) = u'¢(£)v’. Now Lemma 2.5 implies the existence of
u,v € ¥¥ with v’ = ¢(u) and v’ = ¢(v).

Finally we have to prove the fourth condition from Lemma 2.4. Assume that
t' € CT(o(R)). We have to show that there exists a t € M(X,,, I,,) with o(t) = t'.
Since o(R) satisfies condition (B), it suffices to consider all six cases for ¢’ that are
enumerated in Lemma 3.5. The first three cases and case (5) are easy to check,
since for these types it holds t' = 2%0(£)y®? = o(x*£y”) for some z,y € {a,c},
£ € dom(R), and a,8 > 0. Now let t' be of type (4), i.e., t' = p's'q’, where
o(ly) = p's' and o(ly) = s'q’. Let £ = [4i]1,, 8 = [¢']n,, P = [p']n,, and
q = [d|n, ie, ¢(ly) =5, P's’, ¢(l1) =1, s'¢'. Because of (5) we can assume
that ¢(€o) = p's’ and ¢(¢1) = s'q’. From statement (3) in Lemma 2.5 it follows
that there exist s,p,q € X% with ¢(s) = s, ¢(p) = p/, and ¢(¢) = ¢'. Thus
t'=p's'q = [p's'q]s, = o(lpsqz,).

Finally we have to consider the case that t' is of type (6), i.e., t' = p'z°Z°¢,
where z € {a,c}, o(€y) = p'z*, and o(€1) = z*q'. Let £; = []1,, P = [P|n)
and ¢’ = [¢']1,, i-e., #(fo) =1, P’z and ¢(¢1) =1, %¢'. Because of (5) we can
assume that ¢(g) = p'z® and ¢(¢1) = z%¢'. From z € {a,c}, i.e., ¢(z) = z, it fol-
lows that p' = ¢(p) and ¢’ = ¢(q) for some p,q € =% and hence t' = [p'z°Z’¢'|1, =
(D)2 T S, = o([pr°T’qls,). ™

Now we can proof the following main lemma of this section:

LEMMA 3.8. COLR.(M(Xy, 1)) is undecidable.

Proof. 1In the proof we will use a coding function, which is similar to the coding
function from Lemma 2.5. In the following we denote the symbol b; € ¥; by b.
The TRS o(R) over M(X,, I5) from Lemma 3.7 will be denoted by P. We define
an injective monoid morphism ¢ : ¥5 — X7 by

pla) =a, ¢(c)=c, @(b1) ="bbab, ¢(ba) = bbcb.

The injectivity of ¢ is obvious. More general the following cancellation property
can be proven by an induction on |¢:

If p(s) = p(t)u (respectively p(s) = up(t)) then
s = tv (respectively s = vt) and u = ¢(v) for some v € 5. (7)

Since z Iy implies ¢(z) I ¢(y), we can extend ¢ to a monoid morphism 7 :
M(E,,) — M(%4,11) by 7([s]1,) = [¢(s)]r,- Obviously also for the TRS 7(P)
over M(%,, 1) the following properties hold:

o 7(P) satisfies condition (B).
e For all (£,r) € P it holds max(7(£)) C {a,c} and 7(r) # 1.

Furthermore if we set w > 4(2n + 3) for the value of the constant w in the TRS R
from Lemma 3.6 then also the TRS 7(P) = 7(c(R)) is length-reducing. Because of
Lemma 3.7 it suffices to show the following claim.

Claim. P is confluent if and only if 7(P) is confluent.

For the proof of this claim we will use Lemma 2.4. Thus we have to show the
four conditions from Lemma 2.4 (for 7(P) instead of 6(R)). The injectivity of 7
follows from the injectivity of ¢ and the following fact, which can be proven by
an induction on the number of commutations that are necessary to transform the
word ¢(s) into the word s'.

