Word Problems for 2-Homogeneous Monoids
and Symmetric Logspace

Markus Lohrey

Universitdt Stuttgart, Institut fiir Informatik,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany,
lohreyms@informatik.uni-stuttgart.de

Abstract. We prove that the word problem for every monoid presented
by a fixed 2-homogeneous semi-Thue system can be solved in log-space,
which generalizes a result of Lipton and Zalcstein for free groups. The
uniform word problem for the class of all 2-homogeneous semi-Thue sys-
tems is shown to be complete for symmetric log-space.

1 Introduction

Word problems for finite semi-Thue systems, or more precisely word problems
for monoids presented by finite semi-Thue systems, received a lot of attention in
mathematics and theoretical computer science and are still an active field of re-
search. Since the work of Markov [18] and Post [22] it is known that there exists
a fixed semi-Thue system with an undecidable word problem. This has moti-
vated the search for classes of semi-Thue systems with decidable word problems
and the investigation of the computational complexity of these word problems,
see e.g. [9,7,16]. In [1] Adjan has investigated a particular class of semi-Thue
systems, namely n-homogeneous systems, where a semi-Thue system is called n-
homogeneous if all rules are of the form s — €, where s is a word of length n and
€ is the empty word. Adjan has shown that there exists a fixed 3-homogeneous
semi-Thue system with an undecidable word problem and furthermore that ev-
ery 2-homogeneous semi-Thue system has a decidable word problem. Book [8]
has sharpened Adjan’s decidability result by proving that the word problem for
every 2-homogeneous semi-Thue system can be solved in linear time.

In this paper we will continue the investigation of 2-homogeneous semi-Thue
systems. In the first part of the paper we will prove that the word problem for
every 2-homogeneous semi-Thue system can be solved in logarithmic space. This
result improves Adjan’s decidability result in another direction and also gener-
alizes a result of Lipton and Zalcstein [15], namely that the word problem for a
finitely generated free group can be solved in logarithmic space. Furthermore our
log-space algorithm immediately shows that the word problem for an arbitrary
2-homogeneous semi-Thue system can be solved in DLOGTIME-uniform NC! if
the word problem for the free group of rank 2 is solvable in DLOGTIME-uniform
NC!. Whether the later holds is one of the major open questions concerning the
class DLOGTIME-uniform NC!. In the second part of this paper we will con-
sider the uniform word problem for 2-homogeneous semi-Thue systems. In this



decision problem the 2-homogeneous semi-Thue system is also part of the input.
Building on the results from the first part, we will show that the uniform word
problem for the class of all 2-homogeneous semi-Thue systems is complete for
symmetric log-space. This result is in particular interesting from the viewpoint
of computational complexity, since there are quite few natural and nonobvious
SL-complete problems in formal language theory, see [2].

2 Preliminaries

We assume some familiarity with computational complexity, see e.g. [21], in
particular with circuit complexity, see e.g. [27]. L denotes deterministic loga-
rithmic space. SL (symmetric log-space) is the class of all problems that can be
solved in log-space on a symmetric (nondeterministic) Turing machine, see [14]
for more details. Important results for SL are the closure of SL under log-space
bounded Turing reductions, i.e., SL = L5 [19], and the fact that problems in SL
can be solved in deterministic space O(log(n)3) [3]. A collection of SL-complete
problems can be found in [2]. For the definition of DLOGTIME-uniformity and
DLOGTIME-reductions see e.g. [10, 5]. DLOGTIME-uniform NC*, briefly uNC*,
is the class of all languages that can be recognized by a DLOGTIME-uniform
family of polynomial-size, logarithmic-depth, fan-in two Boolean circuits. It is
well known that uNC' corresponds to the class ALOGTIME [24]. An important
subclass of uNC' is DLOGTIME-uniform TC?, briefly uTCP. Tt is characterized
by DLOGTIME-uniform families of constant depth, polynomial-size, unbounded
fan-in Boolean circuits with majority-gates. Using the fact that the number of
1s in a word over {0,1} can be calculated in uTC® [5], the following result was
shown in [4].

Theorem 1. The Dyck-language over 2 bracket pairs is in uTC.

