Safe realizability of high-level message sequence
charts *

Markus Lohrey

Institut fiir Informatik, Universitdt Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
lohrey@informatik.uni-stuttgart.de

Abstract. We study the notion of safe realizability for high-level mes-
sage sequence charts (HMSCs), which was introduced in [2]. We prove
that safe realizability is EXPSPACE-complete for bounded HMSCs but
undecidable for the class of all HMSCs. This solves two open problems
from [2]. Moreover we prove that safe realizability is also EXPSPACE-
complete for the larger class of transition-connected HMSCs.

1 Introduction

Message sequence charts (MSCs) are a popular visual formalism for specifying
the communication of asynchronous processes, where most of the details (vari-
ables, timing constraints, etc) are abstracted away. They are part of the ITU
standard [14]. High-level message sequence charts (HMSCs) extend MSCs by al-
lowing iteration and non-deterministic choices. In this way infinite sets of MSCs
can be described.

Due to the abstract nature of HMSCs, the question of realizability (or im-
plementability) arises: Given an HMSC (the specification), is it possible to im-
plement it as a communicating protocol (the implementation), which shows the
same behaviour as the original HMSC? This is a highly nontrivial problem, prop-
erties like for instance non-local choices in HMSCs [4] may constitute nontrivial
obstacles for obtaining realizations, see e.g. [10].

Concerning the formal definition of realizability, we follow Alur et al [1,2],
which define two notions of realizability: weak realizability and safe realizability.
Both are based on the model of communicating finite state machines (CFMs)
with FIFO-queues for describing the implementation. CFMs appeared as one
of the earliest abstract models for concurrent systems [5,18], and are used for
instance in the specification language SDL [13]. An accepting run of a CFM
generates in a canonical way an MSC. Thus, in [2] an HMSC H is called weakly
realizable, if there exists a CFM A such that the set of all MSCs generated by
the accepting runs of A is precisely the set of MSCs defined by H. In practice,
such an implementation may be considered as being too weak. A very desirable
further property of the implementation A4 is deadlock-freeness: every partial run

* This work was done while the author was on leave at IRISA, Campus de Beaulieu,
35042 Rennes, France and supported by the INRIA cooperative research action FISC.

of A can be completed to a run that terminates in a final state of 4. Thus, in
[2] an HMSC H is called safely realizable, if there exists a deadlock-free CFM A
such that the set of all MSCs generated by the accepting runs of A is precisely
the set of MSCs defined by H.

In [2] it is shown that weak realizability is already undecidable for bounded
HMSCs, a class of HMSCs, which was introduced in [3,16] because of its nice
model-checking properties. As shown in [15], FIFO communication is crucial
for this result: for non-FIFO communication weak realizability is decidable for
bounded HMSCs. Concerning safe realizability, Alur et al prove in [2] that for
bounded HSMCs safe realizability is in EXPSPACE but PSPACE-hard, but the
exact complexity remained open. In Section 3.1, we will prove that safe realiz-
ability is in fact EXPSPACE-complete for bounded HMSCs. Moreover, using the
same technique, we will also prove that safe realizability is undecidable for the
class of all HMSCs, which solves the second open problem from [2]. Finally, in
Section 3.2, we will establish EXPSPACE-completeness of safe realizability also
for the class of transition-connected HMSCs [8,15]. This class strictly contains
the class of bounded HSMC but shares many of the nice properties of the latter.

Let us also remark that the notion of realizability used in this paper is a
quite strict one in the sense that it allows on the implementation-side neither
the introduction of new messages nor the addition of further content to already
existing messages. More liberal realizations that allow the latter were studied in
[8]. Another approach to realization based on Petri nets is studied in [6].

Proofs that are omitted in this extended abstract will appear in the full
version of this paper.

2 Preliminaries

For complexity results we will use standard classes like PSPACE (polynomial
space) and EXPSPACE (exponential space), see [17] for definitions.

Let X be an alphabet of symbols and I" C ¥'. We denote with 7 : X* — I'™*
the projection morphism onto the subalphabet I'. The empty word is denoted
by €. The length of the word w € X* is |w|. For k € N let w[1, k] be the prefix
of w of length min{k, |w|}. For u,v € X* we write u C v, if u is a prefix of v.

A pomset is alabeled partial order P = (A4, A, <), i.e., (A, <) is a partial order
and A : A — ¥ is a labeling function. For B C A we define the restricted pomset
Pl = (B,AlB,<[B). A word A(a1)A(az)---A(a,) € X* is a linearization of P
if A= {ai,as,...,an}, a; # a; for i # j, and a; < a; implies i < j for all 4, j.
With lin(P) C X* we denote the set of all linearizations of P.

