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Abstract. This paper develops sound and complete axiomatisations for
the divergence sensitive spectrum of weak bisimulation equivalence. The
axiomatisations can be extended to a considerable fragment of the linear
time — branching time spectrum with silent moves, partially solving an
open problem posed in [5].

1 DMotivation

The study of comparative concurrency semantics is concerned with a uniform
classification of process behaviour, and has cumulated in Rob van Glabbeek’s
seminal papers on the linear time-branching time spectrum [4,5]. The main (*ver-
tical’) dimension of the spectrum with silent moves [5] spans between trace equiv-
alence (TE) and branching bisimulation (BB), and identifies different ways to
discriminate processes according to their branching structure, where BB induces
the finest, and TE the coarsest reasonable semantics. Due to the presence of silent
moves, this spectrum is spread in another (‘horizontal’) dimension, determined
by the semantics of divergence. In the fragment spanning from weak bisimu-
lation (WB) to BB, seven different criteria to distinguish divergence induce a
horizontal’ lattice, and this lattice appears for all the bisimulation relations.
To illustrate the spectrum, van Glabbeek lists a number of examples and
counterexamples showing the differences among the various semantics [5]. Pro-
cess algebra provides a different — and to our opinion more elegant — way to
compare semantic issues, by providing distinguishing axioms that capture the
essence of an equivalence (or preorder). For the ’vertical’ dimension of the spec-
trum, these distinguishing axioms are well-known (see e.g. [4,7,2]). However,
the ’horizontal’ dimension has resisted an axiomatic treatment so far. We be-
lieve that this is mainly due to the fact that divergence only makes sense in the
presence of recursion, and that recursion is hard to tackle axiomatically. Iso-
lated points in the "horizontal’ dimension have however been axiomatised, most
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notably Milner’s weak bisimulation (WB) congruence [10], and also convergent
WB preorder [11], as well as divergence insensitive BB congruence [6] and sta-
ble WB congruence [8]. It is worth to mention the works of [3] and [1], which
axiomatised divergence sensitive WB congruence and convergent WB preorder,
respectively, but without showing completeness in the presence of recursion.

This paper develops complete axiomatisations for the ’horizontal’ dimension
of weak bisimulation equivalence. A lattice of distinguishing axioms is shown
to characterise the distinct semantics of divergence, and to precisely reflect the
’horizontal’ lattice structure of the spectrum. We are confident that these ax-
ioms form the basis of complete axiomatisation for the bisimulation spectrum
spanning from WB to BB.

The paper is organised as follows. ! Section 2 introduces the necessary nota-
tion and definitions, while Section 3 recalls the weak bisimulation equivalences
and Section 4 introduces the axiom systems. Section 5 is devoted to soundness of
the axioms and sets the ground for the completeness proof. Section 6 is devoted
to the main step of the proof, only focusing on closed expressions, while Section
7 covers open expressions. Section 8 concludes the paper.

2 Preliminaries

We assume a set of variables V, and a set of actions A, containing the silent
action 7. We consider the set of open finite state agents with silent moves and
explicit divergence, given as the set E of expressions generated by the grammar

E u= al | E+E | reeXE | X | A

where X € V and a € A. A(F) is an expression that adds divergence explicitly
to the root of E. The syntactic equality on E is denoted by =. With V(E)
we denote the set of all variables that are free in E € E, i.e., not bounded by
a recX-operator. We define P = {E € E | V(E) = 0}. We use E,F,G,H,...
(resp. P,Q, R,...) to range over expressions from E (resp.P).If F = Fi,... , F,
is a sequence of expressions, X = Xi,... , X, is a sequence of variables, and E €
E then E{F/X} denotes the expression that results from E by simultaneously
replacing all free occurrences of X; in E by F; (1 < ¢ < n). The variable X
is guarded in E, if every free occurrence of X in E lies within a subexpression
of the form a.F' with a € A\{7}, otherwise X is called unguarded in E. E is
guarded if for every subexpression recY.F of E the variable Y is guarded in F.

The semantics of E is given as the least transition relation satisfying the
following rules:

E-=s E E-* FE
aE-“E E+F-%E F+E-%SFE

! Note to the reviewers: The appendix contains those relevant proofs that are likely
to be omitted in a published version due to space constraints.




E{reeX.E/X}-*3E' E-%F
recX.E %5 E' A(E) % E' A(E) - A(E)

The rules are standard, except that, as indicated before, A(E) can diverge, in
addition to exhibiting all the behaviour of E.

3 The bisimulations

Since we are working in the context of silent steps, we define a few standard
abbreviations: E = Fif E —%F; E = Fif E == F; E = Fif
(E= Fanda#7)or (E= F and a = 7). We write E > (resp. E —)
if £ % F for some F € E (resp. E % F for some a € A, F € E). With
E % and E -+ we denote the corresponding negated conditions. We let E
denote E %, i.e., E has the possibility to diverge. Finally, E 1y denotes that
there is some F' such that F => F and either F {} or F -/ (or equivalently,
E ft or E = F -/ for some F), i.e., E may either diverge, or silently decide
to terminate. For a relation R C P x P define the following conditions (in all
conditions P,@, P’ € P and a € A are implicitly V-quantified):

PQ)ERAP—)P’thenQ:Q' (P',Q") € R for some ',
P,Q) € R A P then Q = Q' -/ for some @Q’,

P,Q) e R AN P then Q = Q' -/ for some @',

P,Q) € R A P 1 then Q 1,

(A )1f(PQ)€R/\ P 1y then Q 1.

Let R CP x P be a symmetric relation. We say that R is a

— weak bisimulation (WB® or simply WB) if R satisfies (WB).

stable weak bisimulation (WB®) if R satisfies (WB) and (S).
completed weak bisimulation (WBC) if R satisfies (WB) and (0).

— divergent weak bisimulation (WB*) if R satisfies (WB) and (\).
divergent stable weak bisimulation (WB?) if R satisfies (WB) and (A).

Note that for the definition of a WB*, instead of condition (\) we could also
require that if (P,Q) € R and (P 1} or P -5 ) then @ 7). In the sequel, we let
x range over the set {A, A, S,0,€}. The relation ~* C P x P is defined as the
union of all WB*, it is easily seen to be itself a WB* as well as an equivalence
relation.

Theorem 1. [5] The above equivalences are ordered by inclusion according to
the lattice in Figure 1. The upper relation contains the lower if and only if both
are connected by a line.

~* is not a congruence with respect to '+’ (which is a well known deficiency),

and for * € {A, A, S,0} also not a congruence with respect to A(.). For instance
7.0 ~4 0, but A(7.0) £4 A(0). To obtain the coarsest congruences in ~* on P,
we define each ~* to be the relation that contains exactly the pairs (P, Q) € P xP
that satisfy the following root conditions:
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Fig. 1. Inclusions between the Fig.2. Implications between
relations ~* the distinguishing axioms

— if P %5 P’ then Q == Q' and P’ ~* Q' for some Q’
— if @ 5 Q' then P = P’ and P' ~* Q' for some P’

We lift the relations defined on P to E as usual: Let R CP xP and E, F € E.
Let X = X;,...,X, be a sequence of variables that contains all variables from
V(E) UV(F). Then (E,F) € R if for all P = Py,..., P, with P, € P we have
(E{P/X} F{P/X}) eR..

Theorem 2 (see Appendix B). The relation ~* is the coarsest congruence con-
tained in ~* w.r.t. the operators of E. Furthermore the inclusions listed in The-
orem 1 carry over from ~* to ~*.

4 Axioms

This section introduces a lattice of axioms characterising the above weak bisim-
ulations. For x € {A,S,0,¢}, the axioms for ~* are given in Table 1, plus the
axiom (x) from Table 2. The axioms for ~* are given in Table 1, plus the ax-
ioms (A) and (X) from Table 2. We write E =* F if E = F can be derived by
application of the axioms for ~*.

The axioms (S1) — (54), (r1) — (v3), and (recl) — (recd) are standard [10].
The axiom (rec5) makes divergence explicit if introduced due to silent recursion;
it defines the nature of the A-operator. (rec6) states the redundancy of recursion
on an unguarded variable in the context of divergence.

We discuss the distinguishing axioms in reverse order relative to how they are
listed in Table 2. Axiom (\) characterises the property of WB* that divergence
cannot be distinguished when terminating. Axiom () represents Milner’s ’fair’
setting, where divergence is never distinguished. The remaining three axioms
state that divergence cannot be distinguished if the process can still perform an
action to escape the divergence (0), that it cannot be distinguished if the process
can perform a silent step to escape divergence (S), and that two consecutive
divergences cannot be properly distinguished (A). It is a simple exercise to verify
the implications between the distinguishing axioms as summarized in the lattice



in Figure 2. It nicely reflects the inclusions between the respective congruences.
The upper axioms turn into derivable laws given the lower ones (plus the core
axioms from Table 1) as axioms.

(S1) E+F=F+E (r1) a.7.E = a.E
(S2) E+(F+G)=(E+F)+G (r2)T.E+E=rT1.E
(S3) E+E=E (r3)a.(E+7.F)=a.(E+7.F)+a.F

(S4) E+0=E
(recl) if Y is not free in recX.E then recX.E = recY.(E{Y/X})
(rec2) recX.E = E{recX.E/X}
(rec3) if X is guarded in F and F = E{F/X} then F = recX.E
(recd) recX.(X + E) = recX.E
(rech) recX.(r(X + E)+ F) = recX.A(E+ F)
(rec6) recX.(A(X + E)+ F) = recX.A(E + F)

Table 1. Core axioms

(A) A(A(E)+ F) =1.(A(E)+ F)
(S) A(rnE+F)=71.(r.E+F)

(0) A(@.E+F)=r1.(a.E+F)
(e) A(E)=T1.E
\) A(0) =70

Table 2. Distinguishing axioms

A few laws, derivable with the axioms for ~? (and thus for all ~*) give further
insight, and will be useful for the further discussion.