By allowing more than one output gate in circuits we can speak of functions that
can be calculated in uTC®. But with this definition only functions f : {0,1}* —
{0,1}* that satisfy the requirement that |f(z)| = |f(y)| if |z| = |y| could be
computed. In order to overcome this restriction we define for a function f :
{0,1}* — {0,1}* the function pad(f) : {0,1}* — {0,1}*{#}* by pad(f)(z) =
y#", where f(z) =y and n = max{|f(2)| | z € {0,1}!*/} —|y|. Then we say that
a function f can be calculated in uTCY if the function pad(f) can be calculated
by a family of circuits that satisfy the restrictions for uTC?, where the alphabet
{0,1,#} has to be encoded into the binary alphabet {0,1}. Hence we also have
a notion of uTC® many-one reducibility. More generally we say that a language
A is uTCreducible to a language B if A can be recognized by a DLOGTIME-
uniform family of polynomial-size, constant-depth, unbounded fan-in Boolean
circuits containing also majority-gates and oracle-gates for the language B. This
notion of reducibility is a special case of the NC'-reducibility of [11]. In particular
[11, Proposition 4.1] immediately implies that L is closed under uTC-reductions.
Moreover also uNC! and uTC? are closed under uTC?-reducibility and uTC°-
reducibility is transitive. The following inclusions are known between the classes
introduced above: uTC® C uNC! C L C SL.



For a binary relation — on some set we denote by = the reflexive and
transitive closure of —. In the following let X' be a finite alphabet. An involution
~on XY is a function ~ : ¥ — X such that @ = a for all a € X. The empty word
over X' is denoted by €. Let s = ajas - - - a,, € X* be a word over X', where a; € X/
for 1 < i < n. The length of s is |s| = n. For 1 < i < n we define s[{] = a; and for
1 <i < j < n we define s[i, j] = a;a;41---a;. If i > j we set s[i, j| = €. Every
word s[1,4] with ¢ > 1 is called a non-empty prefiz of s. A semi-Thue system R
over X, briefly STS, is a finite set R C X* x X*. Its elements are called rules.
See [13,6] for a good introduction into the theory of semi-Thue systems. The
length |R| of R is defined by |R| =}, ;) [st]- As usual we write z = y if
there exist u,v € X* and (s,t) € R with = usv and y = utv. We write z g y
if (t 5% y or y —»x ). The relation & is a congruence with respect to the
concatenation of words, it is called the Thue-congruence generated by R. Hence
we can define the quotient monoid £*/ &%, which is briefly denoted by X*/R.
A word t is a R-normalform of s if s > t and t is R-irreducible, i.e., there
does not exist a u with ¢t - u. The STS R is confluent if for all s,t,u € X*
with (s g t and s >r u) there exists a v with (t ¢ v and v g v). It
is well-known that R is confluent if and only if R is Church-Rosser, i.e., for all
5,t € X*if s &p t then (s g uand t S5 u) for some u € I*, see [6, p 12]. For
a morphism ¢ : X* — I'* we define the STS ¢(R) = {(#(¥), ¢(r)) | (¢,r) € R}.
Let n > 1. A STS R is n-homogeneous if all rules of R have the form (¢, €) with
|| = n. An important case of a confluent and 2-homogeneous STS is the STS
Sn ={¢¢;i > € Ge; > €| 1<i<n}overI, ={c,...,cn,C1,---,¢n}. The
monoid I7: /S, is the free group F, of rank n.

A decision problem that is of fundamental importance in the theory of semi-
Thue systems is the uniform word problem. Let C be a class of STSs. The uniform
word problem, briefly UWP, for the class C is the following decision problem:

INPUT: An R € C (over some alphabet X') and two words s,t € X*.

QUESTION: Does s <»x t hold?

Here the length of the input is |R| + |st|. The UWP for a singleton class {R}
is called the word problem, briefly WP, for R. In this case we also speak of the
word problem for the monoid X*/R and the input size is just |st|. In [15] the
word problem for a fixed free group was investigated and the following theorem
was proven as a special case of a more general result on linear groups.

Theorem 2. The WP for the free group F» of rank 2 is in L.
This result immediately implies the following corollary.

Corollary 1. The UWP for the class {S, | n > 1} is uTC’-reducible to the
WP for Fs, and therefore is also in L.

Proof. The group morphism ¢, : F,, — F defined by ¢; — Gicocl is injective,
see e.g. [17, Proposition 3.1]. Furthermore ¢, (w) can be calculated from w and
S,, in uTCP. The second statement of the theorem follows with Theorem 2. O

Finally let us mention the following result, which was shown in [23].



Theorem 3. The WP for the free group F» of rank 2 is uNC"-hard under
DLOGTIME-reductions.