For this paper, we use some basic notions from trace theory, see [7] for more
details. An independence relation on the alphabet X' is a symmetric and irreflex-
ive relation I C X' x X. The complementary relation (X x X)\I is also called a de-
pendence relation. On X* we define the equivalence relation =; as the transitive
reflexive closure of the symmetric relation {(uabv,ubav) | u,v € X*, (a,b) € I}.
The I-closure of L C X* is [Llf = {v e X* |Ju € L:u =r v} C X* Let A
be a finite automaton over the alphabet X', and assume that - C @ x X x @) is

the transition relation of A. Then A is called loop-connected with respect to I, if
for every loop ¢1 2 go 22 -+ 274 ¢, 2 ¢1 of A, the set {ai,...,a,} C X
induces a connected subgraph of (X, (¥ x X)\I). For a loop connected automa-
ton A, one can construct an automaton A’ of size bounded exponentially in the
size of A such that L(A") = [L(A)]r [16]. In general, this exponential blow-up
cannot be avoided, see [16] for an example.

2.1 Message sequence charts

For the rest of this paper let P be a finite set of processes (|P| > 2) and € be
a finite set of message contents. With Ch = {(p,q) € P x P | p # q} we denote
the set of all channels. With X}, = {plq(c),p?q(c) | ¢ € P\{p}, c € €} we denote
the set of all types of process p € P. The set of all typesis X = Upe p 2p. With
plg(c) we denote the type of an event that sends from process p a message with
content ¢ to process ¢, whereas p?q(c) denotes the type of an event that receives
on process p a message with content ¢ from process q. A partial message sequence
chart (pMSC) over P and € is a tuple M = (E,t, m, <), where:

— E is a finite set of events.

— t: E — X labels each event with its type. The set of events located on process
p€EPis E,=t"%(%,). Let By = {e € E|3p,q € P,c € € : t(e) = plg(c)} be
the set of send events and E» = E\E; be the set of receive events.

— m : D — E»is a bijection between a subset D C E, of the send events and the
receive events such that m(s) = r and t(s) = plq(c) implies t(r) = ¢?p(c). In
this case we also say that (s,r) is a message from process p to ¢ with content
c. If s € Ey\D, then s is called an unmatched send event in M from p to g.

— < is a partial order on E, called the visual order of M, such that for every
p € P, the restriction of < to E, is a total order, and < is equal to the
transitive closure of

{(e1,€2) | e1 < ez, p€ P :e1,e2 € Ep} U {(s,m(s)) | s € D}.

Often pMSCs are further restricted to satisfy the FIFO-condition, which means
that for all 51, s2 € E), if 51 < 82, t(s1) = plg(c), t(s2) = plg(d), and sy € D, then
also s; € D and m(s1) < m(s2), i.e., message overtaking on any channel is dis-
allowed. For the main part of this paper we always assume the FIFO-restriction
without mention it explicitly, only in Section 4 we briefly discuss the non-FIFO
case. The pMSC definition may also include local actions, however this is not
important in the present setting. We use the usual graphical representation of
pMSCs, where time flows top-down and processes are drawn as vertical lines.
Let M = (E,t,m,<) be a pMSC, where m : D — E; for D C E,. We
also write E(M) = E. We identify M with the pomset (E,t,<), and we iden-
tify pMSCs if they are isomorphic as pomsets. If D = E, i.e., if there are
no unmatched send events, then M is called a message sequence chart (MSC)
over P and €. With pMSCp,¢ (resp. MSCp,¢) we denote the set of all pMSCs
(resp. MSCs) over P and €. In the sequel, we will omit the subscripts P and

¢, if they are clear from the context. Let |[M| = |E| denote the size of M. Let
P(M)={pe€ P | E, # (0}, more generally, let P(M[p)={p€e P |E,NF #0}
for F' C E. The communication graph G(M) of M is defined as the directed
graph G(M) = (P(M),), where p — ¢ if and only if there exists in M a mes-
sage from p to ¢ (with arbitrary content). For p € P let m,(M) = 7y, (w), where
w € lin(M) is chosen arbitrarily (the actual choice of w € lin(M) is irrelevant).
Let M; = (E;,t;,mi, <s), 1 = 1,2, be two pMSCs over P and € such that
E; N E; = 0 and for all (p, q) € Ch, if there is an unmatched send event from p
to ¢ in My, then there is no message from p to ¢ in My (there may be unmatched
sends from p to g in My). Then the concatenation of M; and M> is the pMSC
My - My = (E1 U Ea, t; Uty, mq Uma, <), where < is the transitive closure of

<1 U =<2 U{(e1,e2) € By X E2 | 3p € P : e; and ey are located on process p}.

For the case that My, Ms € MSC this corresponds to the usual definition of
MSC-concatenation. Note that concatenation is only partially defined on pMSC.

Let FF C E(M) be an arbitrary set of events of the pMSC M. Note that
the pomset N = M[p is in general not a pMSC. On the other hand, if F' is
downward-closed, i.e., e < f € F implies e € F, then N = M [p it is again a
pMSC over P and €. We write N < M in this case, this defines a partial order
(pPMSC, <) on the set of pMSCs. The pomset M [\ p will be denoted by M\N.
In general, M\N is not a pMSC. On the other hand, if a send event s € F is
unmatched in M whenever it is unmatched in N (i.e., no message arrows are
crossing from F' to its complement E\F, this happens in particular if N is an
MSC), then M\N € pMSC and moreover M = N - (M\N).