If o(s) =1, s' then there exists a t € X3 with ¢t =1, s and () = s'. 8
2 1 2 2

As already mentioned, 7(P) is length-reducing and satisfies condition (A). Instead
of the third condition from Lemma 2.4 we prove the following more general state-
ment for all s,¢ € ¥3 and s1,s9 € ¥7:

If |p(£)| > 2 and ¢(s) =1, s1p(£)s2 then
there exist uy,us € 33 such that s; = p(u;1) and sz = p(u2). (9)

This statement immediately implies the third condition from Lemma 2.4, since
£ ¢ {a,c} and thus |7(£)| > 2 for all £ € dom(P). In order to prove (9) let |p(£)| > 2
and p(s) =1, s19(£)s2. Because of (8) we can assume that ¢(s) = s1p(£)s2. Let us
choose the factorization of the form s; = p(u)t, where u has maximal length among
all such factorizations. From ¢(s) = s1p(€)sa = p(u)te(f)s2 and the cancellation
property (7) it follows that there exists a v € X3 with tp(£)s2 = ¢(v) and v # 1
(because of £ # 1). We claim that ¢ = 1 which implies s1 = ¢(u). Assume that
t # 1. We make a case distinction with respect to the first symbol of v # 1. If

v=aworv=cwthenalsot=a--- ort =c---, which contradicts the maximality
of u. Thus we have v = byw or v = byw. W.lo.g. we assume that v = byw for
some w € X5, i.e., tp(f)ses = p(v) = bbaby(w). Because of the maximality of u,
the word ¢t # 1 must be a proper prefix of bbab. The case t = b can be excludes,
since otherwise ¢(£)s2 = babp(w) and thus (because of |p(¢)| > 2) p(¢) = ba---,
which contradicts the definition of . If ¢ = bb, then ¢(£)s; = abp(w) and thus
p(l) = ab---. Since furthermore ¢(¢) = ab is not possible possible, w # 1 must
hold. f w =a--- orw =c¢--- then p(f) = aba--- or p(¢) = abc---, which again
is not possible. On the other hand if w = by --- or w = by - -+ then p(£) = abbb- - -,
which is again impossible. Finally the case t = bba can be excluded using the same
arguments. Thus s1 = ¢(u), i.e., p(s) = ¢(uf)ss. Now (7) implies that there exists
a uy with sy = ¢(u2). Now the proof of claim (9) is complete.

Finally we have to verify the fourth condition from Lemma 2.4. Assume that
t € CT(7(P)). We have to find a t' € M(X2, I1) with 7(t') = t. Since 7(P) satisfies
condition (B) it suffices to consider all cases that are listed in Lemma 3.5. The
first three cases as well as case (5) and (6) from Lemma 3.5 can be dealt with the
same arguments that were used in the proof of Lemma 3.7. Now assume that ¢ is
of type (4), i.e., t = psq, where 7(£y) = ps, 7(£1) = sq, and £y, £; € dom(P). Let
L =[], s =[s]n, P = [Pl1,, and g = [¢]1,, i-e., p(lo) =1, ps and ¢(¢1) =y, sq.
Because of (5), we can assume that ¢(fy) = ps and p(¢1) = sq. Let us choose the
factorization of the form s = ¢(u)v, where u has maximal length among all such
factorizations. It follows sq = p(u)vg = ¢(¢1) and vg = (w) for some w € 3. We
claim that v = 1. Assume that v # 1 and hencew # 1. Noww =a--- orw =c¢---
implies v = a--- or v = ¢---, which contradicts the maximality of u. Therefore
w="b--- orw="by---. Wlo.g. assume that w = b;---. Hence vq = bbab---.
The maximality of u implies that v # 1 is a proper prefix of bbab. If v = bba
then ¢(fy) = ps = pp(u)v = -- - bba, which is impossible. If v = b or v = bb then
©(fo) = ---b. But this is also not possible, since max(£y) = max([{]r,) C {a,c}
implies (o) = ---a or p(fy) = ---c. Note that this is the only point where the
condition max(£) C {a,c} for all £ € dom(P) is used. Thus we have v = 1 and
therefore s = @(u), ie., p(lo) = pp(u) and p(¢1) = ¢(u)g. By (7) there exist

P',q¢' € X% with o(p') = pand p(¢') = q. Thus t = psq = [psq]r, = 7([p'uq']r,). W

3.2. The general case
A confluent semi-Thue system over an alphabet ¥ remains confluent if we add
an additional symbol to the alphabet ¥, which does not occur in the rules of R.
This trivial fact is in general wrong for trace rewriting systems, see the following
example from [12], p 125. If (T',I) is an independence alphabet and ¥ C T then
(%, (2 x £)N1I) is called an induced subalphabet of (T,).