3 The confluent case

In this section we will investigate the UWP for the class of all confluent and
2-homogeneous STSs. For the rest of this section let R be a confluent and 2-
homogeneous semi-Thue system over an alphabet X. It is easy to see that w.l.o.g.
we may assume that every symbol in X appears in some rule of R.

Lemma 1. There exist pairwise disjoint sets Xy, X, ' C X' an involution ~ :
I' 5T, and o STS D C {(ab,€) | a € Xy, b€ X} such that ¥ = X, U X, UT"
and R = DU{(ag,€) | a € I'}. Furthermore given R and a € X we can decide
in uTC’ whether a belongs to Xy, X, or I

Proof. Define subsets ¥1,%y C X by ¥; = {a € ¥ | Ib € ¥ : (ab,e) € R},
Yo={a€ X |Tbe X: (bae) € R}, and let Xy = X1\ X5, X, = Xr\X, and
I' = ¥1NX5. Obviously Xy, X, and I' are pairwise disjoint and X~ = X,UX,.UT.
Now let a € I'. Then there exist b,c € X with (ab,¢), (ca,e) € R. It follows
cab —» band cab = c. Since R is confluent we get b = ¢, i.e, (ab,¢€), (ba,e) € R
and thus b € I'. Now assume that also (ab’,e) € R for some b’ # b. Then
bab' =% b and bab'’ —x b’ which contradicts the confluence of R. Similarly
there cannot exist a b’ # b with (b'a,e) € R. Thus we can define an involution
T: ' — I by a=bif (ab,¢), (ba,€) € R. The lemma follows easily. O

Note that the involution ~ : I' — I' may have fixed points. For the rest of this
section it is helpful to eliminate these fixed points. Let a € I" such that @ = a.
Take a new symbol a' and redefine the involution ~ on the alphabet I U {a'}
by @ = a' and a’ = a. Let R' = (R U {(ad’,¢€), (a'a,€)})\{(aa, €)}. Furthermore
for w € X* let w' € (¥ U {a'})* be the word that results from s by replacing
the ith occurrence of a in w by o' if 7 is odd and leaving all other occurrences
of symbols unchanged. Then it follows that for s,¢ € X* it holds s &g t if
and only if s' &g t'. Note that s', ¢/, and R’ can be calculated from s, ¢, and
R in uTC°. In this way we can eliminate all fixed points of the involution ~.
Thus for the rest of the section we may assume that a # @ for all @ € I'. Let
S ={(aa,€) |a € I'} CR. Then I'*/S is the free group of rank |I'|/2.

Define the morphism 7 : X* — {(,)}* by n(a) = ( for a € Xy, w(b) =)
for b € X, and w(c) = € for ¢ € I We say that a word w € X* is well-
bracketed if the word m(w) is well-bracketed. It is easy to see that if w -5 €
then w is well-bracketed. Furthermore Theorem 1 implies that for a word w
and two positions 4,5 € {1,...,|w|} we can check in uTC® whether w[i,j] is
well-bracketed. We say that two positions 4,5 € {1,...,|w|} are corresponding
brackets, briefly coy (4, 7), if i < j, w[i] € Xy, w[j] € Xy, w[i, j] is well-bracketed,
and w[i, k] is not well-bracketed for all k with i < k < j. Again it can be
checked in uTCP, whether two positions are corresponding brackets. If w is well-
bracketed then we can factorize w uniquely as w = sowl[i1, j1]81 -+ - W[in, jn]sn,



where n > 0, coy (ix, ji) forallk € {1,... ,n} and s, € ™ for allk € {0,... ,n}.
We define F(w) = s ---sp, € I'.

Lemma 2. The partial function F : X* — I'* (which is only defined on well-
bracketed words) can be calculated in wTC.

Proof. First in parallel for every m € {1,...,|w|} we calculate in uTC® the
value fp, € {0,1}, where f,, = 0 if and only if there exist positions i < m < j
such that coy (i, 7). Next we calculate in parallel for every m € {1,... ,|w|} the
sum F,, = Y7 | f;, which is possible in uTC® by [5]. If F},,; < m < |w]| then the
m-th output is set to the binary coding of #. If m < Fj,,; and i € {1,...,|w|}
is such that f; = 1 and F; = m then the m-th output is set to the binary coding
of wli]. a

Lemma 3. Let w = sow[i1,j1]81 - W[in, jn]sn be well-bracketed, where n > 0,
0w (ik, Ji) for all1 < k <n, and s, € I'* for all0 < k <n. Thenw Sr e if and
only if F(w) = sg---sp, —s €, (Wlig]w[jr], €) € R, and wliy, +1,j; — 1] S €
foralll1 <k <n.