We say that an MSC M € MSC is atomic if M cannot be written as M =
M; - My for MSCs M, M> € MSC\{0}, where () stands for the MSC with an
empty set of events. With Ap s (briefly A) we denote the set of atomic MSCs
over P and €. Already for |P| = 2, the set A is easily seen to be infinite, see
e.g. [9, Sec. 3] for an example. On A we define an independence relation Z by
(A,B) € T if P(A) N P(B) = (. Obviously, every M € MSC can be written as
M=A,-As--- A, where A; € A. Furthermore, this factorization is unique up
to Z-commutations, a fact which will be crucial in Section 3.2, see [11,15]:

Lemma 1. IfAy,..., A, By,..., B, € A are such that the MSCs A;-Ay --- A,
and By-Bs - - - By, are equal then the words A1 Ay --- Ay, B1By --- By, € A* satisfy
A1A2 . An =7 B1B2 .. Bm

The supremum (resp. infimum) of two pMSCs My, My € pMSC in the partial
order (pMSC, <) is denoted by sup(Mi, M) (resp. inf(Mi,M>)). In general,
sup(M1, M>) does not exist:

Lemma 2. Let My, Ms € pMSC. Then sup(M;, Ms) exists if and only if for all
p € P, either mp(M1) C mp(Ms) or mp(Ma) C 7p(My). Moreover, if sup(M, Ms)
exists, then inf(My, My) = 0 if and only if P(My1) N P(M2) = 0.

The following picture visualizes the general situation. Arrows that are leafing
some region correspond to unmatched sends, and the whole region corresponds
to the supremum.

M = il’lf(Ml, MQ)

M < > Mo
M\M M>\M

The ITU standard Z.120 defines high-level message sequence charts (HMSCs) as
finite transition systems with nodes labeled by MSCs. Here we prefer to label
edges by MSCs, which does not change the expressive power of HMSCs. Thus,
an HMSC H over P and € is a tuple H = (V,—, v, F), where V is a finite
set of nodes, = C V x MSCp¢ x V is a finite set of labeled edges, vy € V is
the initial state, and F' C V is the set of final nodes. Instead of (u, M,v) € —,

we write u ~o 5 v. The MSC-language msc(H) defined by H is the set of all

M. M M,
MSCs M; - My --- M, where vg —3g v1 —3g -+ —3g v, € F for some
V1,...,0, € V. We impose the restriction that for every node v € V, v is

accessible from the initial node vy, and some node from F is accessible from v.
Furthermore, we assume that - C V x Ape x V. Both of these assumptions
do not change the expressiveness of HMSCs and can be easily established by

polynomial time constructions. Let Ag = {A € A |Ju,v € V : u A v}. We
may view H also as a finite automaton over the alphabet Ag of atoms, which
accepts a set L(H) C A}, of words over Ag. We will denote this automaton by
H as well. An HMSC H is called bounded [3,16] if for every cycle

A1 Ao A1 An
V1 —HV2 —H """ ——H Uy —H U1,

the communication graph G(A; - Ay - - - A,,) is strongly connected (recall that the
set of nodes of G(M) is P(M)). In [3] it is shown that for a bounded HMSC H
the language lin(msc(H)) C X* of all linearizations of MSCs generated by H is
regular. We say that H is transition-connected [8] if H, viewed as a finite automa-
ton over the alphabet Ag, is loop-connected with respect to the independence
relation 7 C A x A. Tt is easy to see that every bounded HMSC is transition-
connected. Finally, H is called Z-closed if H, viewed as a finite automaton over
Apr, satisfies L(H) = [L(H)]z. Thus, by [16], for a transition-connected HMSC
H there exists an Z-closed HMSC H' of size bounded exponentially in the size
of H such that L(H'") = [L(H)]z and thus, msc(H) = msc(H").

2.2 Communicating finite state machines
In this section we briefly introduce communicating finite state machines (CFMs)

The tight relationship between CFMs and the theory of MSCs is well-known,
see e.g. [12].

The set of buffer configurations is the set (€*)" of all functions from the set
of channels Ch to €*. The buffer configuration B € (¢*)? such that B(p,q) = €
for all (p, q) € Chis denoted by By. A CFM over P and € is a tuple A = (A4,)pep,
where A, = (Sp, X}, 0p, S0,p, Fp) is a not necessarily finite automaton over the
alphabet X, of types of process p. The set of states of A, is Sp, the transition
relation of A, is §, C S, x X, x), the initial state is sg,, € Sp, and the set of
final states is Fj, C Sp,. We will always assume w.l.0.g. that every local automaton
Ay, is reduced, i.e., for every s € Sp, s is accessible from the initial state s, and
some state from F}, is accessible from s. The infinite set S of global states of A
and the set F of final states of A are defined by

