On the Parallel Complexity of Tree Automata

Markus Lohrey

Universitédt Stuttgart, Institut fiir Informatik
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
lohreyms@informatik.uni-stuttgart.de

Abstract. We determine the parallel complexity of several (uniform)
membership problems for recognizable tree languages. Furthermore we
show that the word problem for a fixed finitely presented algebra is in
DLOGTIME-uniform NC".

1 Introduction

Tree automata are a natural generalization of usual word automata to terms.
Tree automata were introduced in [11,12] and [27] in order to solve certain deci-
sion problems in logic. Since then they were successfully applied to many other
decision problems in logic and term rewriting, see e.g. [7]. These applications
motivate the investigation of decision problems for tree automata like empti-
ness, equivalence, and intersection nonemptiness. Several complexity results are
known for these problems, see [28] for an overview. Another important decision
problem is the membership problem, i.e, the problem whether a given tree au-
tomaton accepts a given term. It is easily seen that this problem can be solved
in deterministic polynomial time [7], but up to now no precise bounds on the
complexity are known.

In this paper we investigate the complexity of several variants of membership
problems for tree automata. In Section 3 we consider the membership problem
for a fixed tree automaton, i.e, for a fixed tree automaton A we ask whether a
given input term is accepted by A. We prove that this problem is contained in the
parallel complexity class DLOGTIME-uniform NC!, and furthermore that there
exists a fixed tree automaton for which this problem is complete for DLOGTIME-
uniform NC'. Using these results, in Section 4 we prove that the word problem
for a fixed finitely presented algebra is in DLOGTIME-uniform NC!. This result
nicely contrasts a result of Kozen that the uniform word problem for finitely pre-
sented algebras is P-complete [21]. Finally in Section 5 we investigate uniform
membership problems for tree automata. In these problems the input consists of
a tree automaton A from some fixed class C of tree automata and a term ¢, and
we ask whether A accepts t. For the class C we consider the class of all deter-
ministic top-down, deterministic bottom-up, and nondeterministic (bottom-up)
tree automata, respectively. The complexity of the corresponding uniform mem-
bership problem varies between the classes log-space and LOGCFL, which is the
class of all languages that can be reduced in log-space to a context free language.
Again we prove several completeness results. Table 1 at the end of this paper
summarizes the presented complexity results for membership problems.

2 Preliminaries

In the following let X' be a finite alphabet. The empty word is denoted by €. The
set of all finite words over X is X*. We set ¥+ = X*\{e}. For I C X we denote
by |s|r the number of occurrences of symbols from I" in s. We set |s| = |s|s. For

a binary relation — on some set we denote by = (=) the transitive (reflexive
and transitive) closure of —. Context-free grammars are defined as usual. If
G = (N, X, S, P) is a context-free grammar then N is the set of non-terminals,
X is the set of terminals, S € N is the initial non-terminal, and P C N x (NUX)*
is the finite set of productions. With — 5 we denote the derivation relation of G.
The language generated by G is denoted by L(G). A context-free grammar is
e-free if it does not contain productions of the form A — e.

We assume that the reader is familiar with the basic concepts of computa-
tional complexity, see for instance [23]. We just recall a few definitions concerning
parallel complexity theory, see [30] for more details. It is not necessary to be fa-
miliar with this field in order to understand the constructions in this paper. L de-
notes deterministic logarithmic space. The definition of DLOGTIME-uniformity
and DLOGTIME-reductions can be found in [2]. An important subclass of L is
DLOGTIME-uniform NC!, briefly uNC'. More general, for k > 1 the class uNC*
contains all languages K such that there exists a DLOGTIME-uniform family
(Cn)n>0 of Boolean circuits with the following properties: (i) for some constant
¢ the depth of the circuit C, is bounded by c - log(n)*, (ii) for some polynomial
p(n) the size of Cy, i.e., the number of gates in C,, is bounded by p(n), (iii) all
gates in C,, have fan-in at most two, and (iv) the circuit C,, recognizes exactly
the set of all words in K of length n. By [25] uNC" is equal to ALOGTIME.

An important subclass of uNC! is DLOGTIME-uniform-TC?, briefly uTC°.
A language K is in uTC? if there exists a DLOGTIME-uniform family (Cn)n>o of
circuits built up from Boolean gates and majority gates (or equivalently arbitrary
threshold-gates) with the following properties: (i) for some constant ¢ the depth
of the circuit C,, is bounded by ¢, (ii) for some polynomial p(n) the size of C,, is
bounded by p(n), (iii) all gates in C,, have unbounded fan-in, and (iv) the circuit
C,, recognizes exactly the set of all words in K of length n. For more details see
[2]. In this paper we will use a more convenient characterization of uTC® using
first-order formulas with majority quantifiers, briefly FOM-formulas. Let X' be
a fixed finite alphabet of symbols. An FOM-formula is built up from the unary
predicate symbols @, (a € X) and the binary predicate symbols < and BIT,
using Boolean operators, first-order quantifiers, and the majority quantifier M.
Such formulas are interpreted over words from Xt. Let w = ay - - - a,,, where
m > 1 and a; € ¥ for i € {1,...,m}. If we interpret an FOM-formula over
w then all variables range over the interval {1,...,m}, < is interpreted by
the usual order on this interval, BIT(n,) is true if the i-th bit in the binary
representation of n is one (we will not need this predicate any more), and Q,(x)
is true if a, = a. Boolean connectives and first-order quantifiers are interpreted
as usual. Finally the formula Mz ¢(z) evaluates to true if () is true for at
least half of all z € {1,...,m}. The language defined by an FOM-sentence ¢ is
the set of words from X* for which the FOM-sentence ¢ evaluates to true. For