ExampPLE 3.1. Let (T, J) be the following independence alphabet:
a—c—f—b—d
Let (%, I) be the following induced subalphabet of (T, J):

a—c b—d

Let R = {ab — ¢, ¢d — a}. If we consider R as a TRS over M(X,I) then R
confluent, see [12]. Note that R does not satisfy (A), so we cannot apply Lemma
2.3. On the other hand it is easy to show by a direct application of Lemma 2.1
that R is confluent. But if we consider R as a TRS over M(T', J) then R is no
longer confluent. To see this let us consider the trace [cabfd]; = [afedb]s. It holds
[cabfd]; =R [ccfd]y and [afedbl; —w [afably. From [ecfd]; = [cfed]; we can
only derive the trace [cfal]s, whereas from [afab]; only the trace [afc]s # [cfals
can be derived. Thus R is not confluent.

The example above shows that the following lemma is not trivial.

LEmMA 3.9. Let (T, I) be an independence alphabet and ¥ C T'. If the problem
COLR; (M(T', 1)) is decidable then also COLR; (M(X,I N (X x X))) is decidable.

Proof. Let R be a length-reducing TRS over M(X, 7N (X x X)) with 1 ¢ ran(R).
We prove the lemma by constructing a length-reducing TRS P over M(T', I) such
that 1 ¢ ran(P) and R is confluent if and only if P is confluent. The case ¥ =T is
trivial. So there exists a symbol 0 € I'\X. Let

P=RU{[ablr > 0]aeT\X or b e'\X}.

Note that P is length-reducing and 1 ¢ ran(P). Clearly every trace of length at
most two which contains a symbol from I'\ X has 0 as its unique normal form. Since
furthermore every trace of length less then two is irreducible (R is length-reducing
and 1 ¢ ran(R)) the following holds: P is confluent if and only if P is confluent on all

traces s with alph(s) C ¥ if and only if R is confluent. ®
Now we can prove the main result of this section.

THEOREM 3.1. The decision problem COLR(M(X,I)) is decidable if and only if
I=0orI=(Sxx)\ldy.

Proof. As already mentioned, confluence is decidable for terminating semi-Thue
systems and vector replacement systems [8, 24]. Solet I # () and I # (X x £)\Idyx.
We have to show that COLR(M(X, I)) is undecidable.

Because of I # @ there exist a,¢ € ¥ with alc (and thus also a # ¢). First
assume that there exists a b € ¥\{a,c} with (a,b) ¢ I. Then one of the following
two graphs is an induced subalphabet of (X, I):

a—c—b a—c b

Lemma 3.9 and Lemma 3.4 or Lemma, 3.8, respectively, imply that COLR(M(Z, I))
is undecidable. So we can assume that a I z for all z € X\{a}. Since I # (ExX)\Idy
there exist d,e € ¥ with (d,e) ¢ I and d # e. Thus d # a # e and (%,) contains
an induced subalphabet of the form

d—a—e

Lemma 3.9 and Lemma 3.4 imply that COLR(M(X, I)) is again undecidable. H

We close this section with a further sharpening of Theorem 3.1.

LEMMA 3.10. For every trace monoid M(X, I) the set of all trace rewriting sys-
tems over M(X, I'), which are length-reducing but not confluent, is recursively enu-
merable.

Proof. A semi-algorithm, which checks whether a length-reducing TRS R is not
confluent, can enumerate all traces s,t,u € M(X, I) with s - t and s - u and
check whether there exists a trace v with ¢ =% v and u =% v. Since R is terminat-

ing, this is decidable. M

Now the following theorem is an immediate consequence of the previous lemma
and Theorem 3.1.