S=][Sy x (@) and F=][F, x{B}-

peEP pEP

The initial state of A is (so,Bp), where so = (S0,p)pep. The global transition
relation § of A is defined as follows: Let (s,B) € S, where s = (sp)pep. If
(Si7 Z'J(C)a t) € 0; then ((576)7 l'](c)a (t,C)) € 57 where t = (tP)P€P7 tp = Sp
for b ;é 2.7 t, =t C(pa(I) = B@7q) for (pa(I) 7£ (7’7.7)7 and C(7’7.7) = 66(7’7.7) On
the other hand, if (s;, i?5(c), t) € §; and B(j,i) = wc for some w € €*, then
((s,B),?j(c), (t,C)) € 6, where t = (tp)pepa tp=spforp#i, t; =t, C(g,p) =
B(q,p) for (¢q,p) # (j,i), and C(j,i) = w. We extend the relation § C S x X' x S
in the usual way to a relation § C S x X* x S. Instead of ((s,B),w, (t,C)) € 6,
w € X*, we write (s, B) >4 (t,C). We write (s, B) =4 (t,C) if (s,B) 24 (t,0)
for some w € X*. We write (s, B) —»4 if (s,B) ~>4 (t,C) for some (t,C). Let
L(A) = {w € Z* | 3(t,By) € F : (so, By) = (t,Bp)}.

It is easy to see that for every word w € X* such that (s, Bp) —» 4 for some
s, there exists a unique pMSC pmsc(w) with w € lin(pmsc(w)). Furthermore,
if (s,Bp) —> 4 (t,Bg) for some s, t, then pmsc(w) € MSC, and we write msc(w)
instead of pmsc(w). Thus, we can define msc(A4) = {msc(w) | w € L(A)}. It is
also easy to see that if wy,ws € lin(M) for M € pMSC, then (s, Bp) — 4 (t,B)
if and only if (s, By) =254 (t,B). Thus, we may write (s, By) ELI (t,B) in this
case. Finally, we say that A is deadlock-free if for all states (s, B) € S such that
(s0,Bp) =4 (s,B) we have (s,B) =4 (t,Bg) for some (t,Bp) € F.

3 Weak and safe realizability

Let L C MSCp,¢. Following [1], we say that L is weakly realizable if there exists a
CFM A over P and € such that msc(A) = L. We say that L is safely realizable if
there exists a deadlock-free CFM A over P and € such that msc(A) = L. These
definitions allow local automata with infinite state sets, but this case will never
occur in this paper, since we only consider sets of MSCs that are generated by
HMSCs. An HMSC H is called weakly realizable (safely realizable) if msc(H) is
weakly realizable (safely realizable). Given H, we can construct in polynomial
time finite automata A,, p € P, with L(A,) = mp(msc(H)). We call the CFM
A = (Ap)pep the canonical implementation of H. Then H is weakly realizable

if and only if msc(A) = msc(H) [1]. Note that the inclusion msc(H) C msc(A)
always holds. Furthermore, H is safely realizable if and only if A is deadlock-
free and msc(A) = msc(H) [1]. In [1] it is also shown that L C MSC is weakly
realizable if and only if the following closure condition CC,, (called CC2 in [1])
holds:

Closure condition CC,,. If M € MSC is such that for all p € P there exists
N € L with m,(M) = m,(N) then M € L.

Furthermore, it is claimed that L C MSC is safely realizable if and only if the
following closure condition CC; (called CC3 in [1]) holds:

Closure condition CC,. If M € pMSC is such that for all p € P there exists
N € L with 7p(M) C 7p(N) then M < N for some N € L.

But this is in fact false, the set L consisting of the following 6 MSCs satisfies
CC; but it does not satisfy CC,,, and hence, it is not even weakly realizable.

EACRRNNN RN
M T—y{ H for all z,y € {a, b}

On the other hand, using arguments from [1], one can easily prove
Lemma 3. L C MSC is safely realizable if and only if L satisfies CC,, and CCs.

As already mentioned, the notions of weak and safe realizability were introduced
in [1], where it was shown that for finite sets of MSCs, safe realizability can be
tested in polynomial time, whereas weak realizability is coNP-complete. In [2],
realizability was studied for HMSCs. It was shown that weak realizability is al-
ready undecidable for bounded HMSCs, ! whereas safe realizability for bounded
HMSCs is in EXPSPACE but PSPACE-hard. In Section 3.1, we will close this
latter gap by proving that safe realizability for bounded HMSCs is EXPSPACE-
complete. The proof technique used for this result will be also applied in order
to show that safe realizability is undecidable for the class of all HMSCs.

3.1 Bounded HMSCs

Theorem 1. The following problem is EXPSPACE-complete:

INPUT: Set P of processes, set € of message contents, and a bounded HMSC
H over P and €

QUESTION: Is H safely realizable?
Furthermore, this problem is also EXPSPACE-complete if P and € are fized,
i.e., do not belong to the input.

! For this result, FIFO-communication is important: Under non-FIFO communication,
weak realizability is decidable for bounded HMSCs [15].