Lemma 1 (see Appendix G). The following laws can be derived:

(A" A(E) =2 A(E)+ E

(TA) A(E) =2 1.A(E)+ E

(rA") A(E) =2 1.A(E)

(rec?) recX.(r(X+E)+F)= =2 recX. (rX+E+F)



5 Soundness and completeness

This section is devoted to the soundness of the axioms for ~* and the preparation
of the proof of their completeness. For the latter we follow the lines of the proof
of [10], and work as much as possible in the setting of WBA, the finest setting.

Theorem 3 (soundness). If E,F € E and E =* F then E ~* F.

Proof. Unique solution of guarded equations, which entails soundness of (rec3)
is shown in Appendix D. The recursion axioms (rec5) and (rec6) are treated in
Appendix E. See Appendix F for the other axioms. O

In order to show completeness, i.e., that £ ~* F implies £ =* F, we proceed
along the lines of [10], except for the treatment of expressions from E\P. As in
[10] the first step consists in transforming every expression into a guarded one:

Theorem 4 (see Appendix G). Let E € E. There exists a guarded F with
E =2 F (and thus V(E) = V(F)).

We do not consider * = € in the sequel because by using axiom (e), for every
E € E we find an E’ such that E’ does not contain the A-operator and E =¢ F'.
This allows to apply Milner’s result [10] that in the absence of the A-operator
the axioms from Table 1 without (7A) together with (rec7) and Milner’s law
recX (1.X + E) = recX (1.E) are complete for ~¢. The latter law follows imme-
diately from (rec5) and (e).

The basic ingredient of the completeness proof are equations systems. Let
V C V be a set of variables and let X = X;,..., X, be an ordered sequence
of variables, where X; € V. An equation system over the free variables V and
the formal variables X is a set of equations & = {X; = E; | 1 < i < n} such
that E; € E and V(E;) C{X1,...,Xp}UV for1<i<mn.Let F=Fy,... ,F,
be an ordered sequence of expressions. Then F' x-provably satisfies the equation
system & if F; =* E;{F/X} for all 1 < i < n. An expression F %-provably
satisfies £ if there exists a sequence of expressions Fi, ... , F},, which %-provably
satisfies £ and such that F' = F;. We say that £ is guarded if there exists a linear
order < on the variables {Xj,...,X,} such that whenever the variable X is
unguarded in the expression E; then X; < X.

For the next definition we take for each formal variable X; (1 < ¢ < n)
a corresponding formal variable X2 such that X2 ¢ {Xi,...,X,}UV. The
symbols a, 3,7, ... denote either A or _. If e.g. &« = _ then X = X; and
a(E) = E. A standard equation system (SES) £ over the free variables V' and
the formal variables X1, X7, ..., X,, X2 is an equation system of the form

E={X;=E;|1<i<n}U{XA=AX))|1<i<n}

where E; is a sum of expressions a.X; (a € A, 1 < j <n), T.XjA (1<j<n),and
variables Y € V. We also say briefly that £ is an SES over the free variables V' and
the formal variables X = Xj,...,X,. If the sequence Fi, A(F}),... ,F,, A(Fy,)
x-provably satisfies the SES £ then we say briefly that F' = F1,... , F, *-provably



satisfies £. Furthermore E;{F /X } denotes the expression that results from sub-
stituting in E; the variable X by a(F;), where 1 <i<mnand a € { _, A}. We
write X¢ ¢ X7 if E; contains the summand a.X{. Note that X; —»¢ X7 if
and only if X2 —*+¢ X The notions X =»¢ X7, Xo =5¢ X7, X; o, ...
are derived from the relations ——¢ analogously to the corresponding notions for
E. Note that X; -/ if and only if E; is a sum of free variables. If the SES & is
clear from the context then we will omit the subscript £ in these relations. Note

that € is guarded if and only if the relation —¢ is acyclic. Finally we say that
the SES & is saturated if for all 1 <4,j <n, a,3, and Y € V we have:

1. If X; == X2 then also X; — X
2. If X; = X3 and Y is a summand of E; then Y is also a summand of E;.

The introduction of the new variables X/ and the special form of an SES is
crucial in order to carry over Milner’s saturation property in the presence of the
A-operator:

Theorem 5 (see Appendix H). Every guarded expression E x-provably satisfies
a guarded and saturated SES over the free variables V(E).

Using axiom (rec3), the following theorem can be shown analogously to [10].

Theorem 6. Let E,F € E and let £ be a guarded equation system such that
both E and F *-provaebly satisfy £. Then E =" F.

6 Joining two equation systems

In this section we will restrict to expressions from P. The main technical result
of this section is

Theorem 7. Let P,QQ € P such that P ~* Q. Furthermore P (resp. Q) x-
provably satisfies the guarded and saturated SES & = {X; = E; |1 <i <m}
(resp. € ={Y; = F; | 1 < j < n}). Then there exists a guarded equation system
& such that both P and @ *-provably satisfy £.

Let us postpone the proof of Theorem 7 for a moment and first see how com-
pleteness for P can be deduced:

Theorem 8 (completeness for P). If P,Q € P and P ~* ) then P =* Q.

Proof. By Theorem 4, both P and ) can be turned into guarded expression
P’ Q' € P via the axioms for ~4. Due to soundness, we have that P’ ~* @',
and by Theorem 5 P’ (resp. Q') x-provably satisfies a guarded and saturated
SES &; (resp. &) without free variables. By Theorem 7 there is some guarded
equation system £ which is x-provably satisfied by P’ and @’. Theorem 6 gives
P'=* @', and hence P =* @), concluding the proof. O

In order to prove Theorem 7, we need the following two lemmas.



Lemma 2. Let £ be a guarded SES over the formal variables X1,... ,X,, and
let X; be such that there do not exist k,a, and a € A\{T} with X; == Xp.

Then there exist j, 8 with X; — Xf -+ .
Proof. Induction along the =>¢, which is a partial order for a guarded SES. O

For the further consideration it is useful to define a macro M*(P) for P € P by

P ifx=A,

P ifx=S

=‘<P — b)
M( ) P— if*:O,
P  ifx=A

Lemma 3 (see Appendix B). If A(P) ~* A(Q) then one of the following three
cases holds:

1. M*(P) and P ~* A(Q)
2. M*(Q) and A(P) ~* Q
3. Neither M*(P) nor M*(Q), and P ~* Q

Now we are able to prove Theorem 7.

Proof (Theorem 7). Assume that & is x-provably satisfied by the expressions
P,...,P, € P, where P = P;, and that & is x-provably satisfied by the
expressions Q1,... ,Qn € P, where Q = Q1. Thus P, =" E;{P/X} and Q; ="*
F;{Q/Y}, and hence also P; ~* E;{P/X} and Q; ~* F;{Q/Y }. Since P, €
P, both & and & do not have free variables. The proof of the following two
claims can be found in Appendix H.

Claim 1 If a(P;) ~* 3(Q;) then the following implications hold:

1. If X; = X} then either (a = T and v(Py) ~* B(Q;)) or there emist £,5
such that Y; = Y} and v(Py) ~* 5(Qy).

2. If Y; = Y} then either (a = and o(P;) ~* §(Qq)) or there erist k,y such
that X — X7 and v(Py) ~* §(Qy)-

8. Let x = A. If a = A then either 3= A or Y; — Y for some (.

Let x = A. If B = A then either a = A or X; — XkA for some k.

Let « =X. Ifa= A or (a = _ and X; -/ ) then either 3= A, or (B= _

and Y; -5 ), or Y; = YA for some £, or Y; — Y; -+ for some L.

6. Let x =X If B=A or (8= _ andY; -/ ) then either a = A, or (a = _
and X; -+ ), or X; — XkA for some k, or X; — X, -/» for some k.

Al

Claim 2 If P, ~* (); then the following implications hold:

1. If X; = X then there exist £, 3 such that Y; — Yzﬁ and a(Pr) ~* B(Qq).
2. IfY; -5 YZB then there ezist k,a such that X; — X2 and a(Py,) ~* B(Qq).



Now take for all 1 <4 < m, 1 < j < n, and a,8 with a(P;) ~* B(Q,) a

variable ZZO‘J ;andlet Z = Z7~,... be a sequence consisting of these variables.
If furthermore o = _ or 8 = _ then we define fof as the sum, which contains

the summand

a.Z)y if X; = X, Y; =5 Y2, and v(Py) ~* 8(Qe),
r.Zl7 i X; 5 X but 736,06 : Y; 5 V) A 7( Pp) ~* 8(Qe)
(this implies by Claim 1(1) that v(Px) ~* 8(Q;)),
r.Z5) Y, Y but =3k, g X 5 X7 A y(Pr) ~* 6(Qq)
(this implies by Claim 1(2) that a(P;) ~* 6(Qy)).
Furthermore G"f does not contain any other summands. Now the equation
system & over the formal variables Z contains for each variable in Z the corre-
sponding equation below, where for equation (E1) by Lemma 3 one of the three

cases listed in (E1) holds (if the first and the second case hold, then we choose
arbitrarily one of the two corresponding equations for (E1).

z74 if M*(P;) and P; ~* A(Q;)
(B1) z{3% = {755~ if M*(Q;) and A(P;) ~* Q;

A(Z;7;77) if neither M*(P;) nor M*(Q;), and P; ~* Q;
(B2) 275 = 7.6y ifa=A#BoratA=p
(E3) Z;;~ = G~

Note that £ is not an SES. From the guardedness of £&; and &, it follows easily
that also £ is guarded. We will show that P x-provably satisfies £, that also
@ *-provably satisfies £ can be shown analogously. For this we define for each
variable Zz‘]’.ﬁ in Z the corresponding expression Rfff by

R4 =Ry~ = AP),

1,) 2y
A
Ri,j :’7’.P»l'7
o _a, x7
P VL)Y Y = Tk T kA
Y(Pr) ~* 3(Qe)
R~ =

T ¥
P if36,6Y; Y] A =3k,y Xz—>i(k/\
v(Br) ~ 6(Qe)

and let R = R;;7,... be the sequence corresponding to the sequence Z. First
note that R;;~ = PL = P by P ~* @, and Claim 2(2). It remains to check

that all equations are x-provably satisfied when every variable Za’ﬁ is replaced

by R; f We start with equation (E1) defining Z; ; 4.4 Since this equation belongs
to & only it A(P;) ~* A(Q;), we may assume thls for the following cases 1-3.
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Case 1. The equation A ~ belongs to £.