instance the FOM-sentence

Mz Qa(x) N Mz Qu(z) A Va,y{z <y — —(Qs(z) A Qa(y))}

defines the language {a"b” | n > 1}. It is well-known that uTC® is the set of
languages that can be defined by an FOM-sentence [2].

In FOM-formulas we will often use constants and relations that can be easily
defined in FOM, like for instance the equality of positions or the constants 1 and
max, which denote the first and last position in a word, respectively. Furthermore
by [2, Lemma 10.1] also the predicates z+y = z and z = #y ¢(y), i.e, the number
of positions y that satisfy the FOM-formula ¢(y) is exactly z, can be expressed
in FOM. Finally let us mention that uNC' also has a logical characterization
similar to uTCP. The only difference is that instead of majority quantifiers so
called group quantifiers for a non-solvable group are used, see [2] for the details.
Of course the resulting logic is at least as expressive as FOM.

In this paper we also use reductions between problems that can be defined
within FOM. Formally let f : ¥+ — I't be a function such that for some
constant k we have |f(w)| < k- |w| for all w € X+. ! Then we say that f is
FOM:-definable if there exist formulas ¢(z) and ¢,(z) for a € I' such that when
interpreted over a word w and i € {1,... ,k - |{w|} then ¢(i) evaluates to true if
and only if ¢ = |f(w)|, and @, (i) evaluates to true if and only if the i-th symbol
in f(w) is a (here also all quantified variables in ¢ and ¢, range over the interval
{1,...,|w|}). We say that ¢ and ¢, (a € I") define f.

Lemma 1. Let f : ¥T — I't be FOM-definable and let L C X+, K C I'T such
that w € L if and only if f(w) € K (in this case we say that L is FOM-reducible
to K). If K is in uTC’ (resp. uNC") then also L is in uTC’ (resp. uNC").

Proof. Let ¢, ¢, (a € I') be FOM-formulas that define the function f and let K
be in uTCY, i.e., it can be defined by an FOM-sentence 4. Let | f(w)| < k-|w| for
allw € XT. In the following we restrict to the case k = 2, the generalization to an
arbitrary k is obvious. In principle we can define the language L by the sentence
that results from ¢ by replacing every subformula @Q,(z) by the formula ¢, (z).
The only problem is that if we interpret this sentence over a word w then the
variables quantified in ¢ have to range over the interval {1,...,|f(w)|}. Hence
we define L by the FOM-sentence 3z {(#(z) A ¥*°) V (¢(max+z) A p=1)},
where the sentence 1% is inductively defined as follows:

— 3z p(z))*>* = Fz {(z <i-max A p(x)*?) V (z <2z A p(x +1i-max)>?)}

o1 =#y (y <i-max Ap(y)>) A
— (Mz p(x))*" = Fr1,29 4 22 =F#y (y <2 A @y +i - max)>?) A
Jy {2(z1 +22) =y — 1+ 2+ i - max}
— Qu(z)?" = ¢o(x) and Qu(x + max)*? = @, (x + max)

! This linear length-bound may be replaced by a polynomial bound, but this is not
necessary for this paper.

If K belongs to uNC' the arguments are similar using the logical characterization
of uNC*. O

LOGCFL (respectively LOGDCFL) is the class of all languages that are log-
space reducible to a context-free language (respectively deterministic context-
free language) [26]. In [26] it was shown that LOGCFL is the class of all languages
that can be recognized in polynomial time on a log-space bounded auxiliary push-
down automaton, whereas the deterministic variants of these machines precisely
recognize all languages in LOGDCFL. The following inclusions are well-known
and it is conjectured that they are all proper.

uTC® C uNC! = ALOGTIME C L € LOGDCFL C LOGCFL C uNC? C P

A ranked alphabet is a pair (F,arity) where F is a finite set of function
symbols and arity is a function from F to N which assigns to each a € F its
arity arity(a). A function symbol a with arity(a) = 0 is called a constant. In
all examples we will use function symbols a and f, where arity(a) = 0 and
arity(f) = 2. Mostly we omit the function arity in the description of a ranked
alphabet. With F; we denote the set of all function symbols in F of arity . In
FOM-formulas we use @, (z) as an abbreviation for \/ .z Qa(z). Let X be a
countably infinite set of variables. Then T'(F,X) denotes the set of terms over
F and X, it is defined as usual. The word tree is used as a synonym for term. We
use the abbreviation T'(F, () = T(F), this set is called the set of ground terms
over F. We identify the set T'(F) with the corresponding free term algebra over
the signature F. In computational problems terms will be always represented by
their prefix-operator notation, which is a word over the alphabet F. The set of all
these words is known as the Lukasiewicz-language L(F) for the ranked alphabet
F. For instance ffafaafaa € L(F) but fafaf ¢ L(F). When we write terms
we will usually use the prefix-operator notation including brackets and commas
in order to improve readability.