Proof. Membership in EXPSPACE is shown in [2] (for variable P and €), or
follows from Theorem 5. For the lower bound we combine ideas from [2] and
[16,19]. Let M be a fixed Turing-machine with an EXPSPACE-complete ac-
ceptance problem (such a machine exists, take any machine, which accepts an
EXPSPACE-complete language). W.l.o.g. M works on an input of length n in
space 2™ — 1. Let @ be the set of states of M and let A be the tape alphabet.
Furthermore, let g be the initial state of M and gy be the final state of M. Let
O € A be the blank symbol. The machine M accepts if it reaches the final state
gs. Let us fix an input w € A* for M with |w| = n for the further discussion.
Configurations of M are represented as a word from A*QA* of length 2". A se-
quence (1, ..., Uy,) of words u; € A*QA* is called an accepting computation of
M ifuy = gowD?" 771 |u;| = 2™ (1 < i < m), uiq1 is a successor configuration
of u; with respect to M (1 <i < m), and u, € A*gpA*.

For a number 0 < i < 2" let (i) € {0,1}" denote the binary representa-
tion of i of length n, where moreover the least significant bit is the left-most
bit. For w = ag---asn_1, a; € QU A, let f(w) = (0)ag--- (2™ — 1)agn_;. Let
I' =QUAU{0,1} and define the set € of message contents as € = I"U{$,4,7}.
2 We will deal with the fixed set of processes P = {0,...,5}. For a symbol
a € I' we define the MSC a(>V (resp. a(*%) over P and € as the unique
MSC with the only linearization 2!1(a) 172(a) 112271 (resp. 4!5(a) 574(a) 514 475),
thus, the symbol a is send from 2 to 1 (resp. 4 to 5) and immediately con-
firmed. For C = by by € I'* define 2D = p{®Y ... pZY and 45 =
b .. blw®. For words Ci, Dy, .., Cpn, Dy € I'* (m > 1) we define the MSC
M(Cy,Dy,...,Cp,Dy,) over P and € as shown in Figure 1, where the case
m = 3 is shown (process 0 is not involved into this MSC, and hence not drawn).
Finally define the following two sets of MSCs:

Lf = {M(Cl,Dl,...,Cm,Dm) |m 2 17 CI7D17"'5CTI’L7DTTL EF*}
L, = Lg\{M(,B(Ul),,B(Ul),...,B(um),ﬁ(um)) | (ula---aum) is an

accepting computation of M}

Claim 1. There exist bounded HMSCs H; and H, that can be constructed in
time polynomial in n such that msc(H;) = L, and msc(H,) = L,.

For L, this is clear, since all messages are immediately confirmed by messages
back to the sending process. For L, the construction follows [16, Prop. 7].

Claim 2. Ly is safely realizable.

We will only check condition CC,,, condition CC; can be verified analogously.
Thus, assume that M is an MSC such that for each p € {0,...,5} there exists
N € L, with m,(M) = 7,(N). Thus, 73 (M) = (3!2 3?2 34 374)* for some k > 1.

% In the following, we will also use messages without any content, the correspond-
ing types are written as plq and p?q, respectively. Formally, one can introduce an
additional message content nil for these messages.

C](-Zvl)

C?()271)

fno
fwo
fis

fen

$

$
$

$
$

$

Fig.1. M(C1,D1,C2,D2,C3, Ds)

D§4,5)

D§4’5)

Since M is an MSC, it follows that

mo (M) =(273 2!3 2!1($) 221 2!1(ay,1) 221 --- 211 (ay;,) 271) - --
(273 213 211(8) 271 2!1(ak,1) 271---2!1(ay ;) 271)
ma(M) =(473 413 415(8) 475 415(by 1) 475 - - 415(by 5,) 475) - - -
(473 413 415(8) 425 415(bg,1) 475 - - 415(by,) 475)
m (M) =(172(8) 1!2 172(ay 1) 112---172(a1 4,) 1!2)
(172(8) 112 172(ag1) 112---122(ag;,) 112)
w5 (M) =(574(8) 5!4 574(by,1) 514 - --574(by ;,) 514) - - -
(574(8) 514 574 (bg,1) 514 - - 574(bj,) 5'4)

for some i1, 51,...,%k,Jk > 0 and a1,1,--.,8k,4,b1,1,---, bk, € I'. Thus, M €
L. This proves Claim 2.

Now define the MSCs M, and M, as follows:

AL L

From the bounded HMSCs Hy and H, in Claim 1 it is straight-forward to con-
struct a bounded HMSC H such that msc(H) = (M, - Ly) U (M, - L,), where
concatenation is lifted to sets of MSCs in the obvious way.

{o
—_

Claim 3. H is safely realizable if and only if M does not accept the input w.

If M does not accept w, then L, = L, and msc(H) = {My, M, } - L,. Since L; is
safely realizable by Claim 2, also msc(H) is safely realizable. Now assume that
M accepts w. Thus, there exists an accepting computation (uy,...,u,) of M.
Let M = M(ﬂ(ul)MB(ul)aB(u2)718(u2)7 s ,ﬂ(um),ﬂ(um)) Since M ¢ LT; we
have M, - M ¢ msc(H). On the other hand for all p € {0,...,5} there exists
N € msc(H) such that m,(M, - M) = m,(N), for instance for p € {0,1,2,3}
take N = M,.- M (B(u1), C, B(uz), B(uz),. .., B(un), B(unm)) for some C # B(uy).
Thus, msc(H) is not weakly realizable and hence not safely realizable. This
proves Claim 3 and hence the theorem.]