This case is trivial since RlA]A = RA - = A(F).
Case 2. The equation Z; A A = =Z;; 24 belongs to £.
Thus M*(P;) and P ~* A(Q]) Since R‘ = 71.P; and RA 4 = A(P) we

have to prove that 7.P; =* A(P;). We dlstlngulsh on the value of *.

Case 2.1. x = A
Then P; ~4 A(Q;) and hence X; — X2 for some k by Claim 1(4). Thus
there exists an expression R with (we use the derived law (7A’) from Lemma 1)

7.Py =2 1.E{P/X} =2 7. (R+ 1.A(P)) =2
T.(R + A(P)) =2 AR + A(Py)) =2 A(P;).

Case 2.2. x =S
Then P; ~5 A(Q;) and M®(P;), i.e., P, —. Since P; ~% E;{P/X}, also

E{P/X} -5, i.e, X; -+, and there ex1st expressions R, Py, with
7.P; =5 1.E{{P/X} =2 1.(R+ 1.P;) =% AR+ 1.P) =5 A(P;).

Case 2.3. x =0
Then P; ~% A(Q;) and M°(P,), i.e., P, —>. Since P; ~% E;{P/X}, also
E{P/X} —,ie., X; —, and there ex1st expressions R, P, with

7.P; =° .E;{{P/X} =" 7.(R+ a.Py) =° A(R + a.P;) =% A(P}).

Case 2.4. x =\

Then P; ~* A(Q;) and hence X; -, or X; — XA, or X; — X -» for
some k by Claim 1(6). Thus we can distinguish the following three cases:
Case 2.4.1. X; 4~ ,ie., E; =0 (note that if we would deal with free variables,
then we could only conclude here that E; must be a sum of free variables)

We obtain 7.P; =* 7.E;{P/X} = 7.0 =* A(0) =* A(P).
Case 2.4.2. X; N XkA. We can conclude as in case 2.1.
Case 2.4.3. X; — X -/~ , thus there exists R with

7.P =* 1. E{P/X} =" 7. (R+1.0) =
T.(R+ A(0)) =2 A(R + A(0)) =* A(P,).

Case 3. The equatlon ZA 4= = A(Z;;~) belongs to £.

Thus P; ~* @Q; and nelther /\/l (P;) nor M*(Q;) holds. We have either
R;;= = Py or R}~ = 7.P;. The case that R;;~ = P; is trivial, thus let us
assume that R; ;= = 7.P;. Then there exist /,4 such that Y —5 Y, but there
do not exist k,v with X; — X and v(P;) ~* 6(Q¢). Since A(P;) ~* A(Q;),
it follows A(P;) ~* §(Q;) by Clalm 1(2). By a case distinction on the value of *
we will deduce a contradiction to ~M*(Q);).

Case 3.1. x = A

10



By Claim 1(3) and A(P;) ~? §(Q¢) either § = A or Yy — Y2 for some
p. By saturation of & and Yj - Y, we have Y; BLEN YpA for some p. Thus
Fi{Q/Y} ) and @, 1, a contradiction to ~M4(Q;).

Case 3.2. x =S

We have Y; — Y2, ie., Y; —,ie, F;{Q/Y} —. But since F;{Q/Y } ~°

Q;, we obtain Q; -, a contradiction to —-MS(Qj).
Case 3.3. x =0

We can conclude analogously to case 3.2. with — replaced by —s.
Case 3.4. x =\

By Claim 1(5) and A(P;) ~* §(Q¢) either § = A, or (§ = _ and Yy - ),
or V; YkA for some k, or Y, — Y — for some k. Since Y} LN YE‘S,
saturation of & implies that either Y; - Y? or Y; - Y, —» for some k.
Hence F;{Q/Y } . Since Q; ~* F;{Q/Y }, this is a contradiction to ~M*(Q;).

It remains to check the equations (E2) and (E3). Fix a, 8 such that a(FP;) ~*
B(Q;) and either « = _ or § = _. We will distinguish two main cases:

Case 4. It holds

VO (Y -5 Y = Ty X -5 X) A (P~ 6Q). (1)

With axiom (1) and (S1)-(S3) we obtain sz{R/Z} =4 E{P/X} =* P
(this step is analogous to [10]).
Case 4.1. a=0= _
We have R~ = P; =" G;;~{R/Z}, thus (E3) is satisfied.
Case 4.2.a0= _,3=A
We obtain Rijj’A =r1.p=* T.Gijj’A{R/Z}, thus (E2) is satisfied.
Case J.3. a=A, 3= _

Thus A(P;) ~* Q. By inspecting the equation (E2) and using the fact
that RiA’J?‘ = A(P;) and fof{R/Z} =* P;, we see that it remains to show
A(P;) =* 7.P;. We distinguish on the value of x*.

Case 4.3.1. x = A

Thus A(P;) ~2 Q; and Y; — YA for some £ by Claim 1(3). Hence by (1)
there exist k,y with X; — X, and y(P;) ~? A(Q). By Claim 1(4) either
v=Aor X; — XpA for some p. By saturation of & we obtain in both cases

X - XpA for some p. Now we can use the deduction form case 2.1.
Case 4.3.2. x= 8§

We have A(P;) ~% Q;. If Q; —/ then P, —. With P, ~% E;{P/X} we
obtain F;{P/X} 1, i.e, X; —, and we can use the deduction from case 2.2.
On the other hand if Q; — then F;{Q/Y} —, i.e, ¥; —. Thus X; — by
(1), and we can argue in the same way as above.

Case 4.3.8. * = 0. Analogous to case 4.3.2.
Case 4.3.4. x =X

Since A(P;) ~* @, Claim 1(5) implies either Y; — , or Y; - YA, or
Y; = Y, 4> for some £. Hence we can distinguish three different cases.

Case 4.3.4.1. Y; -5
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By Claim 1(1) there cannot exist an a € A\{r} with X; ==. Lemma 2 and
the saturation of & implies that either X; - (see case 2.4.1.), or X; — X
for some k (see case 2.4.2.) or X; — X, —» for some k (see case 2.4.3.).

Case 4.3.4.2. Y} - YZA for some £

By (1) there exist k,v with X; — X} and v(P) ~* A(Q¢). By Claim 1(6)
either y = A, or (y = _ and X} -4 ), or X — XpA for some p, or X —
X, +» for some p. By saturation we obtain either X; — XpA for some p (see
case 2.4.2.), or X; — X, —/» for some p (see case 2.4.3.).

Case 4.3.4.3. Y; — Y, -+ for some ¢

By (1) there exist k,v with X; — X} and v(P;) ~* Q,. Using Claim 1(6)
we can argue in the same way as in case 4.3.4.2.

Case 5. 3,6 (V; =Y A =Tk, v : Xi = X A v(Pe) ~* §(Qq))

Analogously to case 4, axiom (71) and (S1)-(S3) yields

GEP{R/Z} =2 Bi{P/X} + r.a(P) =* P, + r.a(P).

Case 5.1. a=f= _
We have R}~ = 1.P; =4 P, +1.P; =" G~ {R/Z}, thus (E3) is satisfied.
Case 5.2.a= _,3=A
We obtain Rijj’A =T1.F;
(E2) is satisfied.
Case 5.3. a=A, 3= _
With (7A') we get Ri:~ = A(P) =2 1.A(R) =2 7.(P + T.A(P)) =*
T.Gijj’A{R/ Z}, thus (E2) is again satisfied. This concludes the proof of Theo-
rem 7 and hence of Theorem 8. O

P; =2 1.1.P; =2 1.(P; + 7.P;) =* T.GiTj’A{R/Z}, thus

7 Completeness for open expressions

In order to prove completeness for the whole set E we will argue in a purely
syntactical way by investigating our axioms. The following observation is crucial:

Lemma 4 (see Appendix I). Let x # 0 and E,F € E. If a € A\{r} does
neither occur in E nor in F' then E{a.0/X} =" F{a.0/X} implies E =* F.

Note that Lemma 4 is false for * = 0. We have 7.a.0 =% A(a.0) but 7.X #9 A(X)
(since 7.0 2° A(0)). Hence, in the following theorem we have to exclude * = 0.

Theorem 9. Let « 20 and E,F € E. If E ~* F then E =* F.

Proof. Let E ~* F. We prove by induction on |V(E) UV(F)| that E =* F. If
V(E) UV(F) = () then in fact E,F € P and E =* F by Theorem 8. Thus let
X € V(E) UV(F). Since E ~* F, we have E{a.0/X} ~* F{a.0/X}. Thus by
induction E{a.0/X} =* F{a.0/X} and hence E =* F by Lemma 4. |

In order to obtain a complete axiomatisation of ~° for open expressions, we have
to introduce the following additional axiom (E).
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(E) If E{0/X}=F{0/X} and E{a.0/X} = F{a.0/X} where
a € A\{r} does neither occur in E nor in F then E = F.

The proof that this axiom is sound for ~° can be found at the end of Appendix I.
Furthermore if we add this axiom to the standard axioms for ~° then we can
prove completeness in the same way as in the proof of Theorem 9.

Theorem 10. Let E,F € E. If E ~° F then E = F can be derived by the
standard azioms for ~° plus the aziom (E).

8 Conclusion

This paper has developed sound and complete axiomatisations for the divergence
sensitive spectrum of weak bisimulation equivalences. We have not covered the
weak bisimulation preorders WB* and WBY considered in [5]. We claim however
that adding the axiom A(E) < E + F to the axioms of WB* (respectively WB*)
is enough to obtain completeness of WB" (WB'). Note that WB' is axiomatised
in [11], so only WB" needs further work.