Proof. The if-direction of the lemma is trivial. We prove the other direction
by an induction on the length of the derivation w 5 €. The case that this
derivation has length 0 is trivial. Thus assume that w = wiflws = wWiws S
In case that the removed occurrence of £ in w lies completely within one of the
factors s (0 < k < n) or wlix + 1,5, — 1] (1 < k < n) of w we can directly
apply the induction hypothesis to wijws. On the other hand if the removed
occurrence of £ contains one of the positions iy or ji (1 < k < n) then, since
COy ik, ji), we must have £ = wlig]wljr], wlix + 1,Jk — 1] = €, and wyws =
sowl[it, j1)81 + - Wik—1, Jr—1](8k—18k)W[ikt1, Jh+1]8k+1 *** Wlin, jn)sn —r € We
can conclude by using the induction hypothesis. O

Lemma 4. For w € £* it holds w >x € if and only if w is well-bracketed,
F(w) Ss €, and for alli,j € {1,... ,|w|} with coy(i,j) it holds (w[i]w[j], €) €
R and F(w[i + 1,5 —1]) D5 €).

Proof. The only if-direction can be shown by an induction on |w| as follows.
Let w 5% €. Then w must be well-bracketed, thus we can factorize w as w =
Sowli1, j1]81 -+ - W[in, jn)Sn, where n > 0, coy (i, jx) for all k € {1,... ,n}, and
sp € I'* for all k € {0,...,n}. By Lemma 3 above we obtain F(w) s ¢,
(wlig]wljr], €) € R, and wlix + 1,5, — 1] S € for all k € {1,...,n}. Since
|wlir + 1,4k — 1]] < |w| we can apply the induction hypothesis to each of the
words w[ir + 1, jx — 1] which proves the only if-direction. For the other direction
assume that w is well-bracketed, F(w) 55 €, and for all i,5 € {1,..., |w|} with
coy (i, ) it holds ((w[ilw[j], €) € R and F(w[i + 1,5 — 1]) s €). We claim that
for all i,j € {1,...,|w|} with co,(i,5) it holds w[i, j] =+ €. This can be easily
shown by an induction on j — i. Together with F(w) S5 € we get w Sg e. O

The previous lemma implies easily the following partial result.



Lemma 5. The following problem is uTC’-reducible to the WP for Fj.
INPUT: A confluent and 2-homogeneous STS R and a word w € X*.
QUESTION: Does w 5 € (or equivalently w &i €) hold?

Proof. A circuit with oracle gates for the WP for F, that on input w, R deter-
mines whether w - € can be easily built using Lemma 4. The quantification
over all pairs ¢,j € {1,...,|w|} in Lemma 4 corresponds to an and-gate of un-
bounded fan-in. In order to check whether F(wl[i,j]) =s € for two positions i
and j, we first calculate in uTC® the word F(wl[i,]) using Lemma 2. Next we
apply Corollary 1, and finally we use an oracle gate for the WP for F5. O

For w € X* we define the set IT(w) as the set of all positions ¢ € {1,...,|w|}
such that w[i] € X, U X, and furthermore there does not exist a position k > i
with w[i, k] = € and there does not exist a position k < i with w[k,i] S5 e.
Thus II(w) is the set of all positions in w whose corresponding symbols are
from X, U X, but which cannot be deleted in any derivation starting from w.
The following lemma should be compared with [20, Lemma 5.4] which makes
a similar statement for arbitrary special STSs, i.e., STSs for which it is only
required that each rule has the form (s,e€) with s arbitrary.

Lemma 6. For u,v € X* let II(u) = {i1,... ,im} ond II(v) = {j1,---,Jn},
where i1 < 49 < -+ < Gy and 1 < Jo < --- < Jp. Define ig = jo = 0,
imyr = |ul + 1, and jop1 = |v| + 1. Then u S v if and only if m = n,

ulix] = v[jk] for 1 <k <n and F(ulir, + 1,051 — 1]) S F(ljx + 1, je+1 — 1]
for 0 <k <n.