Lemma 2. For every ranked alphabet F the language L(F) C Ft is in uTCC.
A similar result for Dyck-languages was shown in [1].

Proof. Let m = max{arity(a) | a € F}. For s € Ft define

m

Isl =Y (G—1)-lsl=

=0
Then for s € F* it holds s € L(F) if and only if |s| = —1 and |¢t| > 0 for every

prefix t # s of s, see [17, p 323]. This characterization can be easily converted
into an FOM-sentence:

Jz0, . .. , wm{/\m, #2Qr(z) N (i—1)-z;=—1} A
=0
Vy < max 3z, ..., xm{/\x, #z (Qy:l()/\zgy)/\i(i—l)-miZO}
=0

If the ranked alphabet F is clear from the context then in the following we will
always write L instead of L(F). From the formula above it is straight forward to
construct a formula L (i, j) which evaluates to true for a word a; - - - o, € FT and
two positions 4,j € {1,... ,n} if and only if i < j and ;- --a; € L. The height
height(t) of the term ¢ € T'(F) is inductively defined by height(a(ty,... ,t,)) =
1 4+ max{height(¢1),. .. ,height(¢,)}, where arity(a) = n > 0 and ¢1,... ,t, €
T(F) (here max(f) = 0).

A term rewriting system, briefly TRS, over a ranked alphabet F is a finite
set R C T(F,X) x T(F,X) such that for all (s,t) € R every variable that
occurs in ¢ also occurs in s and furthermore s ¢ X. With a TRS R the one-
step rewriting relation —g over T (F, X) is associated as usual, see any text on
term rewriting like for instance [10]. A ground term rewriting system P is a finite
subset of T'(F) x T (F), i-e., the rules only contain ground terms. The symmetric,
transitive, and reflexive closure of the one-step rewriting relation —p of a ground
TRS is the smallest congruence relation on the free term algebra T'(F) that
contains all pairs in P, it is denoted by =p. The corresponding quotient algebra
T(F)/ =p is denoted by A(F,P), it is a finitely presented algebra.

For a detailed introduction into the field of tree automata see [14,7]. A top-
down tree automaton, briefly TDTA, is a tuple A = (Q,F,qo,R), where Q
is a finite set of states,) U F is a ranked alphabet with arity(¢) = 1 for all
q € @, g € Q is the initial state, and R is a TRS such that all rules of R have
the form q(a(z1,...,z,)) = a(qi(®1),-..,q(zy)), where ¢,q1,-.. ,q, € @,
x1,...,L, € X, a € F, and arity(a) = n. A is a deterministic TDTA if there
are no two rules in R with the same left-hand side. The language that is accepted
by a TDTA A is defined by

T(A) ={t e T(F) | q0(t) == t}-

A bottom-up tree automaton, briefly BUTA, is a tuple A = (Q,F,¢s,R), where
Q is a finite set of states, Q U F is a ranked alphabet with arity(¢q) = 1 for all
g € @, g5 € @ is the final state, and R is a TRS such that all rules of R have
the form a(qi(z1),...,qn(zn)) = gqla(z1,...,zn)), where ¢,q1,... ,qn € @,
Z1,...,Tn € X, @ € F, and arity(a) = n. A is a deterministic BUTA if there
are no two rules in R with the same left-hand side. The language that is accepted
by a BUTA A is defined by

T(A) = {t e T(F) |t Sr qs(t)}.

It is well known that TDTAs, BUTAs, and deterministic BUTAs, respectively,
all recognize the same subsets of T'(F). These subsets are called recognizable tree
languages over F. On the other hand deterministic TDTAs cannot recognize all
recognizable tree languages.

As already remarked, if a term is part of the input for a Turing machine
then the term will be encoded by its corresponding word from L(F), where the
symbols from F are binary coded. A tree automaton will be encoded by basically
listing its rules, we omit the formal details. The membership problem for a fixed
TDTA A, defined over a ranked alphabet F, is the following decision problem:

INPUT: A term t € T(F).

QUESTION: Does t € T(A) hold?
If the TDTA A is also part of the input we speak of the uniform membership
problem for TDTAs. It is the following decision problem:

INPUT: A TDTA A = (Q,F,q,R) and a term ¢t € T(F).

QUESTION: Does t € T(A) hold?
(Uniform) membership problems for other classes of automata or grammars are
defined analogously. Note that the uniform membership problem for TDTAs can
be reduced trivially to the uniform membership problem for BUTAs (and vice
versa) by reversing the rules. Thus these two problems have the same computa-
tional complexity.

3 Membership problems

In this section we will study the membership problem for a fixed recognizable
tree language. First we need some preliminary results.

A parenthesis grammar is a context-free grammar G = (N, X, S, P) that
contains two distinguished terminal symbols (and) such that all productions of
G are of the form A — (s), where A € N and s € (N U X\{(,)})*. A language
that is generated by a parenthesis grammar is called a parenthesis language.
Parenthesis languages where first studied in [22]. In [5] it was shown that every
parenthesis language is in uNC!.