We are confident that our axiomatisation form the basis of a complete equa-
tional characterisation of the bisimulation fragment of the linear time — branch-
ing time spectrum with silent moves. On the technical side, we are currently
investigating whether the somewhat unsatisfactory auxiliary axiom (E) is in-

deed necessary for achieving completeness of open expressions for ~°.
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Appendix

A Properties of the transition relations ——

In this section we will prove several lemmas that we will use quite extensively
(later sometimes also without explicit reference) in the further discussion. In all
lemmas let £, F,G,H € E and a € A. First we define analogously to the notion
of guardedness the following notions: The variable X is weakly guarded in E,
if every free occurrence of X in F lies within a subexpression of the form a.F,
otherwise X is called totally unguarded in E. Thus for instance X is unguarded
but weakly guarded in 7.X. Furthermore X is totally unguarded in A(X).

Lemma 5. If G - H then G{E/X} - H{E/X}.

Proof. Induction on the height of the derivation tree for the transition G —=
H. Most cases are trivial. Let us just consider the case G = recY.G’', where

wlog X ZY and Y ¢ V(E). 2 We have G'{recY.G'/Y} -+ H. The induction
hypothesis implies

(G'{E/X}){recY.G'{E/X}]Y} = (G'{recY.G'|]Y}){E/X} > H{E/X}.
Thus recY.G'{E/X} - H{E/X}. O
Lemma 6. If E - F and X is totally unguarded in G then G{E/X} - F.

Proof. First let us claim the following implication:
IfE s FandY € V(F) then Y € V(E).

This implication can be easily shown by an induction on the height of the deriva-
tion tree for the transition E —— F. Now we can prove the lemma by induc-
tion on the structure of the expression G: The cases G = X, G = A(H), and
G = G1 + G4 are clear. Finally assume that G = recY.H and that X # Y,
Y ¢ V(E). Thus by the implication stated above also Y ¢ V(F). By induction
we have H{E/X} - F, thus by Lemma 5 (H{E/X}){recY.H{E/X}/Y} >
F{recY.H{E/X}/Y} = F. Thus recY.H{E/X} -+ F. O

Lemma 7. Let G{E/X} % F be derivable by a derivation tree of height n.
Then one of the following two cases holds:

1. X is totally unguarded in G and E - F, which can be derived by a deriva-
tion tree of height < n.

2. G- H and F = H{E/X}. Furthermore if X is guarded in G and a = T
then X is also guarded in H.

% The latter can be assumed since during a substitution bounded variables are renamed
in order to avoid new variable bindings.
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Proof. Induction on n: The case that G has the form X € V, a.G’, or G1 + G»
is clear. If G = A(G') and A(G'{E/X}) —% F then either F = A(G'{E/X})
and a = 7, and we obtain the second case, or G'{E/X} -% F, which can be
derived by a derivation tree of height n — 1. By induction, either

— X is totally unguarded in G’ (and hence totally unguarded in G) and E -
F by a derivation tree of height <n —1 or

~ G' % H (and thus G -+ H), F = H{E/X}, and if X is guarded in G’
(i-e., guarded in G) and a = 7 then X is also guarded in H.

Finally assume that G = recY.G’ and w.l.o.g. that X ZY and Y ¢ V(E). Thus
(G'{recY.G'/YVW{E/X} = (G'{E/X}){recY.G'{E/X}]Y} - F

and the induction hypothesis implies that either

1. X is totally unguarded in G'{recY.G'/Y'} (i.e., totally unguarded in G) and
E % F, which can be derived by a derivation tree of height < n — 1, or

2. G'{recY.G'|Y} % H (i.e., G -*5 H) and F = H{E/X}. Furthermore if
X is guarded in G'{recY.G'/Y} (i.e., guarded in G) and a = 7 then X is
also guarded in H. O

The preceding three lemmas easily imply the next two lemmas:

Lemma 8. G{E/X} —A (resp. G{E/X} — ) if and only if G —p (re-
sp. G -+ ) and (X is weakly guarded in G or E /> (resp. E -5 )).

Lemma 9. G{E/X} 1} if and only if G ) or (G = H, X is totally unguarded
in H, and E ).

Lemma 10. recX.G' - E if and only if G -+ H and E = H{recX.G/X} for
some H.

Proof. If G -5 H and E = H{recX.G/X} then G{recX.G/X} -+ E, i.e,
recX.G —» E by Lemma 5. For the other direction assume that recX.G' ——
E can be derived by a derivation tree of height n but there does not exist a
derivation tree for this transition of height < n. Then G{recX.G/X} % E
can be derived by a derivation tree of height n — 1. By Lemma 7 either G -
H and E = H{recX.G/X} for some H, or X is totally unguarded in G and
recX.G - E can be derived by a derivation tree of height < n — 1. But the
second alternative gives a contradiction. O

Lemma 11. recX.G 1 if and only if G ft or (G == H and X is totally un-
guarded in H).

Proof. If G 1} then by Lemma 9 also G{recX.G/X} f, i.e., recX.G . If G == H
and X is totally unguarded in H then G{recX.G/X} == H{recX.G/X}, i.e,
recX.G — E => H{recX.G/X} for some E. Since X is totally unguarded in
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H, Lemma 6 implies recX.G — E = H{recX.G/X} — E, thus recX.G 1.
Finally assume that recX.G {. Then recX.G — E and E f}. By Lemma, 10 we
have G — G’ and E = G'{recX.G/X} 1} for some G’. By Lemma 9 either G’ f
(and thus G 1), or G’ = H (and thus G == H) for some H such that X is
totally unguarded in H. O

*

B Properties of ~* and ~*

Lemma 12. Let P,Q € P. If P+ R~ Q + R for all R € P then P ~* Q.

Proof. Assume that P+ R ~* @ + R for all R € P and P #£* Q. By the
definition of ~*, there is some a € A such that, w.l.o.g. P —— P’ but whenever
Q == Q' then P’ #* Q'. Choose R = b.0 where b € A does neither occur in
P nor in Q. Clearly, P + R %+ P’, and since P + R ~* Q + R there is some
Q' such that Q + R == Q' and P’ ~* Q'. However, ifa =7 and Q' = Q + R,
then P’ #* Q' since @' may do a b-transition whereas P’ does not have this
possibility; otherwise Q@ == Q' (since R == P’ is impossible because b # a), so
again P’ £* Q' and we conclude in either case by contradiction. O

Theorem 11 (restated Theorem 2). The relation ~* is the coarsest congru-
ence contained in ~* w.r.t. the operators of E. Furthermore the inclusions listed
in Theorem 1 carry over from ~* to ~*.

Proof. That the inclusions from Figure 1 also hold for the relations ~* is easy
to check. The inclusion ~* C ~* can be verified by proving that the relation
~* U ~* is a WB". The condition (WB) is trivial due to the root condition for
~*_ Also the verification of the remaining condition (), where x € {S,0, A, A},
is straight-forward, let us only consider the condition (\). Thus assume that P 1
and P ~* () (the case P ~* @ is clear). Then either P -/ or P — P’ 1 for
some P’. In the first case, P ~* () implies ) -4 . In the second case, P ~* Q
implies Q == Q' and P’ ~* Q' for some Q'. Since P’ {} we obtain Q' 1 and
thus @ 0.

It remains to show that ~* is the coarsest congruence w.r.t. to the oper-
ators of E. Congruence with respect to ‘+’ and action prefix is clear (for the
congruence w.r.t. action prefix we have to use the inclusion ~* C ~*). Con-
gruence w.r.t. A can be see as follows. Assume that P ~* (). First note that
{(A(P), A(@)), (A(Q), A(P))}U ~* is a WB*. Thus we have A(P) ~* A(Q).
From this we deduce easily that the pair (A(P), A(Q)) satisfies also the root con-
dition, i.e., A(P) ~* A(Q). The congruence proof w.r.t. the recursion operator
(the only hard part) is shifted to Appendix C.

It remains to argue that ~* is in fact the coarsest congruence contained in
~*. Assume that R C ~* is a congruence with respect to the operators of E. Let
(P,Q) € R. Thus for all R € P we have (P+R,Q+R) € R,ie., P+R ~* Q+R.
By Lemma 12 we have P ~* (). Thus R C ~*. O

Lemma 13 (restated Lemma 3). If A(P) ~* A(Q) then one of the following
three cases holds:
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1. M*(P) and P ~* A(Q)

2. M*(Q) and A(P) ~* Q

3. Neither M*(P) nor M*(Q), and P ~* Q

Proof. Assume that A(P) ~* A(Q). First we claim that

if M*(P) then P ~* A(P).

In order to see this, note that if M*(P) then Idp U {(P, A(P)), (A(P),P)} is
a WB*. Thus if M*(P) then P ~* A(P) ~* A(Q). If M*(Q) we can argue
analogously. Thus assume that neither M*(P) nor M*(Q). We have to prove
that P ~* Q. For this we show that R = {(P,Q), (Q, P)}U ~* is a WB*. Since
neither M*(P) nor M*(Q), it is easy to see that R satisfies the condition (x)
from the definition of a WB*. Hence it remains to check condition (WB). For
pairs in ~* this is trivial. Thus, let us consider w.l.0.g. the pair (P, Q), where
P %5 P'. Then also A(P) - P'. Since A(P) ~* A(Q) we obtain A(Q) == Q'
for some Q' with P’ ~* Q'. If in fact A(Q) == Q' then we also have Q == Q.

On the other hand if Q' = A(Q) and a = 7 then P -5 P’ ~* A(Q). But for all
choices of x € {4, S,0,A} this gives a contradiction to = M*(P). |

C Congruence with respect to rec

This section is devoted to the congruence property of ~* w.r.t. recursion. Let
S C P xP be a symmetric relation. We say that S is an observational congruence
up to ~* if (P,Q) € S implies for all a € A and P’ € P the following:

(WB') if P 5 P’ then Q == Q' and P’ S R ~* Q' for some R,Q' € P
(4") if *x = A and P 1} then also @
(X) if * = X and P then Q f} or Q = Q' -/» for some Q'

Note that if S is an observational congruence up to ~* then (P,Q) € S and
P 5 (resp. P —/» ) implies by (WB') that also Q —/ (resp. Q - ). We are
aiming to show that P ~* () holds already if there is an observational congruence
up to ~* between P and ). This will be expressed in Lemma 16. We need the
following lemmas beforehand.
Lemma 14. If S is an observational congruence up to ~* then (P,Q) € S and
P =P imply Q == Q' and P' S R ~* Q' for some Q',R€ P.
Proof. Tt is sufficient to show that

if PSR~*Qand P —% P' then Q == Q' and

P'S R ~* Q' for some Q',R' € P,

because this implies that we can trace the chain P =a> P’ transition by transition
choosing R = @ for the first step. So, let P S R ~* Q and P —%+ P'. We derive
using property (WB') R == R” and P’ S R’ ~* R" for some R',R" € P. Now,
R= R" and R ~* Q imply Q = Q' and R" ~* Q' for some Q' € P. As a
whole, we obtain PSR’ ~* R" ~* @', i.e., PSR ~* ('. O
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Lemma 15. If S is an observational congruence up to ~* then ~* S ~* is a

WB*.