Proof. First we show the following statement:
Let w € X*. If IT(w) = () then w is well-bracketed and w > F(w). (1)

The case that there does not exist an ¢ € {1,...,|w|} with w[i] € X, U X, is
clear. Otherwise there exists a smallest ¢+ € {1,...,|w|} with w[i] € X, U X,.
Thus w = sw[i]t for some s € I'*, t € X*. Since II(w) = @ we must have
w[i] € £, and there exists a minimal j > i with w[i,j] - €. Lemma 3 implies
€Oy (i,7). Let u be such that w = swli,j]u. Since T(w) = @ we must have
IT(u) = (. Inductively it follows that u is well-bracketed and u =% F(u). Thus
w is well-bracketed and w S sF(u) = F(w), which proves (1).

Now we prove the lemma. Consider a factor uy := ufix—1 + 1,4 — 1] of w.
Let ix—1 < @ < i such that u[i] € Xy. Then ¢ ¢ II(u), hence there exists a
4 > i such that u[i, j] 5% €. But since iy € IT(u) we must have j < ij. A similar
argument holds if u[i] € ¥, hence IT(u;) = 0 and thus uj, > F(uz) by (1). We
obtain u Sg F(ur)ufi1)F (u2)ulia] - - - F(te )ufire] F (Ums1) =: v’ and similarly
v S Fu1)v[j1]F (v2)v[ja] - - - F(n)v[jn] F (ns1) =: v'. Thus u Sx v if and
only if u' & o' if and only if v’ and v’ can be reduced to a common word. But
only the factors F(uy) and F(vg) of u' and o', respectively, are reducible. The
lemma follows easily. |



With the previous lemma the following theorem follows easily.

Theorem 4. The UWP for the class of all confluent and 2-homogeneous STSs
is wTCP -reducible to the WP for F.

Proof. Let two words u,v € X* and a confluent and 2-homogeneous STS R be

given. First we calculate in parallel for all ¢,5 € {1,...,|u|} with ¢ < j the
Boolean value e; ;, which is false if and only if u[i, j] % €. Next we calculate in
parallel for all i € {1,...,|u|} the number g; € {0,1} by
i1 lul
g = 1 if u[z] e, UuX, A /\ er,i N /\ €ik
k=1 k=i+1
0 else
Thus g; = 1 if and only if ¢ € IT(u). Similarly we calculate for all j € {1,...,|v|}

a number h; € {0,1}, which is 1 if and only if j € IT(v). W.Lo.g. we assume that
91 = gju) = h1 = hj,| = 1, this can be enforced by appending symbols to the left
and right end of u and v. Now we calculate in parallel for all ¢ € {1,... ,|u|} and
all j € {1,...,|v|} the sums G; = >, _, gr and H; = >} _, hi, which can be
done in uTC? by [5]. Finally by Lemma 6, u <% v holds if and only if G|y = Hy
and furthermore for all 41,42 € {1,...,|u|} and all ji,j> € {1,...,|v|} such that
(g,;1 = Gi, = hj1 = hjg =1, Gi1 = Hj1> and Giz = Hj2 = Gi1 + ].) it holds
(ufir] = o[jr], uliz] = o[ja], and F(ulir + 1,42 = 1]) &5 Folji + 1,j2 — 1))).
Using Corollary 1, Lemma 2, and Lemma 5 the above description can be easily
converted into a uTC%-reduction to the WP for F. O

Corollary 2. The UWP for the class of all 2-homogeneous and confluent STSs
is in L. Furthermore if the WP for Fy is in uNC" then the UWP for the class
of all 2-homogeneous and confluent STSs is in uNC" .

4 The nonuniform case

In this section let R be a fixed 2-homogeneous STS over an alphabet X' which
is not necessarily confluent. W.l.o.g. we may assume that X = {0,... ,n — 1}.
The following two lemmas are easy to prove.

Lemma 7. Let a,b € X such that a <& b and define a morphism ¢ : X* — X*
by ¢(a) = b and ¢(c) = ¢ for all c € X\{a}. Then for all s,t € X* we have

s &x tif and only if ¢(s) (i>¢(72) o(t).

Lemma 8. Let ¢ : X* — X* be the morphism defined by ¢(a) = min{b € X' |
a & bY. Then for allu,v € X* it holds u Sr v if and only if ¢(u) <i)¢(7g) o(v).
Furthermore the STS ¢(R) is confluent.

