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Abstract
Based on a PSPACE-completeness result for free monoids with invo-
lution [4] it is shown that the existential theory of equations with rational
constraints in plain groups is PSPACE-complete. As a corollary this set-
tles a question from [16].

1 Introduction

In 1977 Makanin has shown that the existential theory of equations in free
monoids is decidable [14]. This result is considered to be one of the most fun-
damental decidability results concerning free monoids. Due to the technical
difficulty of Makanin’s proof it is not easy to give precise bounds on the com-
plexity of the algorithm developed by Makanin. A first estimate by several
towers of exponentials was finally be reduced to exponential space [9], which
is currently the best known upper bound on Makanin’s algorithm, see also [3].
In 1983 Makanin extended his decidability result to the existential theory of
equations in free groups [15]. In this case Koscielski and Pacholski [13] were
able to prove that the scheme of Makanin is not primitive recursive.

Recently Plandowski has developed a new method for solving word equations
which allowed him to prove that the existential theory of equations in free
monoids is in PSPACE [17]. Plandowski’s result was extended by Gutiérrez to
the case of free groups [10]. This result was further generalized in [4], where
it it shown that the existential theory of equations with rational constraints in
free groups is PSPACE-complete.

In this paper we extend the results of [4] to the larger class of plain groups.
According to Harring-Smith [11] a group is called plain, if it is a free product
of a finitely generated free group and finitely many finite groups. The class
of plain groups is contained in the class of word hyperbolic groups, which was
introduced in [8], and furthermore it is known that the existential theory of



equations in torsion-free word hyperbolic groups is decidable [18]. Since the
intersection of the class of torsion-free word hyperbolic groups and the class of
plain groups is exactly the class of free groups, our decidability result for plain
groups is in some sense orthogonal to the result of [18]. Finally our result also
solves an open problem from [16], where it was asked whether the solvability
of word equations modulo a confluent and special finite semi-Thue system that
presents a group is decidable.

2 Preliminaries

In this section we will introduce some notions concerning words and semi-Thue
systems. Let ' be a finite alphabet. The empty word over T is denoted by 1,
it is the neutral element of the the free monoid I'*. More generally the neutral
element of any monoid is denoted by 1, this will never lead to confusion. An
involution on T is a function ~ : T' — T such that @ = a for all @ € T. In our
setting an involution may have fixed points, i.e., symbols a with @ = a. We
extend ~ to a function ~ : I — I'* by a;---a, = G, ---a1. The structure
(T*,7) is called a free monoid with involution. A semi-Thue system S on the
alphabet ¥ is a finite subset of T'* x I'*. The reduction relation —g and the
Thue congruence <5 are defined in the usual way, see, e.g., [1] or [12]. The
pair (T, S) is also called a presentation. The monoid presented by (T,.S) is the
quotient monoid of the free monoid I'* with respect to the Thue congruence
& 5. The definition of the notion of a Noetherian (monadic, special, confluent)
semi-Thue system can be found for instance in [1]. The set of all irreducible
words with respect to S is IRR(S) =T*\{w € T* | Ju e ™ : w g u}. It is
clear that this set forms a rational subset of I'*, moreover a non-deterministic
finite automaton accepting IRR(S) can be constructed in polynomial time from
S, see, e.g., [1, Lem. 2.1.3]. Recall also that for free monoids the notions of
rational and regular coincide.

For a set L C T™* we denote by Ag(L) = {w € £* | Ju € L : u S5 w} the
set of all descendants of L with respect to S. The following fact is well-known
[1, Thm. 4.2.1].

Lemma 2.1. Let L CT™* be rational and S a monadic semi-Thue system over
T. Then the language As(L) of all descendants of L is also rational, furthermore
a non-deterministic finite automaton that accepts Ag(L) can be calculated in
polynomial time.