Proof. Note that since S is symmetric, also ~* § ~* is symmetric. Assume that
P~*Ri SRy ~* Q.

(WB): Assume that P - P’. We have to show that Q == @’ and P’ ~*
S ~* Q' for some Q'. Since P ~* R; there exists an R} such that R; == R} and
P’ ~* R|. By Lemma 14 and (R;, Ry) € S there exists an R} with Ry = R},
and R} S ~* R),. Finally Ry ~* Q implies Q == Q' and R}, ~* Q' for some Q'.
Altogether we have P’ ~* R| S ~* R ~* Q'.

(A): Let * = A and P {}. Then @ 1} follows immediately.

(S): Let x = S and P —/» . Since P ~° R; we have Ry = R} —/+ for some
Rj. Since (R1, R2) € S there exists by Lemma 14 an Rj with Ry = Rj and
R| S R' ~% R}. Since R| —/ also R’ /> . Next R’ ~° R} and R’ -+ implies
R, = RYJ "/ for some RYj. Now Ry = R, => RY and R» ~°  implies
Q = Q" and RY ~% Q" for some Q". Finally since RY —/» there exists a Q’
with Q" = Q' - .

(0): Analogously to (S) with — replaced by —.

(A): Let * = X and assume that P {}. Since P ~* Ry, either R; f} or By —>
R -+ for some R}. If Ry 1} then by (R1, R2) € S we have Ry 1. Since Ry ~* Q
this implies @ 1Iy. On the other hand if Ry = R} -/ then by (R1,R2) € S and
Lemma, 14 there exist R, R, with Ry = R}, and R| SR ~* R}. Since R| -
also R - . Since R ~* R}, we have R}, . Thus Rs 1y and we can conclude as
above for R; 1. O

Lemma 16. If S is an observational congruence up to ~* then S C ~*.

Proof. Assume that (P,Q) € S, where S is an observational congruence up to
~*. By Lemma 15 the relation ~* S ~* is a WB*. Since Idp C ~*, we have
S ~* C ~*. Therefore if P —%5 P’ then (WB') implies Q == @’ and P’ ~* Q' for
some @' € P. Furthermore since S and ~* are symmetric, also the symmetric
root condition holds. Thus P ~* Q). O

In order to prove recX.E ~* recX.F if E ~* F, it is sufficient to construct an
observational congruence up to ~* containing the pair (recX.E, recX.F). This
will be done in Lemma 18. We will need the following statement.

Lemma 17. Let E,F € E such that V(E) UV(F) C {X} and E ~* F, i.e,
E{P/X} ~* F{P/X} for all P € P. Then the following holds:

1. If E == E', where X is totally unguarded in E', then also F == F' for
some F' such that X is totally unguarded in F'.

2. If x= A and E 1 then also F 1.

8. If x = X\ and E 1} then either F y or F == F' -+ for some F' such that X
s weakly guarded in F'.
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Proof. We will only prove the last statement, the other statements can be shown
similarly. Thus assume that * = XA and E 1. Let a € A\{r}. Since E 1, also
E{a.0/X} { by Lemma 9. Then E{a.0/X} ~* F{a.0/X} implies that either
F{a.0/X} for F{a.0/X} = Q -/ for some Q. If F{a.0/X} f} then Lemma 9
implies F f. If F{a.0/X} == @ —/ then a # 7 and Lemma 7 implies Q =
G{a.0/X} and F == G for some G. Finally, since G{a.0/X} - , X must be
weakly guarded in G by Lemma 8. O

Lemma 18. Let V(E) UV(F) C {X} and E ~* F. Furthermore let
R ={{(G{recX.E/X},G{recX.F/X}) | V(@) C {X}}.
Then S = (RUR™Y) is an observational congruence up to ~*.

Proof. By symmetry it suffices to consider a pair (G{recX.E/X}, G{recX.F/X}).
(WB'): We proceed by an induction on the height of the derivation tree for
the transition G{recX.F/X} - P.
Case 1. G =0 or G = a.H for some a € A: trivial
Case 2. G = X: Assume recX.E - P. Thus E{recX.E/X} - P, which can
be derived by a smaller derivation tree. Thus, the induction hypothesis implies
E{recX.F/X} = @' and PSR ~* Q' for some R,Q’. Since E ~* F, we
have E{recX.F/X} ~* F{recX.F/X}. This implies F{recX.F/X} == @ and
Q' ~* Q for some Q and thus finally recX.F == Q and PSR ~* Q' ~* Q.
Case 8. G = A(H): Assume A(H{recX.E/X}) - P. The case a = 7 and
P = A(H{recX.E/X}) is trivial. On the other hand if H{recX.E/X} -*» P
then by induction H{recX.F/X} == Q for some Q € P with PS R ~* Q. Thus
also A(H{recX.F/X}) % Q.
Case 4. G = Hy+H,: Assume H,{recX.E/X}+Hy{recX.E/X} % P.W.lo.g.
it holds Hi{recX.E/X} -+ P. By induction H;{recX.F/X} == @ for some
Q € P with PSR ~* Q. Thus Hy{recX.F/X} + Ho{recX.F/X} = Q.
Case 5. G = recY.H: By renaming bounded variables we may assume that
Y#X andY ¢ V(recX.E)UV(recX.F) which implies (recY.H){recX.E/X} =
recY.H{recX.E/X} and (recY.H){recX.F/X} = recY.H{recX.F/X}. Assume
recY.H{recX.E/X} - P, hence

(H{recX.E/X}){recY.H{recX.E/X}/Y} =
(H{recY.H/Y}){recX.E/X} =5 P

by a smaller derivation tree. By induction (H{recY.H/Y}){recX.F/X} == Q
for some Q € P with PS R ~* @, which implies recY.H{recX.F/X} == Q.
(A"): Assume that * = A and G{recX.E/X} f}. We have to show that
also G{recX.F/X} 1. First consider the case G = X, i.e., let recX.E ;. By
Lemma 11 either E ft or E == E’ for some E’ such that X is totally unguarded
in E'. If E ff then E ~? F and Lemma 17(2) imply F 1, thus also recX.F
by Lemma, 11. Similarly, if E == E’, where X is totally unguarded in E’, then
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E ~A F and Lemma 17(1) imply F == F' for some F' such that X is totally
unguarded in F’. Thus recX.F f} by Lemma 11.

Now assume that G is arbitrary and that G{recX.E/X} {. By Lemma 9
either G { or (G = H, X is totally unguarded in H, and recX.E ). If G {
then also G{recX.F/X} 4. On the other hand assume that G = H, X is totally
unguarded in H, and recX.E {. Since recX.E 1, from the previous paragraph
we obtain recX.F ). Finally G = H and X totally unguarded in H imply
G{recX.F/X} 1 by Lemma 9.

(A'): Assume that * = X and G{recX.E/X} f}. Again we first consider the
case G = X, i.e., recX.E {}. As for x = A, we have either E f} or E == E' for
some E’ such that X is totally unguarded in E’. If E == E’ for some E’ such that
X is totally unguarded in E’ then analogously to (A’) we obtain recX.F 1. Thus
assume FE {. Then E ~* F and Lemma 17(3) imply either F f} or F = F' -/
for some F’ such that X is weakly guarded in F’. If F' {} then also recX.F {
by Lemma 11. If F = F' —/» for some F' such that X is weakly guarded in
F' then F{recX.F/X} == F'{recX.F/X},i.e, recX.F = F'{recX.F/X}, by
Lemma 5. Furthermore, since ' -/ and X is weakly guarded in F”, we have
F'{recX.F/X} - by Lemma 8.

If G is arbitrary and G{recX.E/X} 1} then as for (4’) either G { or (G =
H, X is totally unguarded in H, and recX.E ). If G {} then also G{recX.F/X} 1.
Thus assume that G = H, X is totally unguarded in H, and recX.FE {}. From
the previous paragraph we obtain either recX.F {} or recX.F == @Q — for
some Q. If recX.F 1} then G{recX.F/X} ff by Lemma 9. On the other hand if
recX.F == @ -/~ , then, since X is totally unguarded in H, G{recX.F/X} =
H{recX.F/X} = Q +» by Lemma 5 and Lemma 6. O

Eventually, we have all the means to derive that ~* is a congruence with respect
to rec.

Corollary 1. If E,F € E then E ~* F implies recX.E ~* recX.F.

Proof. Due to the definition of ~* for expressions with free variables, it suffices
to consider only those E,F € E where V(E) U V(F) C {X}. Assume that
E ~* F holds. Then the relation § appearing in Lemma 18 is an observational
congruence up to ~*. Choosing G = X implies (recX.E,recX.F) € S and thus
recX.E ~* recX.F by Lemma 16. o

D Unique solution of guarded equations

Abusing notation relative to Appendix C, we shall for this section redefine the
notion of an observational congruence up to ~* as follows: A symmetric relation
S CP x P is an observational congruence up to ~* if (P,@Q) € S implies for all
a € A and P’ € P the following;:

(WB) if P == P’ then Q == Q' and P’ ~* Ry S Ry ~* Q' for some
QI7R17R2 € P
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(4") if x = A and P {} then Q 1
(8") if ¥ =S and P = P' /5 then Q = Q' -+ for some Q' € P
(0) if *x=0and P = P' 4/ then Q = Q' -~ for some Q' € P
(M) if x =X and P 1y then Q 1y

Lemma 19. If S is an observational congruence up to ~* then S C ~*.