Proof. All critical pairs of ¢(R) can be resolved: If ¢(a) < ¢(a)p(b)d(c) — d(c)

then a &% b and thus ¢(a) = ¢(b). The second statement of the lemma, follows
immediately from Lemma 7.



Theorem 5. Let R be a fized 2-homogeneous STS over an alphabet Y. Then
the WP for X*[R is in L. Furthermore if the WP for F» is in uNC" then also
the WP for £*/R is in uNC" .

Proof. Let R be a fixed 2-homogeneous STS over an alphabet X' and let ¢ be
the fixed morphism from Lemma 8. Since the morphism ¢ can be calculated in
uTCP, the result follows from Corollary 2. O

The next theorem gives some lower bounds for word problems for 2-homogeneous
STSs. It deals w.l.0.g. only with confluent and 2-homogeneous STSs. We use the
notations from Lemma 1.

Theorem 6. Let R be a confluent and 2-homogeneous STS over the alphabet
Y =X,UX, Ul Let |I'|=2-n+ f, where f is the number of fized points of
the involution ~ : I' = I'. If n+ f > 2 but not (n =0 and f = 2) then the WP
for R is uNC" -hard under DLOGTIME-reductions. If n + f < 2 or (n =0 and
f =2) then the WP for R is in uTC’.

Proof. If we do not remove the fixed points of the involution ~ : I" — I' then
the considerations from Section 3 imply that the WP for R is uTCC-reducible
to the WP for G = F, x Zs % - - - x Zs, where * constructs the free product and
we take f copies of Zy (each fixed point of ~ generates a copy of Z2, and the
remaining 2n many elements in I" generate F,). The case n + f = 0 is clear. If
n+ f =1, then either G = Z or G = Z4. Both groups have a word problem in
uTC?. If n = 0 and f =2then G =ZyxZy. Now Zox 74 is a solvable group, see
[23, Lemma 6.9]. Furthermore if we choose two generators a and b of G, where
a? = b?> = 1 in G, then the number of elements of G definable by words over
{a,b} of length at most n grows only polynomially in 7, i.e, G has a polynomial
growth function. Now [23, Theorem 7.6] implies that the WP for G is in uTC".
Finally let n 4+ f > 2 but not (n = 0 and f = 2). Then G = G * G2, where
either G1 % Zs or Go % Zs, hence G has F, as a subgroup, see e.g. the remark
in [17, p 177]. Theorem 3 implies that the WP for G and thus also the WP for
R are uNC'-hard under DLOGTIME-reductions. O

5 The general uniform case

In this section let R be an arbitrary 2-homogeneous STS over an alphabet X
which is not necessarily confluent. We start with some definitions. A word w =
a1as---a, € X¥* wheren > 1 and a; € ¥ for i € {1,... ,n}, is an R-path from
ay toayifforalli € {1,... ,n—1} we have (a;a;11,€) € R or (a;1a;,€) € R. Let
> and < be two symbols. For an R-path w = a; - - - a,, the set Dg(w) C {»,<}*
contains all words of the form d; - - - d,_1 such that for all s € {1,... ,n — 1} if
d; = > (respectively d; = <) then (a;a;11,€) € R (respectively (a;+1ai,€) € R).
Since R may contain two rules of the form (ab, €) and (ba, €), the set Dz (u) may
contain more than one word. We define a confluent and 2-homogeneous STS over
{>,<} by Z = {(b>,€),(<4,€)}. Finally let [e]z = {s € {>,<}* | s 3z €}. Note
that every word in [€]z has an even length.



Lemma 9. Let a,b € ¥. Then a &x b if and only if there exists an R-path w
from a to b with D (w) N[e]z # 0.

Proof. First assume that w = ay - --a, is an R-path such that a; = a, a,, = b,
and dy ---dy—1 € Dgr(w)N[e]z. The case n =1 is clear, thus assume that n > 3,
§ = d1 . ‘dz'_ldi_lr_Q .- 'dn—l S [E]Z, and dz =D = di+1 (the case d,’ =d4 = di+1
is analogous). Thus (a;a;t1,€), (@it1ai42,€) € R and a; < a;0i+10i42 — Qipo.
Define a morphism ¢ by ¢p(a;t2) = a; and ¢(c) = ¢ for all ¢ € X\{a;12}. Then
w' = p(a1) - p(ai)p(airs) - --p(an) is a p(R)-path such that s € Dy g)(w').
Inductively we obtain ¢(a) ¢, (r) ¢(b). Finally Lemma 7 implies a <% b.