THEOREM 3.2. If I # 0 and I # (¥ x ¥)\Idy then COLR(M(X,I)) is not
recursively enumerable.

4. SPECIAL SYSTEMS

In [12] it was asked, whether confluence is decidable for special trace rewriting
systems. In this section, we will show that this is indeed the case. In fact we will
show that confluence is decidable in polynomial time for an even more general class
of trace rewriting systems.

We say that a TRS R over the trace monoid M(X,) satisfies the condition
(C) it the following holds:

(C1) For all (£y,7r¢),(£1,71) € R, all factorizations £y = pysqo, €1 = P18q1
with s 21, po I p1, and qo I g1, and all a € ¥ it holds:

If (aIp1sqo or alpgsqy) then (arg = roa and ar; = ria).

(C2) For all (£y,70), (£1,71) € R and all factorizations £y = poqo, €1 = P1q1
with p; # 1 # q; for i € {0,1}, poIp1, and qo I q; it holds: There exist
factorizations rg = 8gto and 1 = s1t; such that for all a € ¥ and all i € {0,1}
it holds: If alp; then als;, and if a I q; then a I't;.

Note that a length-reducing TRS that satisfies condition (C) satisfies condition (A)
as well: Condition (A2) and condition (C2) are identical and condition (C1) implies
(A1) as follows: Let (£,7) € R and a I £. Since R is length-reducing we have £ # 1.
Now consider the factorization £ = pgsqe = p1sq; with po = qo = p1 = q1 =1
and s = £ # 1. Condition (C1) implies that ar = ra. Furthermore note that every
special TRS satisfies condition (C). The following theorem generalizes Theorem 6
from [19].

THEOREM 4.1. For every trace monoid M(X, I) the following problem is decid-
able in polynomial time:

INPUT: A length-reducing TRS R over M(X, I) that satisfies condition (C).

QUESTION: Is R confluent?

Input: A length-reducing TRS R over M(X, I) that satisfies condition (C).
forall ((Zo — ’l"()), (El — 7‘1)) €R xR do
forall pg, p1, qo, g1, s with
£y = posqo, €1 = P158q1, s # 1, po I p1, qo I g1 do
if NF(por1qo, R) # NF(p170q1,R) then
return“R not confluent” (x)
forall a € ¥ with(a I pi1sqg) or (alpysq:) do
if NF(ap170q1,R) # NF(peri1qgoa, R) then
return“R not confluent” (%)
endfor
endfor
endfor
return“R confluent” (xxx)

FIG. 3. The algorithm CONF

Note that by the results from Section 3, confluence is undecidable for length-
reducing trace rewriting systems that only satisfy the weaker condition (A).

Proof. Let (£,I) be an independence alphabet and let R be a length-reducing
TRS over M(X,I), which satisfies condition (C). Let NF be an algorithm, which
calculates for a length-reducing TRS R over M(X,I) and a trace u € M(Z, 1)
an arbitrary normal form NF(u,R) of u with respect to R. Let CONF be the
algorithm in Figure 3. First we show that R is not confluent if CONF returns “R not
confluent”. If CONF executes line (x) then there exist rules £y — 79 and £; — 71
in R as well as factorizations £y = ppsqo and £1 = p1sq; with s # 1, po I p1, and
qo I q1. Furthermore there exist normal forms ug of por1qe and u; of p;roq; with
uo # u1. But then R is indeed not confluent, since p1posqog1 == PiT0q1 =% U1
and P1Po8qeq1 = PoP18q190 —R PoT1qo —% Wo. Now let us assume that CONF
executes line (xx). Then there exists an a € ¥ with a I p18qq or a I ppsqi, and there
exists a normal form vg of ap;7oq; and a normal form v; of periqea with vy # v;.
Assume that a I p;sqo. Since R satisfies condition (C1), it follows arg = r¢a and
ary = ria. Thus p1posqoaq: —r P17Toaq: = apiTogi —x vo and

P1P05G0aq1 = PoP1590aqi = PoaP18q1go —R Poar1qgo = PoT1qod —x V1.