Proof. First we prove that ~* S ~* is a WB", the rest of the proof is analogous
to the proof of Lemma, 16. Assume that P ~* R; S Ry ~* Q).

(WB): Assume that P — P'. Then there exists an R} with R; SN R} and
P’ ~* R}. The case Ry = R} is clear. Thus let us assume that R; == R}. Then
(WB') implies Ry == R}, and R} ~* S ~* R}, for some R}. Finally R, == R}
and Ry ~* () implies N @' and R}, ~* Q' for some Q'

(A): straight-forward

(S): Assume that * = S and P —/ . Then P ~° R; implies Ry = R} —/»
for some R}. With (Ry,Ry) € S and (S’) we get Ry = R} —/+ , which finally
with Ry ~% @ implies Q = Q' —/» for some Q'.

(0): Analogously to (S) with — replaced by —s.

(N): straight-forward |

Lemma 20. Assume that

—FEeE, PQeP,
— X is guarded in E, V(E) C {X},
— P~ E{P/X} and Q ~* E{Q/X}.

Then § = {{G{P/X},G{Q/X}),(G{Q/X},G{P/X}) | V(G) C {X}} is an

observational congruence up to ~*.

Proof. By symmetry it suffices to consider a pair (G{P/X},G{Q/X}), where
V(G) € {X).
(WB'): Before we prove (WB') we first prove the following weaker condition (wb'):

If G{P/X} = P’ then G{Q/X} = Q' and
P ~* R1 S Ry ~* Q' for some R1,Rs,Q" € P.

The case G{P/X} = P’ is clear. Thus assume that G{P/X} == P'. The
congruence property of ~* and P ~* E{P/X} implies

G{P/X}~* G{E{P/X}/X}=G{E/X}{P/X}.
Since G{P/X} == P’ there exists an R € P with
G{E/X}{P/X}= R and P’ ~*R.

Note that X is guarded in G{E/X} and furthermore V(G{E/X}) C {X}.

Thus we can apply Lemma 5 and 7 to each — -transition in the sequence
G{E/X}{P/X} == R. We obtain an H with
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- R= H{P/X},
— G{E/XHQ/X} = H{Q/X}, and
— X is guarded in H and V(H) C {X}.

Finally G{E/X}{Q/X} = G{E{Q/X}/X} ~* G{Q/X} implies

G{Q/X} == Q' and H{Q/X} ~" Q".

Thus we have P’ ~* R= H{P/X} S H{Q/X} ~* Q', which proves (wb').
In order to prove (WB'), assume that G{P/X} == P'. As above it follows
that there exists an R with

G{E/X}{P/X} = Rand P' ~* R,

ie, G{E/X}{P/X} = % = R. Now again we apply Lemma 5 and 7 to the
first sequence of — -transitions and the subsequent — -transition. We obtain
an H € E with V(H) C {X} and

G{E/X}{P/X} = -“» H{P/X} = R,
G{E/XHQ/X} = — H{Q/X}.

The first point together with (wb') (with H instead of G) implies
H{Q/X}= R'and R~* Ry S Ry ~* R/,

ie., G{E/X}{Q/X} == R'. Finally, since G{E/X}{Q/X} ~* G{Q/X?}, there
exists a Q' with G{Q/X} == Q' and R’ ~* Q'. Thus

P'~*R~*Ri SRy~ R ~* Q.

(A"): Let + = A and G{P/X} . Since G{P/X} ~4 G{E/X}{P/X},
also G{E/X}{P/X} 1. Since X is guarded in G{E/X}, Lemma 9 implies
G{E/X} . Thus G{E/X}HQ/X} 1t and G{Q/X} 1.

(S"): Let x = S and G{P/X} = P’ T4 . Then there exists an R with
G{E/X}{P/X} = R —Tp . Since X is guarded in G{E/X}, we can trace
by Lemma 5 and Lemma 7 the transition sequence G{E/X}{P/X} = R
and obtain an H with R = H{P/X}, G{E/X}{Q/X} = H{Q/X}, and X
guarded in H. Since H{P/X} —/ and X is guarded in H this implies with
Lemma 8 H{Q/X} - . Finally G{E/X}{Q/X} = H{Q/X} -/ implies
G{Q/X} = Q' /> for some Q'.

(0"): Can be shown analogously to (S’) with — replaced by —s.

(X): Let x = X\ and G{P/X} 1. Since G{P/X} ~* G{E/X}{P/X}, also
G{E/X}{P/X} M. By using the arguments from (A’) and (0') above we obtain
G{E/X}{Q/X} 1, which finally gives us G{Q/X} . O

Theorem 12. Assume that

22



—FeE, PQeP,

— X is guarded in E, V(E) C {X},

— P~* E{P/X}, and Q ~* E{Q/X}.
Then P ~* Q).

Proof. We obtain the conclusion by choosing G = X in the relation R defined
in Lemma 20. O

Theorem 13. Assume that

— FeE, PeP,
— X is guarded in E, V(E) C {X}, and
— P~ E{P/X}.

Then P ~* recX.E.

Proof. We have recX.E ~* E{recX.E/X}, thus we can apply Theorem 12 with
Q =recX.E. O

Using the definition of ~* for expressions with free variables, Theorem 12 and
Theorem 13 hold for arbitrary expressions from E.

E Soundness of (rec5) and (rec6)

For (rec5) we have to prove that
P =recX.(.(X + E) + F) ~ recX.(A(E + F)) = Q,
where w.l.o.g. V(E) UV(F) C {X}. Define the following relations:

Ro = {{G{P/X},G{Q/X}) | V(G) C {X}}
R ={(P+ E{P/X}, A(E{Q/X}+ F{Q/X}))}
R=RoUR;'UR UR;?

Thus R is symmetric. We will prove the following statements:

— If (R1,Ry) € R A Ry - R} then Ry == R}, A (R}, R}) € R for some R).
— If (R, R2) € R and Ry 1} then Ry 1).

This implies that R is a WBA, i.e., R C ~*. Then by the first point all pairs in
R also satisfy the root condition, thus R C ~4. If we choose G = X in Ry this
implies P ~4 Q.

The second point above, i.e. (R1,R2) € R and Ry { imply Ry 1, follows
immediately from Lemma 9 and the fact that P f} and @ 1}. In order to prove the
first point, i.e, (R;, Rz) € R and R, == R} imply Ry == R} and (R}, R,) € R
for some R), we first consider the case (Ry, Ra) € Ro U Rg 1 We treat this case
by an induction on the derivation tree for the transition R; — R] using a case
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distinction on the expression G in Rgy. Most cases are straight-forward, we only
consider the two cases resulting from G = X:

Case 1. Ry = P - R} and Ry = Q: Thus recX.(7.(X + E) + F) = R},
ie, 7.(P + E{P/X})+ F{P/X} - R by a smaller derivation tree. There are
two cases:

Case 1.1.a =7 and R} = P+ E{P/X}: We have Q = recX.(A(E+F)) —
AB{Q/X} + F{Q/X}) and (P + E{P/ X}, A(E{Q/X} + F{Q/X})) € R.

Case 1.2. F{P/X} %+ R!. By induction we obtain F{Q/X} = R} and
(R}, R,) € R for some R}. Thus Q — A(E{Q/X}+ F{Q/X}) == R).

Case 2. Ry = Q - R} and Ry = P: Thus recX.(A(E + F)) % R}, i.e,
A(E{Q/X}+ F{Q/X}) = R by a smaller derivation tree. There are three
cases:

Case 2.1. a = 7 and R} = A(E{Q/X} + F{Q/X}). We have P — P +
E{P/X} and (A(E{Q/X}+ F{Q/X}),P+ E{P/X}) € R.

Case 2.2. E{Q/X} -% R}. By induction we obtain E{P/X} == R} and
(R,,R}) € R for some R}. Thus P - P + E{P/X} == R}.

Case 2.2. F{Q/X} - R}. By induction we obtain F{P/X} == R} and
(R}, R}) € R for some R5. Thus also P == R}. This concludes the consideration
of the case (Ry, R2) € RoURG".

It remains to consider the case (R, Rs) € R1 UR] L. For this we will make
use of the case (R;, Rs) € Rg URy". There are two cases:

Case 1. Ry = P+ E{P/X} and Ry, = A(E{Q/X} + F{Q/X}). Thus we
have P + E{P/X} -+ R}, and we can distinguish the following two cases:

Case 1.1. P - R!. Since (P, Q) € Ry we have Q == R}, and (R}, R)) € R
for some R}. Thus A(E{Q/X}+ F{Q/X}) == R).

Case 1.2. E{P/X} % R}. Since (E{P/X},E{Q/X}) € Ry, we obtain
E{Q/X} == R} and thus A(E{Q/X} + F{Q/X}) == R} for some R} with
(R, R;) € R.

Case 2. Ry = A(E{Q/X}+ F{Q/X}) and Ry = P + E{P/X}. We can
distinguish the following three cases:

Case 2.1. a = 7 and R} = A(E{Q/X} + F{Q/X}). Since P —— P +
E{P/X}, we have P + E{P/X} - P + E{P/X}.

Case 2.2. E{Q/X} % R!. Since (E{Q/X}, E{P/X}) € Ry, we obtain
E{P/X} =% R} and (R}, R}) € R for some R}. Thus P + E{P/X} = R),.

Case 2.3. F{Q/X} —% R}. Since (F{Q/X}, F{P/X}) € Ro, we obtain
F{P/X} = R} and (R},R}) € R for some R}. Thus P == R}, and hence
P+ E{P/X} == R). This concludes the correctness proof of (rec5).

For (rec6) we have to prove that
P =recX.(A(X + E) + F) ~? recX.(A(E + F)) = Q,
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where V(E) UV(F) C {X}. We proceed analogously to (rec5). Define
Ro = {{G{P/X},G{Q/X}) | V(G) C{X}},
Ri = {{A(P + E{P/X}), A(E{Q/X} + F{Q/X}))}, and
R=RoUR;'URIUR".

Then the following statements can be shown:

— If (R1,R2) € R A Ry -5 R} then Ry == R, A (R}, R}) € R for some R}.
- If (Rl,Rz) € R and R; 1} then Rs ).