Now assume that a $&% b and choose a derivation a = u; ©gr us ©Or
“oUp_1 ©R U, = b, where n is minimal. The case a = b is clear, thus assume
that a # b and hence n > 3. First we will apply the following transformation
step to our chosen derivation: If the derivation contains a subderivation of the
form uvlow  ulyvlow — ulivw, where (€1,€), (f2,€) € R then we replace this
subderivation by uvfew — uvw < ufyvw. Similarly we proceed with subderiva-
tions of the from ulyvw < ulavliw — uvliw. Since the iterated application of
this transformation step is a terminating process, we finally obtain a derivation
D from a to b which does not allow further applications of the transformation
described above. We proceed with the derivation D. Note that D is also a deriva-
tion of minimal length from a to b. Since a and b are both R-irreducible, D must
be of the form a &g u +— v = w S b for some u, v, w. The assumptions on D
imply that there exist s,t € X* and (ajas,€), (azas, €) € R such that u = sazt,
v = sajazast, and w = sast (or u = sast, v = sajasast, and w = sait, this
case is analogous). Thus a; <% as. Define the morphism ¢ by ¢(a3) = a; and
o(c) = c for all ¢ € ¥'\{as}. Lemma 7 implies ¢(a) <i><p(72) (b) by a derivation
which is shorter then D. Inductively we can conclude that there exists a ¢(R)-
path w' from ¢(a) to ¢(b) with D,(r)(w') N [€]z # 0. By replacing in the path
w' some occurrences of a; by one of the R-paths ajasas, asasay, or asasaaszas,
we obtain an R-path w from a to b. For instance if w’ contains a subpath of the
form cayd, where (cas,€), (a1d,€) ¢ R but (cas,€), (azd, €) € R, then we replace
card by cazasayasasd. Since for all v € {ajaza3, azaza;, azasa;azaz} we have
DR(U) n [6]2 # 0 it follows DR(w) N [6]2 # 0. O

Define the set Z by Z = {s € [e]z\{e} | VP, € Z*\{e}:s=pg = p & [e]z}.
The following lemma follows immediately from the definition of Z.

Lemma 10. It holds T C p{>,<}*> U a{p,<}*< and [¢]z = Z*.

Define a binary relation T' C X' x X by (a,b) € T if and only if there exists an
R-path w from a to b with |w| odd and furthermore there exist ¢,d € X such
that either (ac,¢€), (db,€) € R or (ca,e€), (bd,€) € R. Note that T is symmetric.

Lemma 11. Let a,b € X. Then a i b if and only if (a,b) € T.

Proof. For the if-direction it suffices to show that a &x b if (a,b) € T. Thus
assume that there exists an R-path w from a to b with |w| odd and furthermore



there exist ¢,d € X such that (ac,€), (db,€) € R (the case that (ca,¢€), (bd,e) € R
is analogous). Let s € Dg(w). Since (ac,€),(db,e) € R, also the word w; =
(ac)*lw(db)? is an R-path for every i > 0. It holds s; = (><)!*ls(<p)? € Dy (w;).
Since |s| is even and |s| < |(><)!®!|, the (unique) Z-normalform of the prefix
(><)!*ls of s; has the form (><)? for some j > 0. Thus s; € [€]z and D (w;) N
[€]z # 0. By Lemma 9 we have a <& b.

Now let a & b. By Lemma 9 there exists an R-path w from a to b and
a word s € Dr(w) N[e]lz. Let s = s1---8,, where m > 0 and s; € Z. Let
w; be a subpath of w which goes from a; to a;+1 such that s; € Dg(w;) and
a1 = a, am41 = b. It suffices to show that (a;,a;+1) € T. Since s; € Z C [€z,
the length of s; is even. Thus |w;| is odd. Next s; € p{>,<}*> U < {>,<}*< by
Lemma 10. Let s; € »{>,<}*>, the other case is symmetric. Hence there exist
rules (a;c,€), (dait1,€) € R. Thus (a;,ai+1) € T. O