Thus R is not confluent. The case a I ppsq: can be dealt analogously by considering
the trace p1aposqoq: instead of p1posqoaq: .-

Now we assume that CONF returns “R confluent” in line (x * *). We have to
show that R is confluent. By an induction on the length of traces, it suffices to
prove the following implication for all ¢ € M(X, I):

If R is confluent on all traces ¢’ with |¢'| < |t| then R is confluent on ¢.

So let t € M(X,I) and assume that R is confluent on all shorter traces. We have
to show that all pairs (to,%1) with t —% to and t =% t; for some t € M(X,I)
are confluent. The case t = ty or t = t; is trivial. Now assume for the moment
that we already have dealt all situations of the form ¢ —x to, t &% t;. Then we

can use the following arguments that are similarly to the usual proof of Newman’s
lemma: From t - 89 =% to and t =% 81 =% t1 it follows that there exists an
s with so =% s and s; —J, s. Because of |sg| < [t|, o =% %o, and 5o =% s
there exists a trace u with t9 =% u and s =} u. Now |s;| < ||, s1 =}, t1, and
81 =% 8 =% w imply t; =% v and u =% v, ie., tg =% u =% v for some trace
v.

So it suffices to show that for all rules (£o,70), (£1,71) € R and all factorizations
t = uglyvg = uifiv; the pair (ugrovg,u1r1v1) is confluent. Lemma 2.1 applied
to the identity wolovo = w111 gives nine traces p;, i, Wi, Y;, 8 (¢ € {0,1}) with

e Lo =posqo, 41 =pisq,

® Up = YoP1W1, Ul =YoPoWo, Vo= Woq1Y1, V1 =W1q0Y1,

®*polpi, qolqi, wolw;, wolIpisqe, wilposqi,

® 1 = YopowoP18q1W1GoY1 = YoP1W1PoSGoWoq1Y1,

see also the following picture:

Vi | W1 | Qo | Y1
Ly | p1| 8 | 1
U1 | Yo | Po | Wo
uo | Lo | vo

We have to show that the pair (yopowor1w1goy1, YoP1w1reweq1y1) is confluent.
If yo # 1 or y; # 1 then for the trace t' = powop18q1w1go = P1W1PoSqowoqy it
holds |¢'| < |t| and

t' = powoliwigo =R Powor1wi1qgo, t =pirwilowoqi <R PLWi1TOWO]!1.

Hence the pair (powori1wi1qo, PrwiTowoqi) is confluent. But then also the pair
(Yopowor1wi1goy1, YoP1wiToWweq1y1) is confluent. Thus we can assume that
yo = y1 = 1. We have to consider the pair (poworiwiqo, P1wiTowoq1). If
s = 1, i.e, £o = poqo and €; = piq: then this pair is confluent by Lemma
2.2 (note that R satisfies condition (A)). So assume that s # 1. Then we have
one of the situations that are considered in the two outermost forall-loops of
CONF. Since we assume that CONF returns “R confluent” there exists a trace
u with por1go =% w and piroq: —% u. Furthermore condition (C1) as well as
wo I p18qo and w, I ppsq: imply r,w; = wjr; for 4,5 € {0,1}. Thus we obtain
PoWoT1W1go = WiPoT1goWo — WiuwWp and PrwTeWwoegi = WoP1Tod1 W1 —j5
wouw; . It suffices to show that the pair (w;uwy, wouw,) is confluent. The case
wo = 1 = wy is trivial. So assume w.l.o.g. that wy = wa for some a € . Because
of wo I p18qo we have a I p;sqy. Thus a € X is one of the symbols that are consid-
ered in the innermost forall-loop of CONF. Thus there exists a trace v € IRR(R)
with apiroqi =% v and pyrigoa —% v. But since also apiroq1 =% au and
PoT1goa —% ua and |apiroqi| < |wowipiToqi| < [wowipifogi| = [t| we have
au —% v and ua —% v (note that we assumed that v is irreducible). It follows

wuaw; —; wvw; and wWouwi; = WAUW| — WUW]. (10)