The proofs are analogous to those for (rec5) and left to the reader.

F Soundness

Recall that a strong bisimulation is a relation R C P x P such that for all
(P,Q) € R the following two conditions hold (see also [9]):

— If P % P’ then @ - Q' and (P',Q’) € R for some Q'.
— IfQ = Q' then P %5 P’ and (P',Q’) € R for some Q'.

We write P =2 (@ if there exists some strong bisimulation R containing the pair
(P, Q). The following lemma is easy to see.

Lemma 21. It holds = C ~4.
Theorem 14 (restated Theorem 3). Let E,F € E. If E =* F then E ~* F.

Proof. Due to the definition of ~* for expressions with free variables, it suffices
to check the soundness of the axioms only for P. First we check the core axioms
from Table 1, which have to be verified for our finest congruence ~4:

— (81), (52), (S3), (S4), (recl), (rec2), and (rec4) are sound for = [9].

— (rec3): see Theorem 13 from Appendix D. 3

— (r1), (72), and (73): Soundness for ~4 can be shown analogously to the
soundness for ~, see e.g. [10].

— (rec5) and (rec6): see Appendix E.

We continue with the distinguishing axioms from Table 2.
— (A): We need to prove that A(A(P)+ Q) ~2 7.(A(P) + Q). The symmetric
closure of the relation
{(A(A(P) + @), 7-(A(P) + Q)), (A(A(P) + Q), A(P) + @))} UIdp

can be shown to be a WB?. Furthermore, (A(A(P) + Q), 7.(A(P) + Q)) sat-
isfies the root condition, thus A(A(P) 4+ Q) ~* 7.(A(P) + Q).

3 Note that (rec3) is also sound for 22 [9], but since (rec3) has the form of an implica-

tion, this does not imply the soundness with respect to ~2.
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— (X\): We need to prove that A(0) ~* 7.0. It is not difficult to prove that

{(4(0),7.0),(A(0),0)}

is a WB* and (A(0),7.0) satisfies the root condition.
— (S): We have to prove that A(T.P + Q) ~° 7.(7.P + Q). It is not difficult to
prove that the symmetric closure of

{AFT.P+Q),7.(T.P + Q)), (A(T.P + Q),7.P + Q)} UIdp

is a WB® and that (A(T.P + Q), 7.(7.P + Q)) satisfies the root condition.
— (0): We have to prove that A(a.P + Q) ~° 7.(a.P + Q). The symmetric
closure of

{{A(a.P + @), 7.(a.P + Q)), (A(a.P + Q),a.P + Q)} UIdp

is a WB° and the pair (A(a.P + Q), 7.(a.P + Q)) satisfies the root condition.
— (€): We have to show that A(P) ~ 7.P. The symmetric closure of

{(A(P)vTP>7<A(P)7P)} UId]P’

is a WB and (A(P), 7.P) satisfies the root condition. O

G Derivable laws for =2

Lemma 22 (restated Lemma 1). The following laws can be derived:

(A A(E) =2 A(E)+E

(tA) A(E) =2 1.A(E) + E

(rA") A(E) =2 1.A(E)

(rec?) recX.(r.(X + E) + F) =2 recX.(r.X + E + F)

Proof. First we derive (tA) as follows, where X € V\V(E):

A(E) =2 recX.A(E) (rec2)
=4 recX.A(0 + E) (S4)
=4 recX.(1.(X +0) + E) (rech)
=4 7.(recX.(r(X +0) + E)+0)+ E (rec2)
=4 7.(recX.A0+E)+0) + E (rec5)
=2 r.(recX.A(E)) + E (S4)
=2 7. A(E)+E (rec2)
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Now (74’) can be deduced as follows:

T.A(E) =2 T.A(E) + A(E) (12)
=4 A(E)+TA(E) +E (TA)
=4 1.A(E) + (S3)
=4 A(E) (t4)

Law (4’) is an immediate consequence of (7A) and (74"). Finally for (rec7) note
that by (rec5) both expressions can be transformed into recX.A(E + F). |

Lemma 23. If X is unguarded in E € E then E = E + X.

Proof. We prove the lemma by an induction on the structure of E. Since X is
unguarded in E we only have to consider the following cases.

Case 1. E = X: By axiom (83) we have X =4 X + X.

Case 2. E = 7.E': We have

E=1E =*1E +FE (12)
=2 7E +E+X (induction hypothesis)
=4 EF+ X (T2)

Case 3. E = A(E'). With the derived law (A’) from Lemma 1, we can conclude
analogously to case 2.

Case 4. E = E) + E5: W.l.o.g. assume that X is unguarded in F5. The induction
hypothesis implies By =2 Ey+X.Thus E = E1+Fy, =2 E1+F, + X = E+X.
Case 5. E = recY.E': Since X must be free in E we have X # Y. The induction
hypothesis implies E' =2 E'+X. Thus E'{recY.E'/Y} =2 E'{recY.E'/Y}+X.
Axiom (rec2) implies recY.E' =4 recY.E' + X. 0

Theorem 15 (restated Theorem 4). Let E € E. There exists a guarded F
with E =2 F (and thus V(E) = V(F)).

Proof. The proof follows [10]. We prove the theorem by an induction on the
structure of the expression E. Only the case E = recX.E' is interesting. For this
case we prove the following stronger statement (7).

Let E € E. Then there exists a guarded F' such that

— X is guarded in F,

— there does not exist a free unguarded occurrence of an arbitrary
variable Y € V(F) which lies within a subexpression recZ.G of F, *
and

— recX.E =2 recX.F.

4 A specific free occurrence of Y in F is called unguarded if this occurrence does not
lie within a subexpression a.F’ with a # .
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We prove (}) by an induction on the nesting depth d(E) of recursions in E. We
have for instance d(recX.(a.recY.(a.X +b.Y) + a.(recX.(recX.(0))))) = 3. First
we consider the following case (I):

There does not exist an unguarded occurrence of an arbitrary variable
Y € V(E) which lies within a subexpression recZ.G of E.

This case also covers the induction base d(E) = 0. So assume that E satisfies
(1)- It remains to remove all unguarded occurrences of X in E. Since E satisfies
() we know that no unguarded occurrence of X in E lies within a recursion. If
X is guarded in E we are ready. So assume that X occurs unguarded in E. We
now list several reduction steps which when iteratedly applied to E terminate
with an expression that satisfies (). During this reduction process we either
eliminate an unguarded occurrence of X or we reduce the number of 7-guards
and A-operators that proceed an unguarded occurrence of X. Since E satisfies
(1), one of the following four cases must apply.

Case 1. E=1.(X + E') + F': With the derivable law (rec7), we get

recX.E = recX(1.(X + E') + F') =2 recX.(r.X + E' + F').

We continue with the expression 7.X + E' + F'.

Case 2. E = 7.E' + F', where X is unguarded in E’, but X is weakly guarded
in E': Lemma 23 implies E' =4 X + E'. Thus E =4 7.(X + E') + F'. By case
1 we can continue with the expression 7.X + E' + F'.

Case 3. E = A(X + E') + F': With (rec5), (rec6), and (rec7) we get

recX.(A(X + E') + F') =2 recX.(A(E' + F"))
=2 recX.(T.(X + E') + F') =2 recX.(r.X + E' + F').

We continue with the expression 7.X + E' + F'.

Case 4. E = A(E') + F', where X is unguarded in E’, but X is weakly guarded
in E': Again by Lemma 23 we have E' =4 X + E'. Thus E =2 A(X + E') + F".
An application of case 3 gives the expression 7.X + E' + F'.

By iterating these four reduction steps we finally arrive at an expression,
where all unguarded occurrences of X in E occur in the form £ = X + ---
or E = 7.X + .... Furthermore by axiom (S3) and (72) we may assume that
there exists at most one occurrence of this form. Thus it remains to consider the
following two cases:

Case 5. E = X + E': By axiom (rec4) we have

recX.E = recX.(X + E') =2 recX.E'.
Case 6. E = 1.X + E': By axiom (rec5) we have
recX.E = recX.(1.X + E') =2 recX.(A(E")).
Note that X is guarded in A(E') if X is guarded in E’. This concludes the

consideration of case (}).
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It remains to consider the cases that are not covered by (1). For this let us
choose a subexpression recX’.E’ of E such that this subexpression does not lie
within another recursion, thus recX'.E’ is an outermost recursion. Since d(E') <
d(E), the induction hypothesis implies that there exists an expression F with
the following properties:

— X' is guarded in F.

— There does not exist an unguarded occurrence of an arbitrary variable Y €
V(F) which lies within a subexpression recZ.G of F.

— recX'.E' =2 recX' F

It follows that in the expression F{recX’.F/X'} there does not exist an un-
guarded occurrence of any variable which lies within a recursion. Axiom (rec2)
allows us to replace recX’.E’ within E by F{recX'.F/X'}. If we do this step for
every outermost recursion of E, we obtain an expression that satisfies (}). This
concludes the proof. a

H Properties of equation systems

Theorem 16 (restated Theorem 5). Every guarded expression E x-provably
satisfies a guarded and saturated SES over the free variables V(E).

Proof. First we prove by induction on the structure of the expression E that E
x-provably satisfies a guarded SES & over the free variables V(E) and the formal
variables X7, ... , X;,. Furthermore for the inductive proof we need the following

property (§):

If Y € V(E) is guarded in E then there do not exist ¢, such that
X1 = X{ and Y occurs as a summand in the expression E;, where
X; = E; is an equation of £.

Case 1. E=0or E € V: trivial
Case 2. E=a.F:

By induction F' x-provably satisfies a guarded SES £ over the free vari-
ables V(F) and the formal variables X, ..., X,,. Then a.F %-provably satisfies
the guarded SES {X, = a.X1, X = A(Xo)} U& over the formal variables
Xo, ... , Xm. Furthermore this new SES satisfies (§) if £ satisfies (§).