By applying the reduction from the previous proof (without the use of binary
counters) to a Turing-machine with an undecidable acceptance problem, we ob-
tain the following result.

Theorem 2. There exist fized sets P and € of processes and message contents,
respectively, such that the following problem is undecidable:

INPUT: An HMSC H over P and €

QUESTION: Is H safely realizable?

3.2 Transition-connected HMSCs

In [15] it is shown that weak realizability can be decided for transition-connected
HMSCs if non-FIFO communication is supposed. Moreover, it is argued that the
methods used in the proof of this result can be also applied in order to show that
safe realizability is decidable for transition-connected HMSCs, both for FIFO and
non-FIFO communication. In this section, we will prove that safe realizability is
in fact EXPSPACE-complete for transition-connected HMSCs.

For the further discussion we have to introduce a few new notations. Let us
fix an arbitrary HMSC H = (V, —, vg, F') over P and €, which is not necessarily

transition-connected. Recall that Ag = {A € A | Ju,v eV :u A v}. With
(Ap) we denote the set of all MSCs of the form A; - Az --- A, with 4; € Ay
(possibly n = 0, i.e., 0 € (Ag)). Let A = (Ap)pep be the canonical implementa-
tion of H, thus L(A,) = m,(msc(H)). Let A, = (Sp, Xp, 0p, s0,p, Fp)- Recall that
A can be constructed in polynomial time from H, in particular the size of every
Sp is bounded polynomially in the size of H. Finally, following [15], let us define
a finite automaton Ay = (Sg, An,dp,s0,Fg) over the alphabet of atoms Agy,

where 89 = (80,p)pep is the initial state, Sy C [[p Sy is the set of all tuples s

such that there exists K € (Ag) with (so, Bg) £ (s,Bp), Fo = So N [p Fps
and the transition relation Jy is defined as follows: If s,t € Sy and A € Ay
then (s, A,t) € dy if and only if (s, Bp) i>A (t,By). Notations like s i>A0 t
are defined as for CFMs in Section 2.2. Note that u =z v for words u,v € A}
implies that for all s,t € Sy, s i>Am t if and only if s £>Am t, in fact, Ay is an
asynchronous automaton in the sense of [20]. Thus, by Lemma 1, for K € (Ag)
and s,t € Sy we can write s EiS A, t, with the obvious meaning.

The main technical result of this section is stated in the following theorem.
Note that it does not restrict to transition-connected HMSCs.

Theorem 3. The following problem is in PSPACE:

INPUT: Set P of processes, set € of message contents, and an arbitrary
HMSC H over P and €

QUESTION: Does the canonical implementation A of H satisfy the following
two properties: (i) A is deadlock-free and (i) msc(A) C (Am)?

Using Theorem 3, we can prove the next two results.

Theorem 4. The following problem is PSPACE-complete:

INPUT: Set P of processes, set € of message contents, and an I-closed HUSC
H over P and €

QUESTION: Is H safely realizable?
Furthermore, this problem is also PSPACE-complete if P and € are fized.

Proof. For PSPACE-hardness we can use the construction from the proof of [2,
Thm. 3]. In fact, the HMSC H constructed there satisfies the property that

u 2 v Sy w implies P(A) N P(B) # 0, thus, H is Z-closed. Moreover, P
and € are fixed in the construction. Thus, it remains to show membership in

PSPACE. Using Theorem 3, we first verify in PSPACE whether the canonical
implementation A of H is both deadlock-free and satisfies msc(A) C (Ag). If this
is not the case then we can reject. Thus, let us assume that A is deadlock-free and
msc(A) C (Ag). It remains to show that msc(A) = msc(H), where the inclusion
msc(H) C msc(A) is trivial. Thus, we have to check whether msc(A4) C msc(H).
Since msc(A) C (Ag), this is equivalent to msc(A) N (Ag) C msc(H). The
following argument follows [15]. First note that for all Ay,..., A, € Ay, we have
Ay - Ay Ay € msc(A) if and only if the word A As --- A, € A}y belongs to
L(Ag). Thus, we have msc(A) N (A) C msc(H) if and only if L(Ag) C [L(H)]z
(where H is viewed as a finite automaton over the alphabet Ay) if and only
if L(Ag) C L(H) (H is Z-closed) if and only if L(Ag) N (A \L(H)) = (. This
can be checked in polynomial space by guessing a word in the intersection and
storing only the current state of Ay and the current state of the automaton for
A} \L(H) resulting from the subset construction for H, which is a subset of the
set of states of H. O

Theorem 5. The following problem is EXPSPACE-complete:

INPUT: Set P of processes, set € of message contents, and a transition-
connected HMSC H over P and €

QUESTION: Is H safely realizable?
Furthermore, this problem is also EXPSPACE-complete if P and € are fized.