Lemma 3. Every recognizable tree language is FOM-reducible to a parenthesis
language. Furthermore the uniform membership problem for TDTAs is log-space
reducible to the uniform membership problem for parenthesis grammars.

Proof. Let A = (Q,F,qo,R) be a TDTA. Let G be the parenthesis grammar
G=(Q,FU{(,)}, g0, P) where

P={q—= (far---gm) [a(f (@1, 2m)) = flaa(21),- .. s gm(2m)) € R}

Let us define a function 8 : L(F) = (FU{(,)})T inductively by 8(ft1---tm) =
(fB(t1) -+ B(ty)) for f € F,, and tq,... ,t, € L(F). Then we have t € T'(A) if
and only if B(¢t) € L(G). Thus by Lemma 1 it suffices to show that the function
B is FOM-definable. Let t = oy - - - o, where a; € F. Then in order to construct
B(t) from ¢, an opening bracket has to be inserted in front of every symbol in ¢.
Furthermore for j € {1,...,n} the number of closing brackets following «; in
B(t) is precisely the number of positions ¢ < j such that ;- --a; € L. Hence
can be defined by the following formulas, where o € F:

¢(z) = =3 -max
$a() = Fy,2{Qaly) A 2=#i(Fj(G <y ALGJ) ANa=2y+z}
o(x) = \/ oz +1)

aEF

\/E
—~
8
~—
1l

4@ A N\ ~da(@)

acF

For the second statement note that in the uniform case all constructions can be
easily done in log-space. O

Theorem 1. Let T be a fized recognizable tree language. Then the member-
ship problem for T is in uNC". Furthermore there ezists a fized deterministic
TDTA A such that the membership problem for T(A) is uNC" -complete under
DLOGTIME-reductions.

Proof. The first statement follows from Lemma 3 and the results of [5]. For the
hardness part let L C X* be a fixed regular word language, whose membership
problem is uNC'-complete under DLOGTIME-reductions. By [2, Proposition
6.4] such a language exists. If we define arity(a) = 1for alla € ¥ and let # ¢ ¥
be a constant then we can identify a word ajas---a, € X* with the ground
term ajaz---an# € T(X U {#}), and the language L can be recognized by a
fixed deterministic TDTA. O

4 'Word problems for finitely presented algebras

In this section we present an application of Theorem 1 to the word problem
for a finitely presented algebra. The uniform word problem for finitely presented
algebras is the following problem:

INPUT: A ranked alphabet F, a ground TRS P over F, and t1,t2 € T(F).

QUESTION: Does t; =p t hold?
In [21] it was shown that the uniform word problem for finitely presented algebras
is P-complete. Here we will study the word problem for a fixed finitely presented
algebra A(F,P), where F is a fixed ranked alphabet, and P is a fixed ground
TRS over F:

INPUT: Two ground terms t1,t2 € T(F).

QUESTION: Does ¢, =p to hold?
For the rest of this section let us fix two ground terms t1,t2 € T'(F). We want to
decide whether t; =p 3. The following definition is taken from [9]. Let {2 be a
new constant. Let A = (FU {2}) x (FU{N2})\{({2,2)} and define the arity of
[, 8] € A by max{arity(a), arity(8)}. We define the function o : T'(F) xT'(F) —
T'(A4) inductively by

U(f(ulﬂ s 5uTI'L)7g(U17 .. ,'Un)) =
[f,9](o(u1,v1),... ,0(Un, V), 0(Unt1,2),... ,0(Um, 2))

if m > n plus the symmetric rules for the case m < n. The term o(t,t2) is a
kind of parallel superposition of ¢; and t,.

Ezample 1. Let t; = faf fafaaa,t: = fffaafaafaa. Then o(ty1,ts) is the term
[f, flla, F112, £][£2, a][£2, a][£2, f][92, a][£2, a][f, IS, a][a, 2][f, £2][a, £2][a, 2][a, a].

In [9] the was shown that the set Tp = {o(t1,t2) | t1,t2 € T(F),t1 =p ta} is
recognizable. Since P is a fixed ground TRS, T’p is also a fixed recognizable tree

language. Thus by Theorem 1 we can decide in uNC" whether a term ¢ € T'(A)
belongs to Tp. Therefore in order to put the word problem for A(F,P) into
uNC! it suffices by Lemma 1 to prove the following lemma:

Lemma 4. The function o is FOM-definable.

Proof. We assume that the input for o is given as t1t». Let € {1, ..., |t;|}. Then
the z-th symbol of ¢; corresponds to a node in the tree associated with ¢;, and we
denote the sequence of numbers that labels the path from the root to this node
by p;(z), where each time we descend to the k-th child we write k. For instance
if t; = faffafaaa then p;(7) = 2121. This sequence can be also constructed
as follows. Let us fix some constant a € Fy. Let s be the prefix of ¢; of length
z — 1. Now we replace in s an arbitrary subword which belongs to L\{a} by a
and repeat this as long as possible. Formally we define a function IT inductively
by II(s) = s if s ¢ F*(L\{a})F* and II (vtw) = II (vaw) if t € L\{a}. We have
for instance II(faff) = faff and I(fffaafaafa) = fafa. Then it is easy
to see that p;(z) = ki -- -k, if and only if IT(s) = fia**~1--- f,a*~! where
arity(f;) > 0 for j € {1,... ,m}.