3 Plain groups

In the following Q denotes a finite set of variables (or unknowns) and we let
~: Q = Q be an involution without fixed points. First we will define the
existential theory of equations with rational constraints in a free monoid with
involution (I'™*, ™). Atomic formulae are of type U = V where U,V € (' U Q)*
and of type X € L where X € 2 and L C I' is a rational language specified



by some non-deterministic finite automaton. A propositional formula is build
up by atomic formulae using negations, conjunctions, and disjunctions. The
input size of U = V is 1 plus the length |UV|, the size of X € L is 1 plus the
number of states used for a finite non-deterministic automaton accepting L C
I'™*. The total size of a formula is then the sum of the size of the alphabet I" plus
the sizes of the atomic subformulae plus the number of negations and Boolean
operators which are used in the formula. The evaluation of such a formula
over (I'*,7) is straightforward, and of course, if a variable X is interpreted by
w € T'* then X is interpreted by w. The existential theory refers to set of
closed existentially quantified propositional formulae which evaluate to true in
(T*,7). The following theorem has been shown in [4]. It generalizes results
of Plandowski [17], Rytter [17, Thm. 1], and Gutiérrez [10]. This result is the
starting point for our extension from free to plain groups.

Theorem 3.1. The following problem is PSPACE-complete.

INPUT: An alphabet T with an involution — : T' — T and a closed exis-
tentially quantified propositional formula with rational constraints in the free
monoid with involution (T*,”).

OUTPUT: The evaluation of the formula in (I'*,7).

Next we will define the existential theory of equations with rational con-
straints in a plain group. A group is called plain if it is a free product of a
free group of finite rank and finitely many finite groups [11]. For the following
consideration let us fix a plain group G = F,, *G1 *- - - xG,,,, where F}, is the free
group of rank n generated by {ai,...,a,} and Gi,... ,Gy, are finite groups.
Let {a; | 1 < i < n} be a disjoint copy of {a; | 1 < i < n} and assume that
the sets G;\{1} (1 <7 <m) and {a;,a; | 1 <i < n} are pairwise disjoint. We
choose the following finite presentation of G: Let

m

= {aa|1<i<n}u|J(G:\{1})

i=1

be the alphabet of the presentation. For b € G;\{1} we denote by b the inverse
of b in G;. In this way we have defined an involution on the alphabet I'. In
particular (I'*,7) is a free monoid with involution. Note that the involution ~
has fixed points if and only if the group G has an element of order 2. On T we
define a monadic semi-Thue system S by

S={aa—1]|aeTl}U{ab— c|a,b,ce G;\{1} and ab = c in G; for some i}.

It is easy to see that (T, .S) is indeed a presentation of G, we call it the canonical
presentation of G. Moreover by considering the critical pairs of S it is easy to
see that S is confluent. For example if a,b,c € G;\{1} such that ab = ¢ in G;
then abb —s a and abb — 5 cb and thus, (a, cb) is a critical pair of S. But since
ab = c implies a = ¢b in G}, also cb — a must be a rule of S and we can resolve
the critical pair.

Let ¢ : (I'*,”) — G be the canonical morphism that maps a word w € I'* to
the group element represented by w. By definition, a subset P C G is rational



if P = ¢(L) for some rational language L C I'*. The existential theory of
equations with rational constraints in the plain group G is defined analogously to
the case of a free monoid with involution but of course variables are interpreted
by elements of G and if a variable X is interpreted by € G then X is interpreted
by #71. A rational constraint P C G is specified by some non-deterministic
finite automaton that accepts a language L C I'* such that P = ¢(L). The
next theorem generalizes Theorem 1 from [4].

Theorem 3.2. The following problem is PSPACE-complete.

INPUT: A plain group G given by its canonical presentation (', S) and a
closed existentially quantified propositional formula with rational constraints in
the plain group G.

OUTPUT: The evaluation of the formula in G.

Before we prove this theorem we shall derive a corollary. It is well-known
that a group can be presented by some confluent and special semi-Thue system
if and only if it is a free product of finitely many cyclic groups [2]. Hence we
obtain the following corollary, answering a question raised in [16].

Corollary 3.3. The following problem is decidable:

INPUT: A confluent and special semi-Thue system S that presents a group
and a word equation U = V.

OUTPUT: True if U = V has a solution modulo S, i.e, if there exists an
interpretation o of the variables occurring in UV such that o(U) &g o(V),
otherwise false.

Remark 3.4. In [16] the same problem as in Corollary 3.3 was shown to be un-
decidable, if the input system S does not necessarily present a group. Therefore
the interest in Corollary 3.3.

For the proof of Theorem 3.2 we need the following Lemma.