Consider the trace t' = powpisqiwi1qo = powliwiqoe. The trace t' results from
t by replacing the factor wo = wa by w. Thus |¢'| < |t|. Furthermore, since

w is a factor of wy, w satisfies at least the same independencies as wo. Thus
t' = prwiposqowq; = prwibowq; as well as wrg = row and wry = 7w (because
of condition (C1) and p;sge I w). Hence we obtain

tl —R PoWriwiqo = Wi1PoTri1qow —)% wLuw and

1
t —R P1W1ToWwWqg1 = WP1Toq1 W1 —):';2 wuw1 .
It follows wiuw —% x and wuw; —% « for some trace . Therefore
wiuw = wiuwa -5 xa and wuaw; = wuwia —% Ta. (11)

From wuaw: —% wovw; (10), wuaw; —% xa (11), and |wuaw;| = |lwouw;| <
|lwopor1gow1| < |powoliwige| = |t| (where the strict inequality follows from
|r1] < |1]), we obtain wvw; —% z and xa —% z for some trace z. Therefore
wouw; —5 wvw; —% 2z by (10) and wiuwe =% za —% z by (11). Hence the
pair (wouwi,wiuwy) is confluent. This concludes the proof of the correctness of
CONF.

Finally we claim that the algorithm CONF works in polynomial time. This
follows from two facts:

e For a fixed independence alphabet (X, I), the number of different factorizations
£ = psq of a trace £ € M(X,) is bounded by a polynomial in |[£|. This follows
from the fact that the number of prefixes of a trace £ is bounded by a polynomial
in |€| [6].

e A normal form of a trace ¢ with respect to a length-reducing TRS R can be
calculated in time, bounded polynomially in |¢| and |R|. The problem of calcu-
lating normal forms for length-reducing trace rewriting systems was considered for
instance in [11, 13, 4, 5, 3]. The algorithms that are presented in these papers are
all non-uniform, i.e., the TRS is not part of the input. But it is easy to see that
these algorithms also work in polynomial time in the case that the TRS is part of
the input.
|

From Theorem Theorem 4.1 we obtain the following corollary.

Corollary 4.2. COSP(M) is in P for every trace monoid M.

If the independence alphabet (X, I) is also part of the input then the algorithm
CONF does not work in polynomial time. In fact it is open whether confluence for
special TRSs is also in P if the independence alphabet is also part of the input.

5. CONCLUSION

In this paper we have investigated the confluence problem for length-reducing
trace rewriting systems. We have shown that confluence is decidable for length-
reducing trace rewriting systems over a trace monoid M if and only if M is a free or
free commutative monoid. Furthermore we have shown that confluence for special
trace rewriting systems is decidable in polynomial time. We would like to close this
paper with a list of several questions that remain unsolved.

o Is confluence decidable for monadic trace rewriting systems, where monadic

means that all right-hand sides have length at most one? This question was already
asked in [12].

is

o Is confluence decidable for trace rewriting systems that contain only one rule. It
known that confluence is decidable for one-rule semi-Thue systems [25]. Moreover

in [26] it was shown that confluence is decidable for a large subclass of one-rule trace
rewriting systems. But the general case is still open. In particular it is an open
question, whether confluence is decidable for a rule of the form 1 — 7.

Acknowledgments I would like to thank Volker Diekert, Anca Muscholl, Friedrich
Otto, and the referees for valuable comments.

REFERENCES

. G. Bauer and F. Otto. Finite complete rewriting systems and the complexity of the word
problem. Acta Informatica, 21:521-540, 1984.

2. J. Berstel and D. Perrin. Theory of Codes. Academic Press, 1985.

3. M. Bertol. Effiziente Normalform—Algorithmen fir Ersetzungssysteme tiber partiell kommu-

tativen Monoiden. PhD thesis, Universitdt Stuttgart, 1996.

. M. Bertol and V. Diekert. On efficient reduction-algorithms for some trace rewriting systems.
In H. Common and J.-P. Jouannaud, editors, Term Rewriting, number 909 in Lecture Notes
in Computer Science, pages 114-126, Berlin-Heidelberg-New York, 1995. Springer.

. M. Bertol and V. Diekert. Trace rewriting: Computing normal forms in time O(nlogn). In
C. Puech and R. Reischuk, editors, Proceedings of thel3th Annual Symposium on Theoretical
Aspects of Computer Science 1996, number 1046 in Lecture Notes in Computer Science, pages
269-280, Berlin-Heidelberg-New York, 1996. Springer.

. A. Bertoni, G. Mauri, and N. Sabadini. Membership problems for regular and context free
trace languages. Information and Computation, 82:135-150, 1989.

7. R. Book and F. Otto. String—Rewriting Systems. Springer, 1993.

8. R. V. Book and C. P. O’Dunlaing. Testing for the Church—-Rosser property (note). Theoretical

10.

11.

12.

13.

14.
15.

16.

17.

Computer Science, 16:223-229, 1981.

. R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O. — Informatique
Théorique et Applications, 19:21-32, 1985.

V. Diekert. On the Knuth-Bendix completion for concurrent processes. In T. Ottmann, editor,
Proceedings of theljth International Colloguium on Automata, Languages and Programming
(ICALP 87), Karlsruhe (FRG) 1987, number 267 in Lecture Notes in Computer Science,
pages 42-53, Berlin-Heidelberg-New York, 1987. Springer.

V. Diekert. Combinatorial rewriting on traces. In C. Choffrut et al., editors, Proceedings of
the7th Annual Symposium on Theoretical Aspects of Computer Science (STACS 90), Rouen
(France) 1990, number 415 in Lecture Notes in Computer Science, pages 138-151, Berlin-
Heidelberg-New York, 1990. Springer.

V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science.
Springer, 1990.

V. Diekert. Word problems over traces which are solvable in linear time. Theoretical Computer
Science, 74:3-18, 1990.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.

G. Huet and D. Lankford. On the uniform halting problem for term rewriting systems. Report
Lab. Report No. 283, INRIA, Le Chesnay, France, 1978.

M. Jantzen. Confluent string rewriting. In EATCS Monographs on theoretical computer
science, volume 14. Springer, 1988.

D. Kapur, M. S. Krishnamoorthy, R. McNaughton, and P. Narendran. An O(|T|®) algo-
rithm for testing the Church-Rosser property of Thue systems. Theoretical Computer Science,
35(1):109-114, 1985.

18

19.

20.

21.

22.

23.

24.

25.

26.

. M. Lohrey. On the confluence of trace rewriting systems. In V. Arvind and R. Ramanujam,
editors, Proceedings of the 18th Conference on Foundations of Software Technology and The-
oretical Computer Science, (FSTTCS’98), Chennai (India), number 1530 in Lecture Notes in
Computer Science, pages 319-330. Springer, 1998.

M. Lohrey. Complexity results for confluence problems. In M. Kutylowski and L. Pacholski,
editors, Proceedings of the 24th International Symposium on Mathematical Foundations of
Computer Science (MFCS’99), Szklarska Poreba (Poland), number 1672 in Lecture Notes in
Computer Science, pages 114-124. Springer, 1999.

A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78,
Aarhus University, Aarhus, 1977.

P. Narendran and F. Otto. Preperfectness is undecidable for Thue systems containing only
length-reducing rules and a single commutation rule. Information Processing Letters, 29:125—
130, 1988.

M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals
Mathematics, 43:223-243, 1943.

M. Nivat and M. Benois. Congruences parfaites et quasi-parfaites. Seminaire Dubreil, 25(7—
01-09), 1971-1972.

R. M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewriting prob-
lems. In Proceedings of the 9th Conference on Rewriting Techniques and Applications (RTA-
98), Tsukuba (Japan), number 1379 in Lecture Notes in Computer Science, pages 166—180.
Springer, 1998.

C. Wrathall. Confluence of one-rule Thue systems. In K. U. Schulz, editor, Word Equa-
tions and Related Topics, number 572 in Lecture Notes in Computer Science, pages 237—-246.
Springer, 1992.

C. Wrathall and V. Diekert. On confluence of one-rule trace-rewriting systems. Mathematical
Systems Theory, 28:341-361, 1995.