Proof. The lower bound follows from Theorem 1. For the upper bound we can
argue as follows: By the proof of Theorem 4, we have to check whether L(Ap) C
[L(H)]z. But since H is assumed to be transition-connected, we can construct
an HMSC H' of at most exponential size such that L(H') = [L(H)]z, and then
verify L(Ag) C L(H') in space bounded polynomially in the size of H' (and
thus, in space bounded exponentially in the size of H). O

The proof of Theorem 3 is based on the following lemma.

Lemma 4. The following two statements are equivalent:

(A) A is deadlock-free and msc(A) C (Ag).
(B) Ay is deadlock-free, and for all s € Sy and all M € pMSC\{0} such that

(s, Bp) 2L, 4 it holds

K-A
HKG(AH)HAEAH{S *a0, PUK) N P(M) =0, } 1)
sup(A, M) exists and, inf(A, M) #(

For the further consideration, assume that s € Sy and M € pMSC\{{} are
such that (s, By) 2, 4 but (1) from Lemma 4 is not satisfied for s and M.
Furthermore, let us assume that M is chosen such that |M| is minimal. We will
show that we can bound the size of M. For this we need the following lemma,
which can be shown by induction on |N|.

Lemma 5. Let t € Sy and N € pMSC such that (t,By) .4 and |N| < |M]|.
Then there exist atoms Ay,..., A, € Ag and non-empty prefires B; < A;,
1 <14 < m, such that the following holds:

— For all send types plq(c) € X, if there is an unmatched send event of type
plg(c) in B; then g ¢ P(Biy1 - B).
— N = Bj - By--- By, (by the first point, concatenation of the B; is defined)

Now choose an arbitrary maximal event e of M # (), and let N = M [g(p)\{e} €

pMSC, i.e., remove e from M. Since |N| < |M| and (s, Bp) X, 4, Lemma 5
applies to N. Thus, we get the following two properties (C1) and (C2) for M:

(C1) There is a maximal event e of M such that N = M/[gs)\ (e} satisfies
N = B, - Bs - -- By, for non-empty prefixes B; < A; of atoms A; € Ay.

(C2) For all send types plg(c) € X, if there is an unmatched send event of type
plg(c) in B; then g & P(Bit1 -+ Bp).

Now let (s,Bg) = (s1,B1) 224 (52,B2) 224 -+ 225 4 (Sm1,Bms1) be a run
of A and assume that s, = s (but possibly By, # By) for some k < £. Due to (C2),
the CFM A can process, starting from (sg, B), also the suffix By--- By, i.e.,

(s, Bp) BlmBk_l.BlmBmm (Sm41,C) for some buffer configuration C (in general
C # Bpyt1). We can use this observation for a kind of pumping argument, in
order to prove that additionally to (C1) and (C2), the following property (C3)
holds, where o = max{|A| | A € An}.

(C3) The number m in (C1) satisties m < (|P|+a - |[P|+2) - (1 + [[,ep [Sp])-

Proof of Theorem 3 (sketch). It suffices to check property (B) from Lemma 4
in PSPACE. Whether Ay is deadlock-free can be easily checked in PSPACE
without explicitly constructing Ay (states of Ay can be encoded in polynomial

space). It remains to check, whether a situation of the form (s, By) M, 4 exists
such that (1) from Lemma 4 becomes false. A first approach would be to guess
such a situation, but note that the size bound for M that results from (C3) is
exponential in the size of H. On the other hand, all one has to remember from M
in order to check, whether s and M do not satisfy (1) from Lemma 4, is the set of
processes P(M) and the tuple of prefixes (m,(M)[1, ap])pep of the projections
onto the processes, where o, = max{|mp(A4)| | A € Ay} for p € P (whether
sup(A, M) exists for some A € Ay depends by Lemma 2 only on the prefixes
mp(M)[1, ap]), which can be stored in polynomial space. Hence, one can guess
M “slice by slice”, according to (C1), (C2), and (C3), and thereby accumulate
only the data P(M) and (mp(M)[1, ap])pep (and forget everything else). O

4 Non-FIFO communication

For all results in Section 3 we have restricted to FIFO communication. In this
section we briefly discuss the non-FIFO case. Note that the obvious fact that

under FIFO communication, every MSC M can be recovered from its projections
(M), p € P, is false for non-FIFO communication (take two messages with
identical contents, which are received in M; in the order in which they were
sent, whereas in Ms they are received in reverse order). On the other hand if
we forbid at least overtaking of messages with identical message contents, this
fact still holds, see also [15]. Let us assume this for the further discussion. Note
also that for the non-FIFO case, our CFM-model has to be slightly altered.
The set €°* of buffer configurations has to be replaced by NC'*¢_ For a given
buffer configuration B € N°2x¢_ the value B((p,q),c), where (p,q) € Ch and
¢ € €, represents the number of messages with content ¢ in the channel from p
to g, see also [15]. Transitions in this CFM model are defined analogously to the
FIFO-case in Section 2.2.