Lemma 3.5. Let (', S) be the canonical presentation of a plain group G. Let
z,y,2 € T* N IRR(S). Then xy =5 z if and only if the following holds in
T="):

(xr=sp ANy=pt N z=st) V

Jp,s,t € T* V (x=sap N y=pbt N z=sct) \ (1)
a,b,ceT
(ab,c)eS

Proof. If z,y, and z satisfy (1) then of course zy —>g z. On the other hand
assume that z,y, 2 € T*NIRR(S) satisfy zy —g 2. We prove (1) by an induction
on the length of this derivation. The case xy = z is clear with p = 1, s = z,
and t = y. Thus assume that xy X 2. Since z,y € IRR(S) we have z = 2'a,
y=by',a,beT, (ab,c) € S,and z'cy’ S5 z. There are two cases. Firstifa =b
and ¢ = 1 we have z'y’ g z and we can apply the induction hypothesis to
this derivation. On the other hand if a,b,c € G;\{1} for some i then z'a, by’ €



Figure 1: Geodesic triangles in plain groups

IRR(S) implies that z' (resp. y') does not end (resp. start) with a symbol from
(G;\{1}). But then z'cy’ € IRR(S) and thus z'cy’ = z. Then (1) is satisfied if
weset p=1,s=x',and t =v'. O

Lemma 3.5 has a nice geometrical interpretation in terms of geodesic triangles
in the Cayley graph for the presentation (I, S). A geodesic path is a shortest
path between two nodes of a Cayley graph. For more details on Cayley graphs
and geodesic paths see for instance [7]. The two possible shapes of geodesic
triangles in the Cayley graph for the presentation (T, S) are shown in Figure 1.
The left triangle corresponds to the case x = sap A y = pbt A z = sct, where
a,b,c € T and (ab,c) € S, whereas the right triangle corresponds to the case
r=8p N y=pt \ z = st.

Proof of Theorem 3.2. PSPACE-hardness follows from Theorem 3.1. Contain-
ment in PSPACE will be proven by a reduction to Theorem 3.1. More precisely,
given an input formula we will construct in polynomial time a new formula,
which evaluates to true in the free monoid with involution (I'*,™) if and only if
the original input formula evaluates to true in the plain group G.

Consider an input formula which is interpreted in the plain group G. First
we replace an inequality U # V by 3X : UX =V A X & {1}, thus we
may assume that all atomic subformulae have the form U = V, X € P, or
X & P, where U,V € (T UQ)*, wlo.g. [UV|> 3 (we may append aa for some
a € T to an equation), and P C G is rational. Finally we may assume that all
equations are of the form zy = z, where z,y,2z € T U (use the equivalence of
L1 Ty =Y1-Ypand AX 1z - Ty = Xyz - cyn A X = y1902).

Recall that X € P (resp. X ¢ P) means in fact X € (L) (resp. X &
(L)) where L C I'* is a rational word language specified by some finite non-
deterministic automaton. We replace syntactically each subformula X € P
(resp. X & P) by ¥(X) € (L) (resp. ¥(X) ¢ (L)) and we replace each
subformula zy = z by ¥(zy) = ¢¥(z). We obtain an existential formula where
the variables are now interpreted in the free monoid with involution (I'*, ™), but
the truth value did not change.



We eliminate now all occurrences of . Since the value of every variable
may be assumed to be in IRR(S), since I' C IRR(S), and since S is confluent,
we can replace an equation v¥(zy) = v¥(z) by 2y =g 2. At the same time we
replace a constraint ¥ (X) € ¢¥(L) by X € Ag(L) and similarly we replace a
constraint ¥(X) ¢ ¢(L) by X ¢ Ag(L) A X € IRR(S). This step is justified
by Lemma 2.1. Finally by Lemma 3.5 we may replace a formula zy g z by
the formula

(x=SP ANy=PT A 2=S8T) V
aP,S,T \/ (x =SaP A y=PbT A z= ScT)
a,b,cel’
(ab,c)€S
Note that this formula is only polynomially large with respect to the input.
Thus all transformation steps can be done in polynomial time and Theorem 3.2
is a consequence of Theorem 3.1 O

4 Outlook

Recently in [5], the decidability results of [4] have also been extended to free
partially commutative groups (graph groups). Graph groups are quotient groups
of free groups where the defining relations are given by a partial commutation
relation between generators, see, e.g., [6]. The common generalization of plain
and graph groups leads to a notion of partially commutative plain groups. In
a forthcoming paper the authors of the present paper will show that both, the
existential and the positive theory of equations in partially commutative plain
groups are decidable.
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