First we construct an FOM-formula ¢(z1, z2) that evaluates to true for two
positions 1 € {1,...,[t1|} and z2 € {1,...,|t2|} if and only if p; (z1) = p2(22).
For this we formalize the ideas above in FOM. In the following formulas we use
the constants 0; = 0 and o2, where 05 is uniquely defined by the formula L(1, 01).
Thus, if interpreted over the word t;t5, we have oo = [t1| and max —oy = |ta].
Furthermore let I; = {1,...,02} and I = {1,... ,max —o2}. Quantification
over these intervals can be easily done in FOM. If t; = a3 --ra, and 1 <z <n
then the formula ¢;(¢,r, z) evaluates to true if r < z, ay---a, € L, and the
interval between the positions £ and r is maximal with these two properties. The
formula ;(u,) evaluates to true if u = [II (a1 - - - @z—1)| and finally f;(u,z) eval-
uates to true if the u-th symbol of IT(a; - - - az—1) has a nonzero arity. Formally
for i € {1,2} we define:

pi(l,r,x) = {

r<z A L{+o;,r+0;) A
—dy,zeLi{y<l ANr<z<z AL(y+o,z+0)}

mi(u,z) = z=u+1+#z3,re L {pil,r,x) N L<z<r})

filu,z) = Fz{z<z A -3, r € Li(pi(l,r,2) N E<z<7r) AN m(u—1,2)}

{7T1(U,.’L‘1) A 7T2(U,.’172) A }
Vy(1<y<u = (fily,z1) & foy,22)))

Finally we can define the functions ¢ by the following formulas, where «, 8 € F
(the formulas ¢[4)(7) and @[, o)(z) can be defined similarly to ¢4, g ()):

¢(z)

c(z1,22) = Ju

max =2 + #y € I Qy € L (c(y1,92)))

cy,z) N Qaly) N Qp(z+02) A
3ye]l’zeIZ{1/+z=:c+7‘7éy’(y’Sy A HZ’Sz(C(y’,z’)))}

O

¢[a,ﬁ] ('T)

Example 2. Let t1, t2 be from Example 1. In the following picture two positions
satisfy the formula c(y, z) if they are connected by a line. If £ = 15 then the
formula ¢, 4)(x) is satisfied if we choose y = 9 and z = 11. Indeed, the 15-th
symbol of o(t1,t2) is [a, a].

1 23456789
]als]f]a]r]a]a]a]

st]ala]s[afa]s]a]a]
1 23456 7 8 9 1011

Corollary 1. For every finitely presented algebra the word problem is in uNC*.

Clearly there are also finitely presented algebras whose word problems are uNC!-
complete, like for instance the Boolean algebra ({0,1},A,V) [5]. An interesting
open problem might be to find criteria for a finitely presented algebra A(F,P)
which imply that the word problem is uNC*-complete. For similar work in the
context of finite groupoids see [4].

We should also say a few words concerning the input representation. In The-
orem 1 and Corollary 1 we represent the input terms as strings over the alphabet
F. This is in fact crucial for the uNC'-upper bounds. If we would represent in-
put terms by their pointer representations then the problems considered would
be in general L-complete. For instance if Boolean expressions are represented by
their pointer representations then the expression evaluation problem becomes
L-complete [3]. For other problems on trees for which it is crucial whether the
string or the pointer representation is chosen see [6,19]. For the uniform mem-
bership problems in the next section the encoding of the input terms is not
crucial for the complexity since these problems are at least L-hard regardless of
the chosen encoding.

5 Uniform membership problems

In this section we will investigate uniform membership problems for TDTAs.
First we need some preliminary results.

Remark 1. The uniform membership problem for the class of all e-free context-
free grammars is in LOGCFL.

This fact seems to be folklore. In fact the usual algorithm for recognizing a
context-free language on a push-down automaton can be implemented on a log-
space bounded auxiliary push-down automaton also if the context-free grammar
is part of the input. Furthermore if the grammar does not contain e-productions
then this automaton runs in polynomial time. Thus Remark 1 follows from [26].
The next lemma is stated in a similar form in [24, Lemma 3].

Lemma 5. Let G = (N, X, S, P) be a context-free grammar in Chomsky normal
form. Assume that A 5 s, where A€ N, s € (NUX)*, and |s| > 2. Then there
exist a factorization s = ujvus and B € N such that A 5a uy Bus, B Sc v
and |v|, |uy Buy| < § -s|.

Proof. Consider a derivation tree T for the derivation A 5 s and let n = |s|.
Since G is in Chomsky normal form T is a binary tree. For a node v of T let
yield(v) be the factor of s that labels the sequence of leafs from left to right of the
subtree of T rooted at v. Consider a path pin T with the following two properties:
(i) p starts at the root of 7' and ends at a leaf of T'. (ii) If an edge (v,v1) of T
belongs to p and vy and vs are the children of v then |yield(v1)| > |yield(v2)].
Let v be the first node on p with yield(v) < § - n and let v be the parent node
of v. Thus yield(v') > & - n. Let v be labeled with B € N and let yield(v) = v.