With the modifications described above, all results from Section 3 can be
also shown for non-FIFO communication. First, thanks to our assumption that
overtaking of identical messages is disallowed, Lemma 3 remains true. Concern-
ing the EXPSPACE-hardness proof for Theorem 1, note that in the construction
there, every message is immediately confirmed, which implies that the absence
of the FIFO-restriction has no effect. Of course, the same holds for the un-
decidability proof of Theorem 2. Note also that the HMSC H in the proof of
Theorem 2 (resp. Theorem 1) is either safely realizable (if M does not accept
w) or not even weakly realizable (if M accepts w). It follows that also under
non-FIFO communication, weak realizability is undecidable for the class of all
HMSCs and EXPSPACE-hard for bounded HMSCs. For the latter problem, no
primitive recursive upper bound is presently known, since the decidability proof
in [15] uses a reduction to the reachability problem for Petri nets, for which no
primitive recursive upper bound is known. Finally, also the proof of Theorem 3
(and hence of Theorem 4 and Theorem 5) works after some slight adaptations
for non-FIFO communication.

Acknowledgments. I am grateful to Anca Muscholl for many fruitful discus-
sions on the topic of this paper.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In Proceedings of the 22nd International Conference on on Software Engineering
(ICSE 2000), Limerick (Ireland), pages 304-313. ACM Press, 2000.

2. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proceedings of the 28th International Colloguium on Automata, Lan-
guages and Programming (ICALP 2001), Crete (Greece), number 2076 in Lecture
Notes in Computer Science, pages 797-808. Springer, 2001.

3. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Pro-
ceedings of the 9th International Conference on Concurrency Theory (CONCUR
99), Eindhoven (The Netherlands), number 1664 in Lecture Notes in Computer
Science, pages 114-129. Springer, 1999.

4. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In Proceedings of the Third Interna-

10.

11.

12.

13.

14.
15.

16.

17.
18.

19.

20.

tional Workshop on Tools and Algorithms for Construction and Analysis of Sys-
tems (TACAS ’97), Enschede (The Netherlands), number 1217 in Lecture Notes
in Computer Science, pages 259-274, 1997.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the Association for Computing Machinery, 30(2):323-342, 1983.

B. Caillaud, P. Darondeau, L. Hélouét, and G. Lesventes. HMSCs as partial spec-
ifications . . . with Petri nets as completion. In Modelling and Verification of
Parallel Processes (MOVEP), Nantes (France), number 2067 in Lecture Notes in
Computer Science, pages 125-152, 2000.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:
Model-checking and realizability. to appear in Proceedings of the 29th International
Colloquium on Automata, Languages and Programming (ICALP 2002), Malaga
(Spain), 2002.

E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts.
In T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction
and Analysis of Systems, Tth International Conference (TACAS), Genova (ITtaly),
volume 2031 of Lecture Notes in Computer Science, pages 496-511. Springer, 2001.
L. Hélouét and C. Jard. Conditions for synthesis of communicating automata from
HMSCs. In 5th International Workshop on Formal Methods for Industrial Critical
Systems (FMICS), Berlin (Germany), 2000.

L. Hélouét and P. Le Maigat. Decomposition of message sequence charts. In 2nd
Workshop on SDL and MSC (SAM 2000), Grenoble (France), pages 46-60, 2000.
J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. Regular collec-
tions of message sequence charts. In U. Montanari, J. D. P. Rolim, and E. Welzl,
editors, Proceedings of the 25th International Symposium onMathematical Founda-
tions of Computer Science (MFCS’2000), Bratislava, (Slovakia), number 1893 in
Lecture Notes in Computer Science, pages 675—686. Springer, 2000.

ITU. Recommendation Z.100. Specification and Description Language (SDL).
1994.

ITU. Recommendation Z.120. Message Sequence Charts. 1996.

R. Morin. Recognizable sets of message sequence charts. In H. Alt and A. Fer-
reira, editors, Proceedings of thel19th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2002), Juan les Pins (France), number 2285 in Lecture
Notes in Computer Science, pages 523-534. Springer, 2002.

A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz trace. In M. Kutylowski, L. Pacholski, and T. Wierzbicki, ed-
itors, Proceedings of the 24th Mathematical Foundations of Computer Science
(MFCS’99), Szklarska Poreba (Poland), number 1672 in Lecture Notes in Com-
puter Science, pages 81-91. Springer, 1999.

C. H. Papadimitriou. Computational Complezity. Addison Wesley, 1994.

G. von Bochmann. Finite state description of communication protocols. Computer
Networks, 2:361-372, 1978.

I. Walukiewicz. Difficult configurations — on the complexity of LTrL. In Proceedings
of the25th International Colloquium on Automata, Languages and Programming
(ICALP 98), Aalborg (Denmark), number 1443 in Lecture Notes in Computer
Science, pages 140-151. Springer, 1998.

W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications, 27:99-135, 1985.