Case 3. E = A(F):

Again let £ be a guarded SES over the free variables V(F) and the formal
variables X1,... , X, that is x-provably satisfied by F. Then A(F) %-provably
satisfies the guarded SES {X, = 7.X{*, X£* = A(Xo)} U€E. To see this one can
use the derived law (7A’) from Lemma 1. Furthermore this new SES satisfies (§)
if £ satisfies (§).

Case 4. E=F + G-

Assume that F' (resp. G) x-provably satisfy the guarded SES & (resp. F)
over the free variables V(F') (resp. V(G)) and the formal variables Xi,... , X,
(vesp. Y1,...,Y,), where wlo.g. {X1,...,Xm} N{Y1,...,Yn} = 0. Let the
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equation X; = Fy (resp. Y7 = G1) belong to £ (resp. F). Then F + G *-
provably satisfies the guarded SES {Z = F; + G1,Z4 = A(Z)}UE U F over the
formal variables Z, X1,... , X, Y1, .. ,Y,. Furthermore this new SES satisfies
(8) if £ and F satisfy (8§).

Case 4. E = recXy.F, where X is guarded in F":

The case Xo ¢ V(F) is trivial, thus assume that X € V(F'). Let F' *-provably
satisfy the guarded SES &£ over the free variables V(F') and the formal variables
X1,...,X ;. Assume that & satisfies (§) and assume that the equation X; = E,
belongs to £. Let the SES F result from & by replacing each right hand side E;
of an equation of & by E;{E1/X,}. Note that due to (§), the free variable X
does not appear as a summand in E;, hence Xy does not occur in the SES F.
Then recXo.F *-provably satisfies the SES {X, = El,XOA = A(Xo)} U F over
the formal variables Xo,...,X,, and the free variables V(E) = V(F)\{Xo}.
Furthermore since & satisfies (§), this new SES is guarded and satisfies again
(5).

It remains to transform a guarded SES £, which is x-provably satisfied by an
expression F, into a guarded and saturated SES, which is also x-provably satisfied
by E. We only show, how the first condition of the definition of a saturated SES
can be enforced by induction on the length of the transition sequence X; == X i
the second condition on free variables can be enforced similarly. First assume
that for £ it holds X; —— X/ — % — X3 for some f§3,k. By induction
we may assume that already X; — X 5 . ¢ . Assume that the equations
X; = 7'.X,é3 + E; and Xy = Ej, belong to £. If 8 = _ then by axiom (72) we
can replace the equation X; = 7. Xy + E; by X; = 7. X} + E; + Ei. On the other
hand if 5 = A then the same replacement is justified by axiom (72) and the law
(4") from Lemma 1. The resulting SES is still *-provably satisfied by E, it is
guarded, and it satisfies X; —— X7

It remains to consider the case that & satisfies X; — = X ,’f - X7. By
induction we may assume that already X; — X f 0 X 5. Assume that the
equations X; = a.X,f + E; and X, = T.X5 + By belong to £. If B = _, ie,
X; = a. X\, + E;, then we can by axiom (73) replace the equation X; = a. X, + E;
by X; = a. Xy + a.X]?‘ +E,.If3=A,1ie, X; = a.XkA + E;, then we must have
a = 7, since an SES does not contain summands of the form a. X4 for a #T.
Thus X; = 7.X/ + E; and by axiom (72) and (A’) we can replace this equation
by X; = T.XkA + T.XJ‘?“ + Er + E;. In both cases the resulting SES is still *-
provably satisfied by E, it is guarded, and it satisfies X; — X 5 O

Lemma 24. Let £ = {X; = E; | 1 <i <n}U{XA = A(X;) |1 <i < n}
be a guarded SES without free variables, which is x-provably satisfied by the
expressions Py,... ,P, € P.

1. If a(P;) ~* P =% Q then X§ == X and Q ~* v(Py) for some k, .

2. If x = A and o(P;) 1} then X¢ = X for some k.

8. If x = X and a(P;) 1 then there ezists k such that either X => X/ or
Xf‘ = Xy —7L) .
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Proof. Since £ is guarded there exists a linear order < on the formal variables
(X1, X2,...,X,, XA} such that X - X7 implies X < X2. We prove all
statements of the lemma by an induction along the order <.

1. Let us first consider the case a = 7, i.e, P = Q. The case P = () is trivial.

Thus assume that P — R = Q. Then P ~* a(P;) ~* a(E;{P/X})
implies a(E;{P/X}) = R’ and R ~* R' for some R'. If o(E;{P/X}) = R’
then we have R ~* R' ~* o(P;). Since the transition sequence R => @ is
shorter than the original sequence P == @, we can conclude by an induction
on the length of the transition sequence. Thus assume that a(E; {P/X}) -
P' = R, where P' # a(E;{P/X}). We obtain E;{P/X} — P’ and thus
P' = B(P;) and X¢ — X} for some 3, j. Since X{ < X{* and 8(P;) = R’
we obtain inductively X Jﬂ = XJ and R' ~* §(P,) for some 4,¢. Finally
R= @, R~* R ~* §(P;) and X{ < X{ implies inductively X} => X/
and Q ~* v(Py) for some k,~.
Now assume that a # 7, i.e, P == Q. Since P ~* a(P;) ~* a(E;{P/X})
we get a(E;{P/X}) == R and Q ~* R for some R. If a(E;{P/X}) -
P; => R for some j, then X¢ - X; = X, and 7(P;) ~* R ~* Q for
some k,~ by the previous paragraph. On the other hand if a(E; {P/X}) -
B(P;) =% R, where X2 - X/, then X{ < X& and by induction we get
Xjﬁ = X} and y(P) ~* R ~* Q for some k, .

2. Assume that * = A and a(P;) f). Since a(P;) ~? o(E;{P/X}), also
a(E;{P/X) 1. Thus either a = A, or there exists j, 3 with a(E;{P/X)
B(P;) f. Hence X& — X f and we can conclude inductively.

3. Assume that * = X and a(P;) 1. Since a(P;) ~* a(E;{P/X}), we have

a(E;{P/X}) 1. Thus, either & = A (and we are ready), or = _ and
X; -/ (and we are ready), or there exist j, 3 such that X& -5 X f and
B(P;) . In the latter case we can conclude by induction. O

Claim 3 (restated Claim 1 from the proof of Theorem 7) Assume the no-
tation from the proof of Theorem 7. If a(P;) ~* 3(Q;) then the following impli-
cations hold:

1. If X; = X then either (a = T and y(Py) ~* B(Q;)) or there exist £,8
such that Y; = Y} and v(Py) ~* 6(Q)-

2. If Y; = Y then either (a =T and o(P;) ~* §(Q,)) or there erist k,y such
that X; = X} and v(Py) ~* 5(Qq).

3. Let x = A. If o = A then either 3 = A orYj R YZA for some £.

Let x = A. If B = A then either a = A or X; — XkA for some k.

Let « =X. Ifa= A or (a = _ and X; - ) then either 3= A, or (8= _

and Y; - ), or Y; = Y2 for some £, or Y; — Y; -/» for some L.

6. Let x =X IfB=A or (8= _ and Y; - ) then either a = A, or (o= _
and X; - ), or X; — XkA for some k, or X; - X, -/» for some k.

Al
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Proof. By symmetry it suffices to show (1), (3), and (5). For (1) assume that
X; - X]. Thus a(E;{P/X}) = v(P). Since a(Ei{P/X}) ~* a(P;) ~*
B(Q;), we have 3(Q;) = R for some R with y(P;) ~* R. By Lemma 24(1) we

obtain Yjﬁ = V) and y(P;) ~* R ~* §(Qq) for some £,§. Since &, is saturated
we obtain the conclusion of (1).

For (3) assume that x = Aand A(P;) ~2 3(Q;). Thus 3(Q,) - Lemma 24(2)
implies Yj6 = Y2 for some /. Saturation of £ yields the conclusion of (3).

Finally let ¥ = A. f a = A or (&« = _ and X; -5 ) then a(E;{P/X}) M-
Since a(E{P/X}) ~* a(P;) ~* B(Q;), we obtain 3(Q;) fr. Lemma 24(3)
implies that there exists £ such that either Yjﬁ = YA or Yjﬁ =Y, 4 ;.
Saturation of & yields the conclusion of (5). O

Claim 4 (restated Claim 2 from the proof of Theorem 7) Assume the no-
tation from the proof of Theorem 7. If P; ~* (); then the following holds:

1. If X; =5 X then there exist £, 3 such that Y; —*» YZB and a(Py) ~* B(Qy).
2. IfY; % Yf then there exist k,a such that X; — X2 and a(Py,) ~* B(Qq).

Proof. Follows analogously to Claim 3. O

I Completeness for open expressions

For this section let us fix a variable X € V and an action a € A\{r}. In the
following we have to deal with substitutions that are allowed to replace different
occurrences of the variable X by different expressions. > Let O(E) be the set
of free occurrences of the variable X in the expression F € E. Now if A C E
and o : O(E) — A, i.e., 0 is a function mapping every free occurrence of X in
E to an expression from A, then we denote by E? the expression that results
from replacing every free occurrence o € O(E) of the variable X in E by the
expression ¢(0) € A. For instance, if we denote the two free occurrences of X in
E=X+a(X+A®Y)+ recX.(r.X)) by o1 and 02 and define o(0;) = .0 and
0(02) =0 then E7 = 0.0+ a.(0 + A(Y) + recX.(7.X)). Finally let Py = {P €
P | P ~* 0} and a.Py = {a.P € P | P € Py }. Since the sets O(E) and O(a.E)
(resp. O(A(E)), O(recY.E) where X #Y) are in a natural 1-1-correspondence,
we will identify them in the sequel. Furthermore if E = E; + E5 then O(E) can be
identified with the disjoint union of O(E;) and O(E) and if o : O(E; +E3) - E
then there are unique o; : O(E;) — E with E7 = EJ* 4+ EJ2.

Lemma 25. Assume that a € A does not occur in E € E and let 0 : O(E) —
a.Py. If E° =* G then G = F* for some p: O(F) — a.Pg.

% Formally an occurrence of a variable X in E can be defined as the unique path from
the root to the occurrence in the expression tree corresponding to E.
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Proof. Note that X ¢ V(E°) and hence also X ