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Abstract. We investigate word problems and confluence problems for
the following four classes of terminating semi-Thue systems: length-
reducing systems, weight-reducing systems, length-lexicographic systems,
and weight-lexicographic systems. For each of these four classes we de-
termine the complexity of several variants of the word problem and con-
fluence problem. Finally we show that the variable membership problem
for quasi context-sensitive grammars is EXPSPACE-complete.

1 Introduction

The main purpose of semi-Thue systems is to solve word problems for finitely
presented monoids. But since there exists a fixed semi-Thue system R such
that the word problem for the monoid presented by the set of equations that
corresponds to R (in the following we will briefly speak of the word problem for
R) is undecidable [Mar47,Pos47], also semi-Thue systems cannot help for the
effective solution of arbitrary word problems. This motivates the investigation
of restricted classes of semi-Thue systems which give rise to decidable word
problems. One of the most prominent class of semi-Thue systems with a decidable
word problem is the class of all terminating and confluent semi-Thue systems.
But if we want to have efficient algorithms for the solution of word problems
also this class might be too large: It is known that for every n > 3 there exists
a terminating and confluent semi-Thue system R such that the (characteristic
function of the) word problem for R is contained in the nth Grzegorczyk class but
not in the (n — 1)th Grzegorczyk class [BO84]. Thus the complexity of the word
problem for a terminating and confluent semi-Thue system can be extremely
high. One way to reduce the complexity of the word problem is to force bounds
on the length of derivation sequences. Such a bound can be forced by restricting
to certain subclasses of terminating systems. For instance it is known that for a
length-reducing and confluent semi-Thue system the word problem can be solved
in linear time [Boo82]. On the other hand in [Loh99)] it was shown that a uniform
variant of the word problem for length-reducing and confluent semi-Thue systems
(where the semi-Thue system is also part of the input) is P-complete.



In this paper we will continue the investigation of the word problem for
restricted classes of terminating and confluent semi-Thue systems. We will study
the following four classes of semi-Thue systems, see e.g. also [BO93], pp 41-42:
length-reducing systems, weight-reducing systems, length-lexicographic systems,
and weight-lexicographic systems. Let C be one of these four classes. We will
study the following five decision problems for C: (i) the word problem for a fixed
confluent R € C, where the input consists of two words, (ii) the uniform word
problem for a fixed alphabet X', where the input consists of a confluent semi-
Thue system R € C over the alphabet X and two words, (iii) the uniform word
problem, where the input consists of a confluent R € C and two words, (iv) the
confluence problem for a fixed alphabet X', where the input consists of a semi-
Thue system R € C over the alphabet X, and finally (v) the confluence problem,
where the input consists of an arbitrary R € C. For each of the resulting 20
decision problems we will determine its complexity, see Table 1, p 11, and Table
2, p 13. Finally we consider a problem from [BL94], the variable membership
problem for quasi context-sensitive grammars. This problem was shown to be in
EXPSPACE but NEXPTIME-hard in [BL94]. In this paper we will prove that
this problem is EXPSPACE-complete. We assume that the reader is familiar
with the basic notions of complexity theory, in particular with the complexity
classes P, PSPACE, EXPTIME, and EXPSPACE, see e.g. [Pap94].

2 Preliminaries

In the following let X' be a finite alphabet. The empty word will be denoted by
€. A weight-function is a homomorphism f : X* — N from the free monoid X*
with concatenation to the natural numbers with addition such that f(s) =0 if
and only if s = €. The weight-function f with f(a) = 1 for all @ € X' is called the
length-function. In this case for a word s € X* we abbreviate f(s) by |s| and call
it the length of s. Furthermore for every a € X~ we denote by |s|, the number of
different occurrences of the symbol a in s. For a binary relation — on some set,

we denote by 2y (=) the transitive (reflexive and transitive) closure of —.

In this paper, a deterministic Turing-machineis a tuple M = (Q, X, 0, o, g5),
where @ is the finite set of states, X is the tape alphabet with X N Q = 0,
0: (Q\{gr}) x X = Q x X x {—1,+1} is the transition function, where —1 (+1)
means that the read-write head moves to the left (right), go € @ is the initial
state, and ¢y € (@ is the unique final state. The tape alphabet X' always contains
a blank symbol [0. We assume that M has a one-sided infinite tape, whose
cells can be identified with the natural numbers. Note that M cannot perform
any transition out of the final state gy. These assumptions do not restrict the
computational power of Turing-machines and will always be assumed in this
paper. An input for M is a word w € (X\{O})*. A word of the form uquv, where
u,v € X* and ¢ € @, codes the configuration, where the machine is in state g, the
cells 0 to |uv| — 1 contain the word uw, all cells k with k > |uv| contain the blank
symbol O, and the read-write head is scanning cell |u|. We write sqt = upv
if M can move in one step from the configuration sqt to the configuration upv,



where ¢, p € @ and st,uv € X*. The language that is accepted by M is defined by
LM) = {w € (E\{O})* | Ju,v € £* : gow > ugsv}. Note that w € L(M)
if and only if M terminates on the input w. A deterministic linear bounded
automaton is a deterministic Turing-machine that operates in space n +1 on an
input of length n.

A semi-Thue system R over X, briefly STS, is a finite set R C X* x X*,
whose elements are called rules. See [BO93] for a good introduction to the theory
of semi-Thue systems. A rule (s,t) will also be written as s — ¢. The sets
dom(R) of all left-hand sides and ran(R) of all right-hand sides are defined by
dom(R) ={s|3t:(s,t) € R} and ran(R) = {¢t | Is : (s,t) € R}. We define the
two binary relations —¢ and <% as follows, where z,y € X*:

— x =g y if there exist u,v € X* and (s,t) € R with £ = usv and y = utv.
—zoryif (z 5ryory or x).

The relation <5 is a congruence relation with respect to the concatenation of
words, it is called the Thue-congruence associated with R. Hence we can define
the quotient monoid X*/ &5, which is briefly denoted by £*/R. We say that
R is terminating if there does not exist an infinite sequence of words s; € X*
(i € N) with sg > 81 =R s2 =R ---. The set of irreducible words with respect
to R is IRR(R) = Z*\{stu € * | s,u € 2*,t € dom(R)}. A word t is a normal
form of s if s 5% t € IRR(R). We say that R is confluent if for all s,t,u € X*
with s % t and s - u there exists w € X* with t 5% w and u > w. We
say that R is locally confluent if for all s,t,u € X* with s - t and s = u
there exists w € X* with t 5% w and u g w. If R is terminating then by
Newman’s lemma [New43] R is confluent if and only if R is locally confluent.

Two decision problems that are of fundamental importance in the theory of
semi-Thue systems are the (uniform) word problem and the confluence problem.
Let C be a class of STSs. The uniform word problem, briefly UWP, for the class
C is the following decision problem:

INPUT: An STS R € C (over some alphabet X') and two words u,v € X*.
QUESTION: Does u ¢y% v hold?

The confluence problem, briefly CP, for the class C is the following decision
problem:

INPUT: An STSR €C.

QUESTION: Is R confluent?

The UWP for a singleton class {R} is called the word problem, briefly WP, for
the STS R.

For the class of all terminating STSs the CP is known to be decidable [NB72].
This classical result is based on the so called critical pairs of an STS, which result
from overlapping left-hand sides. A pair (s1,s2) € X* x X* is a critical pair of R
if there exist rules (t1,u1), (t2,u2) € R such that one of the following two cases
holds:

— t1 = vtaw, s1 = uy, and sz = vusw for some v,w € X* (here the word
t1 = vtow is an overlapping of ¢; and t»).



— t; = vt, ty = tw, 51 = wyw, and sy = vuy for some t,v,w € X* with t # €
(here the word vtw is an overlapping of ¢; and t2).

Note that there are only finitely many critical pairs of R. In order to check
whether a terminating STS R is confluent it suffices to calculate for every critical
pair (s,t) of R arbitrary normal forms of s and ¢. If for some critical pair these
normal forms are not identical then R is not confluent, otherwise R is confluent.

Similarly for the class of all terminating and confluent STSs the UWP is
decidable [KB67]: In order to check whether s &5 t holds for given words
s,t € X* we compute arbitrary normal forms of s and ¢. Then s & tif and
only if these normal forms are the same.

In this paper we consider the following classes of terminating systems. An
STS R is length-reducing if |s| > |t| for all (s,t) € R. An STS R is weight-reducing
if there exists a weight-function f such that f(s) > f(t) for all (s,t) € R. An
STS R is length-lexicographic if there exists a linear order > on the alphabet
X such that for all (s,t) € R it holds |s| > [t| or (|s| = |t| and there exist
u,v,w € X* and a,b € ¥ with s = uav, t = ubw, and a > b). An STS R
is weight-lexicographic if there exist a linear order > on the alphabet X and a
weight-function f such that for all (s,t) € R it holds f(s) > f(t) or (f(s) = f(¢)
and there exist u,v,w € X* and a,b € X with s = uav, t = ubw, and a > b).

For all these classes, restricted to confluent STSs, the UWP is decidable.
Since we want to determine the complexity of the UWP for these classes, we
have to define the length of an STS. For an STS R it is natural to define its

length |R| by |R| = 2, ner lst]-

3 Length-reducing semi-Thue systems

In [Loh99] it was shown that the UWP for the class of all length-reducing and
confluent STSs over {a,b} is P-complete. In this section we prove that for a
fixed STS the complexity decreases to LOGCFL. Recall that LOGCFL is the
class of all problems that are log space reducible to the membership problem for
a context-free language [Sud78]. It is strongly conjectured that LOGCFL is a
proper subset of P.

Theorem 1. Let R be a fixed length-reducing and confluent STS. Then the WP
for R is in LOGCFL.

Proof. Let R be a fixed length-reducing STS over X' and let s € X*. From
the results of [DW86] ! it follows immediately that the following problem is in
LOGCFL:

INPUT: A word t € X'*.

QUESTION: Does t v s hold?

! The main result of [DW86] is that the membership problem for a fixed growing
context-sensitive grammar is in LOGCFL. Note that the uniform variant of this
problem is NP-complete [KN87,CH90,BL92].



Now let R be a fixed length-reducing and confluent STS over X" and let u,v € X*.
Let ¥ = {@ | a € X'} be a disjoint copy of X. For a word s € X* define the word
—Jrev.

7 € X inductively by @ = e and af' " =F '@ for a € ¥ and ¢ € X*. Define
the length-reducing STS P by

P=RU{FZ =T |(st) e R}U{aa = €| a € T}.

Since R is confluent, it holds u &% v if and only if u7™¥ 55 e. The later
property can be checked in LOGCFL. Clearly uz™®" can be constructed in log
space from u and v. O

4 Weight-reducing semi-Thue systems

Weight-reducing STSs were investigated for instance in [Die87,Jan88,NO88] and
[BL92] as a grammatical formalism. The WP for a fixed weight-reducing and
confluent STS can be easily reduced to the WP for a fixed length-reducing and
confluent STS. Thus the WP for every fixed weight-reducing and confluent STS
can also be solved in LOGCFL:

Theorem 2. Let R be a fized weight-reducing and confluent STS. Then the WP
for R is in LOGCFL.

Proof. Let R be a weight-reducing and confluent STS over X and let u,v € X*.
Let f be a weight-function such that f(s) > f(¢t) for all (s,t) € R. Let § ¢ X and
define the morphism ¢ : ¥* — (¥ U {$})* by ¢(a) = $/(@af(@ for all a € ¥.
Note that non-trivial overlappings between two words ¢(a) and ¢(b) are not
possible. It follows that the STS p(R) = {¢(s) = ¢(t) | (s,t) € R} is length-
reducing and confluent, and we see that u 3 v if and only if p(u) ©,(r) @(v).
Since ¢(u) and ¢(v) can be constructed in log space, the theorem follows from
Theorem 1. O

Next we will consider the UWP for weight-reducing and confluent STSs over
a fixed alphabet X. In order to get an upper bound for this problem we need
the following lemma, which we state in a slightly more general form for later
applications.

Lemma 1. Let X be a finite alphabet with |X| = n and let R be an STS over
XY with o = max{|s|, | s € dom(R)Uran(R),a € X}. Let g be a weight-function
with g(s) > g(t) for all (s,t) € R. Then there exists a weight-function f such
that for all (s,t) € R the following holds:

= I g(s) > g(t) then £(s) > F(), and if g(s) = g(t) then f(s) = £(2).
— fla) < (n+1)(an)™ for alla € X.

Proof. We use the following result about solutions of integer (in)equalities from
[VZGST8]: Let A,B,C,D be (m x n)-, (m x 1)-, (p x n)-, (p x 1)-matrices,



respectively, with integer entries. Let r = rank(A), s = rank (é) Let M be

an upper bound on the absolute values of all (s — 1) x (s — 1)- or (s x s)-

subdeterminants of the (m+p) x (n + 1)-matrix (A B , which are formed with

CcD
at least r rows from the matrix (A B). Then the system Az = B, Cx > D
has an integer solution if and only if it has an integer solution x such that the
absolute value of every entry of z is bounded by (n + 1)M.

Now let X', n, R, a, and g be as specified in the lemma. Let X' = {a1,... ,an}
and R = {(ss,ti) | 1 < i < k}U{(us,vi) | 1 < i < £}, where g(s;) = g(t;) for
1 < i< kand g(u;) > g(v;) for 1 < ¢ < £. Define the (k x n)-matrix A by
Aij = |8ila; — [tilo; and define the (£ x n)-matrix C" by C} ; = |uifa; — |Vi]a; -

Cl
Let C = (I d,
i-dimensional column vector with all entries equal to j. Then the n-dimensional
column vector z with z; = g(a;) is a solution of the following system:

) , where Id,, is the (n x n)-identity matrix. Finally let (j); be the

Az =(0)r  Cz>(1)¢4n (1)

Note that r = rank(A) < n and s = rank (A

C
A (0)k
c (1)Z+n
(s —1) x (s = 1)- or (s x s)-subdeterminant of E is bounded by s!-a’ < (an)™.
By the result of [vZGS78] the system (1) has a solution y with y; < (n+1)(an)™
for all 1 < j < n. If we define the weight-function f by f(a;) = y; then f has
the properties stated in the lemma. O

) < n. Furthermore every entry of

the matrix £ = ( ) is bounded by a. Thus the absolute value of every

Theorem 3. Let X be a fized alphabet with |X| > 2. Then the UWP for the
class of all weight-reducing and confluent STSs over X' is P-complete.

Proof. Let |X| = n > 2. Let R be a weight-reducing and confluent STS over
X’ and let u,v € X*. By Lemma 1 there exists a weight-function f such that
f(s) > f(¢) for all (s,t) € R and f(a) < (n+1)(an)™ for all a € X. Thus every
derivation that starts from the word u has a length bounded by |u|-(n+1)-(an)™,
which is polynomial in the input length |R| + |uv|. Thus a normal form of u
can be calculated in polynomial time and similarly for v. This proves the upper
bound. P-hardness follows from the fact that the UWP for the class of all length-
reducing and confluent STSs over {a, b} is P-complete [Loh99]. i

Finally for the class of all weight-reducing and confluent STSs the complexity of
the UWP increases to EXPTIME:

Theorem 4. The UWP for the class of all weight-reducing and confluent STSs
1s EXPTIME-complete.

Proof. The EXPTIME-upper bound can be shown by using the arguments from
the previous proof. Just note that this time the upper bound of (n+1)(an)” for



a weight-function is exponential in the length of the input. For the lower bound
let M = (Q,X,0,q0,q7) be a deterministic Turing-machine such that for some
polynomial p it holds: If w € L(M) then M, started on w, reaches the final state
qy after at most 27{*) many steps. Let w € (¥'\{TOJ})* be an arbitrary input for
M. Let m = p(|w|) and let

r=QuxulJEiu{ei,29,4;, Bi}) U{#,p}.
=0

Here 29 is a single symbol and X; = {a; | a € X} is a disjoint copy of X for
0<i<m. Let X, = XU {>} and let R be the STS over I'" that consists of the
following rules:

(1) 20ab — a,, 2071 ... 2102000p for 0<i<m,a€ X,,be X

2) 2Wap — ap_,20 for0<i<m,1<k<m,a€ X,

(3) #ar — a# for0<k<m,a€eX,

(4) #z o= for z € X UQ\{qr}

(5) 20g—q for ¢ € Q\{gs}

6) 2¥cqa — cbp for 0 <i<m,c€ Xy, 6(¢g,a) = (p,b,+1)
(7) 2@¢qa — peb for 0 <i<m,cé€ X, §(qg,a) = (p,b,—1)
(8) Az — Ai+1Az’+1 for 0 < i<m

(9) BZ - B,H_lBi-}—l for 0 <i<m

(10) A,, — #20m)

(11) By — O

(12) zqy — qy forz el

(13) gz — g5 forz el

We claim that R is weight-reducing. For this we define the weight-function f as
follows: 2

fA) =2 f(Aiq) +1for 0<i<m f(AR) =2m+2

[(B) =2 f(Bip) +1for0<i<m  f(Bp)=2

flx)=1for z € QU X, U {#} F29)y=2ifor0<i<m
f(a,~)—1—i—7:.1-':*_12forOSigm,aEZ‘[>

Then it is easy to check that f(s) > f(t) for all (s,t) € R. All non-trivial critical
pairs of R are of the form (sqy,tqs) (where (sz,t) € R, z € X), (g5, ¢st) (where
(xs,t) € R, 2z € X), or (2qr,qry) (where z,y € X). By the rules in (12) and
(13) both components of these critical pairs can be reduced to gs. Thus R is
confluent. Finally we claim that Ag > gowBy &r gy if and only if w € L(M).
Before we prove this claim let us first explain the effect of the rules from
R. For 0 < i < 2™ let sum(i) = 2(@)...20x) ¢ * if 4 > ... > 4, and
i = 28 4 ... + 2% (note that sum(0) = €). Let us call a word of the form

2 Here we use rational weights, but of course they can be replaced by integer weights.



#sum(i) € I'* a counter with value i. The effect of the rules in (1), (2), and
(3) is to move counters to the right in words from >X*. Here the symbol > is
a left-end marker. If a whole counter moves one step to the right, its value is
decreased by one. More generally for all u € X*, b € X, and all |u| < i < 2™ we
have #sum(i)bub S5 buftsum(i— |u|—1)b. If a counter has reached the value 0,
i.e, it consists only of the symbol # then the counter is deleted with a rule in (4).
Also if a counter collides with a state symbol from @ at its right end, then the
counter is deleted with the rules in (4) and (5). Note that such a collision may
occur after an application of a rule in (7). The rules in (6) and (7) simulate the
machine M. In order to be weight-reducing, these rules consume the right-most
symbol of the right-most counter. The rules in (8) and (10) produce 2™ many
counters of the form #2(™). Each of these counters can move at most 2™ cells
to the right. But since M terminates after at most 2™ many steps, the distance
between the left end of the tape and the read-write head is also at most 2™.
This implies that with each of the 2™ many counters that are produced from
Ao, at least one step of M can be simulated. The rules in (9) and (11) produce
2™ many blank symbols, which is enough in order to simulate 2™ many steps of
M. Finally the rules in (12) and (13) make the final state ¢; absorbing.

Now if w € L(M) then AgbgowBy Sr (#2(M)2" bgow?” Sp ugsv Sz qf
for some u,v € I'*. On the other hand if w ¢ L(M) then M does not terminate
on w. By simulating M long enough, and thereby consuming all 2™ many initial
counters, we obtain Ag b gowBy =r (#2(™)2" b gw*>” S dugu € IRR(R)
for some ¢ € Q\{qs}, u,v € Z*. Since also ¢y € IRR(R) and R is confluent,
Ao > gowBy S gy cannot hold. O

Since P is a proper subclass of EXPTIME, it follows from Theorem 3 and The-
orem 4 that in general it is not possible to encode the alphabet of a weight-
reducing and confluent STS into a fixed alphabet with a polynomial blow-up
such that the resulting STS is still weight-reducing and confluent. For length-
reducing systems this is always possible, see [Loh99] and the coding function
from the proof of Theorem 5.

5 Length-lexicographic semi-Thue systems

In this section we consider length-lexicographic semi-Thue systems, see for in-
stance [KN85]. The complexity bounds that we will achieve in this section are
the same that are known for preperfect systems. An STS R is preperfect if for
all s,t € X* it holds s & t if and only if there exists u € X* with s ¥ u and
t 3% u, where the relation — is defined by v =5 w if v <% w and |v| > |w].
Since every length-preserving STS is preperfect and every linear bounded au-
tomaton can easily be simulated by a length-preserving STS, there exists a fixed
preperfect STS R such that the WP for R is PSPACE-complete [BJM*81]. The
following theorem may be seen as a stronger version of this well-known fact in
the sense that a deterministic linear bounded automaton can even be simulated
by a length-lexicographic, length-preserving, and confluent STS.



Theorem 5. The WP for a length-lexicographic and confluent STS is contained
in PSPACE. Furthermore there exists a fized length-lexicographic and confluent
STS R over {a,b} such that the WP for R is PSPACE-complete.

Proof. The first statement of the theorem is obvious. For the second statement
let M =(Q,X,6,q0,qr) be a deterministic linear bounded automaton such that
the question whether w € L(M) is PSPACE-complete. Such a linear bounded
automaton exists, see e.g. [BO84]. We may assume that M operates in phases,
where a single phase consists of a sequence of 2 - n transitions of the form
Qw1 = Wags = A g3ws, where wy, wy, ws € X* and q1,¢2,¢s € Q. During the
sequence qiw; =>xq wage only right-moves are made, and during the sequence
Waqs - qzws only left-moves are made. A similar trick is used for instance
also in [CH90]. Let ¢ > 0 be constant such that if w € L(M) then M, started on
w, reaches the final state g; after at most 2¢™ phases. Let w € (¥'\{{J})* be an
input for M with |w| = n. As usual let X' be a disjoint copy of X and similarly
for Q. Let ' = QUQU X UXU{<,0,1,1} and let R be the STS over I" that
consists of the following rules: >

0g —ql forallqge @
1§ — 0gq for all g € Q)
gl = 1qg forallgeQ

ga = bp if §(¢,a) = (p, b, +1)
g<a— g« for all ¢ € Q\{gs}
aq_)ﬁb if (S(Q,Cl) = (pa b7_1)
zqr = qr forallz € I

grr — gy forallz € I’

First we claim that R is length-lexicographic. For this choose a linear order >
on the alphabet I' that satisfies @ = 1 = 0 = X > Q (here for instance Q > 1
means that ¢ = 1 for every ¢ € Q). Furthermore R is confluent. Finally we
claim that 10°"gow< & ¢y if and only if w € L(M). For v = by ---bo € {0,1}*
(b; € {0,1}) let val(v) = Ef:o b;-2¢. Note that for every ¢ € Q and s,t € {0,1}F
with s # 0/l it holds s§ % tq if and only if |s| = |t| and val(t) = val(s)—1. First
assume that w € L(M). Then 10°"gow< g vqpud —>g g; for some u € X*
and v € {0,1}". Now assume that w ¢ L(M). Then M does not terminate on w
and we obtain 10°"gow< g 0°"Hgua S GTC'"+1u< € IRR(R), where u € X*
and g € Q\{gys}. Since also ¢; € IRR(R) and R is confluent, 10¢"gow< Sr qr
cannot hold.

Finally, we have to encode the alphabet I' into the alphabet {a,b}. For this
let I' = {a1,...,ar} and let a; > az > --- > ap be the chosen linear order
on I'. Define a morphism ¢ : I'* — {a,b}* by ¢(a;) = ab'ab®**'~% and let
a > b. Then the STS p(R) is also length-lexicographic and confluent and for all
u,v € I'* it holds u &5 v if and only if ¢(u) <i>¢(72) (v), see [BO93], p 60. O

3 It will be always clear from the context whether e.g. 1 denotes the symbol 1 € I or
the natural number 1.



6 Weight-lexicographic semi-Thue systems

The widest class of STSs that we study in this paper are weight-lexicographic
STSs. Let R be a weight-lexicographic STS over an alphabet X with |X| = n
and let u € X*. Thus there exists a weight-function f with f(s) > f(¢) for all
(s,t) € R.If u = ug &g w1 =R -+ =R Up is some derivation then for all
0 <4 < nit holds |u;] < f(u;) < f(u). By Lemma 1 we may assume that
fla) < (n+1)(an)™ for all @ € X and thus |u;| < |u| - (n + 1)(an)™. Together
with Theorem 5 it follows that the UWP for weight-lexicographic and confluent
STSs over a fixed alphabet is PSPACE-complete and furthermore that there
exists a fixed weight-lexicographic and confluent STS whose WP is PSPACE-
complete. For arbitrary weight-lexicographic and confluent STSs we have the
following result.

Theorem 6. The UWP for the class of all weight-lexicographic and confluent
STSs is EXPSPACE-complete.

Proof. The EXPSPACE-upper bound can be shown by using the arguments
above. For the lower bound let M = (Q, X, 4, go, g5) be a deterministic Turing-
machine which uses for every input w at most space 2°{*D  where p is some
polynomial. Similarly to the proof of Theorem 5 we may assume that M operates
in phases. There exists a polynomial g such that if w € L(M) then M, started
on w, reaches gy after at most 22" many phases. Let w € (Z\{O})* be an
arbitrary input for M. Let m = p(|w|), n = ¢(|w]|), and

r=QUQUXUXuU{<0,1,T}U{4;|0<i<n}U{B;|0<i<m}.

Let R be the STS over I' that consists of the following rules:

0g — ql for all g € Q

1 — Oq forall g € Q)

ql = 1q for all g € Q

ga — bp if 8(¢,a) = (p,b,+1)
g<q4 — g< for all ¢ € Q\{gs}
ag—pb if 6(Q7a) = @71)7_1)

Ai — A’i+1‘4i+1 for 0 < i<n
B; — B'H—IBH-I for 0 <i<m

A, —0
B, —» 0O
xqr — g forallz € I
grT — gy forallz € I

Note that the first six rules are exactly the same rules that we used for the
simulation of a linear bounded automaton in the proof of Theorem 5. We claim
that R is weight-lexicographic. For this define the weight-function f by f(z) =
lforallz € QUQUX U X U{q,0,1,1,4,,Bn} and f(4;) = 2- f(Ais1),
f(Bj) =2 f(Bjy1) for 0 < i < n, 0 < j < m. Then the last two rules are



weight-reducing and all other rules are weight-preserving. Now choose a linear
order > on I' that satisfies Q = 1>=0> X = Q, Ag = A; > -+ = A, = 0, and
By = By > --- = By, > 0. It is easy to see that R is confluent. Finally we have
w € L(M) if and only if 14pgowBo< <3% ¢s. This can be shown by using the
arguments from the proof of Theorem 5. Just note that this time from the word
14y we can generate the word 102" which allows the simulation of 22" many
phases. Analogously to the proof of Theorem 4 the symbol By generates enough
blank symbols in order to satisfy the space requirements of M. O

7 Confluence problems

The CP for the class of all STSs is undecidable [BO84]. On the other hand, the
CP for the class of all terminating STSs is decidable [NB72]. For length-reducing
STSs the CP is in P [BO81], the best known algorithm is the O(|R|?)-algorithm
from [KKMNB85]. Furthermore in [Loh99] it was shown that the CP for the class
of all length-reducing STSs is P-complete. This was shown by using the following
log space reduction from the UWP for length-reducing and confluent STSs to the
CP for length-reducing STSs, see also [VRL98], Theorem 24: Let R be a length-
reducing and confluent STS over X. Furthermore let A and B be new symbols.
Then for all 5,t € £* the length-reducing STS R U {Al*!! B — 5, Al*| B — t} is
confluent if and only if s <% t holds. Finally the alphabet X U {A, B} can be
reduced to the alphabet {a, b} by using the coding function from the end of the
proof of Theorem 5. The same reduction can be also used for weight-reducing,
length-lexicographic, and weight-lexicographic STSs. Thus a lower bound for the
UWP for one of the classes considered in the preceding sections carrys over to the
CP for this class. Furthermore also the given upper bounds hold for the CP for
the corresponding class: Our upper bound algorithms for UWPs are all based on
the calculation of normal forms. But since every STS has only polynomially many
critical pairs, any upper bound for the calculation of normal forms also gives an
upper bound for the CP. The resulting complexity results are summarized in
Table 1.

Table 1. Complexity results for confluence problems

length-reducing | weight-reducing .length— . Welght— -
STSs STSs lexicographic | lexicographic
STSs STSs
CP for a fixed P-complete P-complete PSPACE- PSPACE-
alphabet P p complete complete
EXPTIME- PSPACE- EXPSPACE-
CP P-complete

complete complete complete




8 Quasi context-sensitive grammars

A quasi context-sensitive grammar, briefly QCSG, is a (type-0) grammar G =
(N,T, S, P) (here N is the set of non-terminals, T is the set of terminals, S € N
is the start non-terminal, and P C (NUT)*N(NUT)* x (NUT)* is a finite set
of productions) such that for some weight-function f : (N UT)* — N we have
f(u) < f(v) for all (u,v) € P, see [BL94]. The variable membership problem for
QCSGs it the following problem:

INPUT: A QCSG G with terminal alphabet T and a terminal word v € T™.
QUESTION: Does v € L(G) hold?

In [BL94] it was shown that this problem is in EXPSPACE and furthermore
that it is NEXPTIME-hard. Using some ideas from Section 4 we can prove that
this problem is in fact EXPSPACE-hard.

Theorem 7. The variable membership problem for QCSGs is EXPSPACE-com-
plete.

Proof. It remains to show that the problem is EXPSPACE-hard. For this let
M =(Q,X,0,q0,qr) be a Turing-machine, which uses for every input w at most
space 2P(11) —2 for some polynomial p. Let w € (¥\{{})* be an input for M and
let m = p(Jw|). We will construct a QCSG G = (N,T, S, P) and a word v € T*
such that w € L(M) if and only if v € L(G). The non-terminal and terminal
alphabet of G are N = {S,B} U{4; |0<i<m}UQUX and T = {4,,}. The
set P consists of the following productions:

S — qwB

B - OB

qa — bp if 6(¢g,a) = (p,b,+1)
cga — pcb  if §(q,a) = (p,b,—1),ce X
qr = Ao

1Ay = ApgAp forz e ¥

Aoz — AgAy for z € ¥ U {B}

A,’Ai — Ai+1 for 0 < i <m

+

In order to show that G is quasi context-sensitive we define the weight-function
f:(NUT)* - Nby f(z) =1forall z € {S,B}UXUQ and f(4;) = 2 for all
0 <i < m. Then f(s) < f(t) for all (s,t) € P. If w € L(M) then A,, € L(G)
by the following derivation:

S = gowB 5 p qow?" ~WI2B X1 sqitB —p sAgtB Sp AZT Sp A,

where s,t € X* and |st| = 2™ — 2. On the other hand, if A4,, € L(G) then a
sentential form ugpv with wv € I'* and |uv| = 2™ — 1 must be reachable from S,
i.e, reachable from gowB. This is only possible if w € L(M). Furthermore G and
v can be calculated from M and w in log space. This concludes the proof. O

Note that from the previous proof it follows immediately that the following
problem is also EXPSPACE-complete:



INPUT: A context-sensitive grammar G with terminal alphabet {a} and a num-
ber n € N coded in binary.
QUESTION: Does a” € L(G) hold?

The same problem for context-free grammars is NP-complete [Huy84].

9 Summary and open problems

The complexity results for WPs are summarized in Table 2. Here the statement
in the first row that e.g. the WP for length-lexicographic and confluent STSs is
PSPACE-complete means that for every length-lexicographic and confluent STS
the WP is in PSPACE and furthermore there exists a fixed length-lexicographic
and confluent STS whose WP is PSPACE-complete. Furthermore the complete-
ness results in the second row already hold for the alphabet {a,b}.

Table 2. Complexity results for word problems

length-reducing | weight-reducing length- weight-

& confluent & confluent |lexicographic & |lexicographic &

STSs STSs confluent STSs | confluent STSs
WP LOGCFL LOGCFL PSPACE- PSPACE-
complete complete
UWP for a P-complete P-complete PSPACE- PSPACE-
fixed alphabet -comp p complete complete

UWP P_complete EXPTIME- PSPACE- EXPSPACE-

complete complete complete

One open question that remains concerns the WP for a fixed length-reducing
(weight-reducing) and confluent STS. Does there exist such a system whose WP
is LOGCFL-complete or are these WPs always contained for instance in the sub-
class LOGDCFL, the class of all languages that are log space reducible to a de-
terministic context-free language? Since there exits a fixed deterministic context-
free language whose membership problem is LOGDCFL-complete [Sud78], The-
orem 2.2 of [MNOB88] implies that there exists a fixed length-reducing and con-
fluent STS whose WP is LOGDCFL-hard.

Another interesting open problem is the descriptive power of the STSs con-
sidered in this paper. Let My, (M, My, Mye) be the class of all monoids
(modulo isomorphism) of the form X*/R, where R is a length-reducing (weight-
reducing, length-lexicographic, weight-lexicographic) and confluent STS over X.
In [Die87] it was shown that the monoid {a,b,c}*/{ab — ¢?} is not contained
in My,. Since the STS {ab — ¢?} is of course confluent, weight-reducing, and
length-lexicographic, it follows that My, is strictly contained in M, and My,.
Furthermore the monoid {a, b}*/{ab — ba} is contained in M\ M, [Die90], p



90. If there exists a monoid in M,,.\My, then My, and My, are incomparable
and both are proper subclasses of M ;. But we do not know whether this holds.

Finally, another interesting class of rewriting systems, for which (uniform)
word problems and confluence problems were studied, is the class of commutative
semi-Thue systems, see for instance [Car75,Huy85,Huy86,Loh99,MM82,VRLIS]
for several decidability and complexity results. But there are still many interest-
ing open questions, see for instance the remarks in [Huy85,Huy86,Loh99].
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