The preceding lemma is the key for proving that the UWP for the class of 2-
homogeneous STSs is in SL. In general it is quite difficult to prove that a problem
is contained in SL. A useful strategy developed in [12] and applied in [25, 26] is
based on a logical characterization of SL. In the following we consider finite
structures of the form A = ({0,...,n — 1},0, max, s, R). Here max = n — 1,
and R and s are binary relations on {0,... ,n — 1}, where s(z,y) holds if and
only if y = z + 1. The logic FO+posSTS is the set of all formulas build up from
the constant 0 and max, first-order variables zi,z2, ..., the binary relations s
and R, the equality =, the Boolean connectives —, A, and V, the quantifiers V
and 3, and the symmetric transitive closure operator STC, where STC is not
allowed to occur within a negation —. The semantic of STC is the following. Let
o(z,y) be a formula of FO+posSTS with two free variables z and y, and let A =
({0,...,n — 1},0,max, s, R) be a structure. Assume that ¢(z,y) describes the
binary relation S over {0,... ,n—1},i.e, A = ¢(4, j) if and only if (¢, j) € S for all
i,j € {0,...,n—1}. Then [STCz,y ¢(z,y)] is a formula of FO+posSTS with two
free variables, and for all 4,5 € {0,... ,n—1} it holds A = [STCz,y ¢(z,4)](4, 5)
if and only if (7,7) belongs to the symmetric, transitive, and reflexive closure of
S, ie, (i,j) € (SUST1)*. In [12] it was shown that for every fixed variable-free
formula ¢ of FO+posSTC the following problem belongs to SL:
INPUT: A binary coded structure A = ({0,...,n — 1},0, max, s, R)
QUESTION: Does A |= ¢ hold?

Theorem 7. The following problem is SL-complete:
INPUT: A 2-homogeneous STS R over an alphabet X and a,b € X.
QUESTION: Does a 3% b hold?

Proof. First we show containment in SL. Let R be a 2-homogeneous STS over
an alphabet ¥ and let a,b € ¥'. W.l.o.g. we may assume that X = {0,... ,n—1}
anda=0,b=n—1.If a = 0 and b = n—1 does not hold then it can be enforced
by relabeling the alphabet symbols. This relabeling can be done in deterministic
log-space and we can use the fact that LSt = SL. We identify the input R, a, b
with the structure A = (X, 0, max, s, R), where R = {(4,7) | (ij,€) € R}. Now



define formulas S(z,y) and T'(z,y) as follows:
S(z,y) & Fz{(R(z,2) V R(z,2)) A (R(y,2) V R(z,9))}

T(z,y) &= [STCu,v S(u,v)](z,y) A Ex',y'{g g ,w;;g Q RE gg V}

By Lemma 11, a &% b if and only if A |= [STCu,v T(u,v)](0, max). Thus
containment in SL follows from [12]. In order to show SL-hardness we use the
SL-complete undirected graph accessibility problem (UGAP), see also [14]:
INPUT: An undirected graph G = (V, E) and two nodes a,b € V.
QUESTION: Does there exist a path in G from a to b?
Let G = (V, E),a,b be an instance of UGAP, where E C {{v,w} | v,w € V}
and of course VN E = (. We define a 2-homogeneous STS R over V U E by
R = {(ce,€), (ec,e) | ¢ € V,e € E,c € e}. We claim that there exists a path
in G from a to b if and only if a &% b. First assume that there exists a path
a=ay,as, - ,a, =bwith {a;,a;11} = e; € E. Thecasen = lisclear.If n > 1
then by induction a Sx an_1. Thus a &r an_1 < Gp_1€n—1an — ap = b.
Conversely assume that a and b belong to different connected components of G.
Let V,, and E, be the set of all nodes and edges, respectively, that belong to the
connected component of a. Define a projection 7 : VUE — V,UE, by 7(z) = €if
z € V,UE, and n(z) = zifz € V,UE,.Ifa $% bthena = m(a) $n(r) m(b) =,
which is impossible since u ¢.(x) € implies |u|ly = |u|p, where |u|x is the
number of occurrences of symbols from X in w. O

Theorem 8. The UWP for the class of all 2-homogeneous STSs is SL-complete.

Proof. By Theorem 7 it remains to show containment in SL. W.lo.g. let X' =
{0,...,n—1}. Let ¢ be the morphism from Lemma 8. We check whether u Srv
by essentially running the log-space algorithm for the UWP for confluent and
2-homogeneous STSs from Section 3, but each time we read from the input-tape
(the binary coding of) a symbol a € X, we replace a by ¢(a). Since ¢(a) =
min{b € ¥ | a &5 b}, Theorem 7 implies that we can find ¢(a) by at most n
queries to an SL-oracle. Since L5 = SL, the theorem follows. O
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