Thus there exists a factorization s = ujvuy such that A 5S¢ uy Bus, B 5a v,
and |v| < § - |s|. Furthermore since n > 2 and |v| > |yield(+')|/2 > § - n we also
have [uiBus|=n—|v|+1<n—3-n+1< 5 n. O

Theorem 2. The uniform membership problem for the class of all TDTAs is
LOGCFL-complete under log-space reductions.

Proof. By the second statement from Lemma 3 and Remark 1 the uniform
membership problem for TDTAs is in LOGCFL. It remains to show LOGCFL-
hardness. For this we will make use of a technique from [24, Proof of The-
orem 2]. Let G = (N,X,P,S) be an arbitrary fixed context-free grammar 2
and let w € X*. We may assume that G is in Chomsky normal form and that
€ € L(G). Let lw| = n and F = {a, f}, where arity(a) = 0 and arity(f) = 2.
We will construct a TDTA A = (Q,F,qo, R) and a term t € T(F) such that
t € T(A) if and only if w € L(G). Furthermore 4 and ¢ can be computed in
log-space from w. Let

W ={wiAiws -~ w; Ajwiy1 |0 <49 <3, Ay,... A €N,
w e 2*’[1}12*11)2 - .’U}Z'E*’U}H_IE*}.

Thus W is the set of all s € (N U X)* with |s|y < 3 such that a subword of w
can be obtained by substituting terminal words for the non-terminals in s. Note
that |W| is bounded polynomially in |w| = n, more precisely |W| € O(n®). The
set @ of states of Ais Q = {(A,s) | A € N,s € W}. The state (A, s) may be
seen as the assertion that A g s holds. The initial state go is (S, w). Finally
the set R contains all rules of the following form, where A € N, s € W, and
v,ur,u2 € (N U X)* such that ujvus € W.

(1) (4,5)(a) = aif (4,s) € P
(2) (4,8)(f(z,y)) = f({4,8)(2),(4,s)(y)) if (4,s) € P

(3) (A, urvuz)(f(z,y)) = f({(A,u1Buz)(z),(B,v)(y)) if [urvuz|n < 3or (Jv|n =
2 and |ujvus|n = 3).

% In fact we may choose for G Greibach’s hardest context-free grammar [16].

Note that in (3), if ujvus contains three non-terminals then we must choose a
factorization wjvus such that v contains exactly two non-terminals. Then also
u1 Bus contains exactly two non-terminals. On the other hand if u;vus contains
less then three non-terminals in (3) then we may choose any factorization. In
this case both v and u; Bus contain at most three non-terminals. This concludes
the description of A. Note that .4 can be constructed in log-space from w. For
the definition of the term ¢ we need some further notations. In the following let
v =9/8>1 and for m > 0 let g, = 2 - [log,(m)] + 2. Furthermore for m > 0
let bal(m) € T'({a, f}) be a fully balanced term of height m, i.e., if m = 1 then
bal(m) = a, otherwise bal(m) = f(bal(m — 1),bal(m — 1)). Now let ¢ = bal(g,).
Since gy, is logarithmic in n = |w|, the size of ¢ is polynomially bounded in n and
t can be constructed from w in log-space. We claim that w € L(G) if and only
if t € T(A). For the if-direction it suffices to prove the following more general
claim for all Ae N, s €e W, and t' € T({a, f}):

If (A, s)(t') S t' then A 5¢ s.

This statement can be shown easily by an induction on the structure of the term
t'. For the (only if)-direction we will first show the following two statements,
where A€ N, s € W, A 5¢ s, and |s| = m > 0 (note that € & L(G)).

(1) If |s|n < 3 then (A, s)(t') S t' for some t' with height(t') < gm — 1.
(2) If |s|x = 3 then (A, s)(t') 5% t' for some ¢’ with height(') < gn.

We prove these two statements simultaneously by an induction on the length of
the derivation A 3 s. If m = 1 then the derivation A ¢ s has length one.
Choose t' = a, then (4, s)(t') -x t' and height(t') =1 = g1 — 1. If m = 2 then

since G is in Chomsky normal form the derivation A =3¢ s has length at most
*

3. Let t' = f(f(a,a),a). Then (A,s)(t') =x t' and height(t') =3 < g» — 1. Now
assume m > 3. First let |s|y = 3. Then there exist a factorization s = ujvus
and B € N with 4 5¢ u1 Busy, B 5 v, and |v|n = |ui Buz|ny = 2. Let my =
|uy Bus| and my = |v|, thus m = m; + my — 1. W.l.o.g. assume m; > my. Now
the induction hypothesis implies (A, u; Bus)(t1) =% t1 and (B,v)(t2) % to for
some terms t; and t2 with height(¢1) < gm, —1 and height(t2) < gm,—1. It follows
<A,8)(f(t1,t2)) —*>'R f(tl,tQ) where height(f(tl,tz)) =1+ height(tl) S Imq S
gm since mq = m+1—my < m. Finally assume that |s|y < 3. By Lemma 5 there
exist a factorization s = ujvus and B € N such that A 5S¢ uyBuy, B 5a v,
and v,u; Bus € W, and |u; Bus|,|v| < m/v. Let m; = |u; Bus| and ma = |u|.
The induction hypothesis implies (A, u;Bus)(t1) =g t; and (B,v)(t2) S to
for some terms ¢; and ¢; such that height(t1) < gm, < 2-[log, (2)]+2 = g — 2
and similarly height(ts) < gm — 2. It follows (A, s)(f(t1,t2)) == f(t1,t2) where
height(f(t1,t2)) < gm—1. This concludes the proof of the statements (1) and (2).
Now assume that w € L(G). Then (S, w)(t') 5% t' for some ¢’ with height(t') <
gn- But then the first two groups of rules of .A imply (S, w)(bal(g,)) =% bal(gn),
i.e, t = bal(g,) € T(A). This concludes the proof of the theorem. O

Remark 1, Theorem 2 and the second statement from Lemma 3 immediately
imply the following corollary.

Corollary 2. The uniform membership problem for the class of all parenthesis
grammars is LOGCFL-complete under log-space reductions.

In [15] it was shown that the problem of evaluating acyclic Boolean conjunc-
tive queries is LOGCFL—complete. In order to show LOGCFL-hardness, in [15]
Venkateswaran’s characterization [29] of LOGCFL in terms of semi—unbounded
circuits is used. In fact the method from [15] may be modified in order to prove
Theorem 2. On the other hand our proof does not use Venkateswaran’s result
and seems to be more elementary.

It should be also noted that since directed reachability in graphs is NL-
complete [20], the uniform membership problem for usual nondeterministic word
automata is NL-complete. Thus, since NL is supposed to be a proper subset of
LOGCFL, for the nondeterministic case the complexity seems to increase when
going from words to trees. The next theorem shows that this is not the case for
the deterministic case if we restrict to TDTAs.

Theorem 3. The uniform membership problem for the class of all deterministic
TDTAs is L-complete under DLOGTIME-reductions.

Proof. Hardness follows from the fact that the uniform membership problem for
deterministic word automata is L-complete under DLOGTIME-reductions, see
e.g. [8] and the remark in [18, Theorem 15]. For the upper bound we will use
an idea that appeared in a similar form in [13, Section 4] in the context of tree
walking automata with pebbles. Let A = (Q, F, go, R) be a deterministic TDTA
and let t € T'(F). We will outline a high-level description of a deterministic log-
space Turing machine that decides whether ¢ € T'(A). We use a result of [14],
which roughly speaking says that in order to check whether a tree is accepted
by a deterministic TDTA it suffices to check each path from the root to a leaf

separately.
We assume that the input word ¢ € L is stored on the input tape starting at
position 1. In the following we will identify a position i € {1,... ,|t|} on the input

tape with the corresponding node of the tree ¢. For the term ¢ = f faaf faaa for
instance, position 1 is the root of ¢t and 3,4,7,8, and 9 are the leafs of ¢. In the
high-level description we will use the following variables:

— h; €{1,...,[t|} (i € {1,2}) is a position on the input tape. With h; we visit
all nodes of ¢t. Each time h; visits a leaf of ¢, with hy we walk down the path
from the root 1 to hy and check whether it is accepted by A.

— fi € F (i € {1,2}) is the label of node h;.

— q € (@ is the state to which node hs evaluates under the automaton A.

All these variables only need logarithmic space. We use the following routines:

— brother(h) returns the position of the right brother of h, or undefined if h
does not have a right brother. This value can be calculated in log-space by
counting, using the characterization of L from [17], see the proof of Lemma, 2.

— 6(f,q,1), where f € F,q€ Q,and i € {1,... ,arity(f)}, returns the state ¢’
such that if ¢(f(x1,--. ,2,)) = flg(z1),... ,qn(zn)) € R then ¢’ = ¢;-

For instance for the term ¢ above we have brother(2) = 5. Finally we present the
algorithm. It is clear that this algorithm runs in log-space.

for hy :=1 to |t| do
if arity(f1) = 0 then
q:=qo; ha:=1;
while hy < by do
fi=fsi=1; hy:=hy +1;
while brother(h,) is defined and brother(hs) < hy do
i:=1i+1; hy := brother(hz)

endwhile
q:=0(f,q,1%)
endwhile
if (¢(f2) = f2) € R then reject
endfor
accept

O

Finally we consider deterministic BUTAs. Note that the uniform membership
problem for nondeterministic BUTAs was implicitly considered in Theorem 2,
since the uniform membership problems for nondeterministic BUTAs and non-
deterministic TDTAS, respectively, can be directly translated into each other.

Theorem 4. The uniform membership problem for the class of all deterministic
BUTAs is in LOGDCFL.

Proof. Let A = (Q,F,qs,R) be a deterministic BUTA and let ¢t € T'(F). Let
¢ {0,1} be an additional symbol. By [26] it suffices to outline a deterministic
log-space bounded auxiliary push-down automaton M that checks in polynomial
time whether ¢ € T'(A4). The input word ¢ is scanned from from right to left.
A sequence of the form #bin(g;)#bin(gs) - - - #bin(g,,) is stored on the push-
down, where bin(g;) is the binary coding of the state ¢; € @ and the top-
most push-down symbol corresponds to the right-most symbol in this word.
The length of this coding is bounded logarithmically in the input length. If M
reads the symbol f from the input, where arity(f) = n, then M replaces the
sequence #bin(g;)#bin(g:) - - - #bin(g,) by the sequence #bin(g) on top of the
push-down, where f(qi(21),...,qn(zn)) = q¢(f(z1,... ,2,)) is a rule in R. The
auxiliary tape is used for storing binary coded states. O

The precise complexity of the uniform membership problem for deterministic
BUTAS remains open. For the lower bound we can only prove L-hardness. This
problem has also an interesting reformulation in terms of finite algebras. A de-
terministic BUTA A corresponds in a straight-forward way to a finite algebra
A. The carrier set of A is the set @) of states of A and every function symbol f

of arity n is interpreted as an n-ary function on (). Now the question whether a
term t is accepted by A is equivalent to the question whether the expression ¢
evaluates in the algebra A to a distinguished element ¢ (namely the final state of
A). Thus the uniform membership problem for deterministic BUTASs is equiva-
lent to the uniform expression evaluation problem for finite algebras. In the case
of a fixed groupoid, the complexity of the expression evaluation problem was
considered in [4].

Table 1 summarizes the complexity results for tree automata shown in this

paper.
Table 1. Complexity results for tree automata
H det. TDTA det. BUTA TDTA (BUTA)
membership uNC!-complete uNC!-complete uNC!-complete
uniform . L-complete LOGDCFL LOGCFL-complete
membership

Acknowledgments I would like to thank the referees for valuable comments.

References

1.

2.

D. A. M. Barrington and J. Corbet. On the relative complexity of some languages
in NC'. Information Processing Letters, 32:251-256, 1989.

D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC*.
Journal of Computer and System Sciences, 41:274-306, 1990.

M. Beaudry and P. McKenzie. Circuits, matrices, and nonassociative computation.
Journal of Computer and System Sciences, 50(3):441-455, 1995.

. J. Berman, A. Drisko, F. Lemieux, C. Moore, and D. Thérien. Circuits and ex-

pressions with non—associative gates. In Proceedings of the 12th Annual IEEE
Conference on Computational Complezity, Ulm (Germany), pages 193-203. IEEE
Computer Society Press, 1997.

S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings
of the 19th Annual Symposium on Theory of Computing (STOC 87), pages 123—
131. ACM Press, 1987.

S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canoniza-
tion. In Kurt Géodel Colloquium 97, pages 18-33, 1997.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic
space. Journal of Algorithms, 8:385-394, 1987.

M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science
(LICS ’90), pages 242-256. IEEE Computer Society Press, 1990.

10

11.

12.

13.

14.
15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30

N. Dershowitz and J.-P. Jouannaud. Rewriting systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 243-320. Elsevier Publishers,
Amsterdam, 1990.

J. E. Doner. Decidability of the weak second-order theory of two successors. Notices
Amer. Math. Soc., 12:365-468, 1965.

J. E. Doner. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4:406-451, 1970.

J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In
J. Karhumaki, H. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages
72-83. Springer, 1999.

F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadd, 1984.

G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. In Proceedings of the 89th Annual Symposium on Foundations of Computer
Science (FOCS 98, Palo Alto, California, USA), pages 706-715. IEEE Computer
Society Press, 1998.

S. Greibach. The hardest context-free language. SIAM Journal on Computing,
2(4):304-310, 1973.

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
M. Holzer and K.-J. Lange. On the complexities of linear LL(1) and LR(1) gram-
mars. In Z. Esik, editor, Proceedings of the 9th International Symposium on Fun-
damentals of Computation Theory (FCT’98, Szeged, Hungary), number 710 in Lec-
ture Notes in Computer Science, pages 299-308. Springer, 1993.

B. Jenner, P. McKenzie, and J. Tordn. A note on the hardness of tree isomorphism.
In Proceedings of the 13th Annual IEEE Conference on Computational Complezity,
pages 101-105. IEEE Computer Society Press, 1998.

N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal
of Computer and System Sciences, 11(1):68-85, 1975.

D. C. Kozen. Complexity of finitely presented algebras. In 9th Annual Symposium
on Theory of Computing (STOC 77), pages 164-177. ACM Press, 1977.

R. McNaughton. Parenthesis grammars. Journal of the Association for Computing
Machinery, 14(3):490-500, 1967.

C. H. Papadimitriou. Computational Complezrity. Addison Wesley, 1994.

W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, 21:218-235, 1980.

W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22:365-383, 1981.

I. H. Sudborough. On the tape complexity of deterministic context—free languages.
Journal of the Association for Computing Machinery, 25(3):405-414, 1978.

J. W. Thatcher and J. B. Wright. Generalized finite automata with an application
to a decision problem of second order logic. Mathematical Systems Theory, 2:57-82,
1968.

M. Veanes. On computational complexity of basic decision problems of finite tree
automata. Technical Report 133, Uppsala Computing Science Department, 1997.
H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer
and System Sciences, 43:380-404, 1991.

H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

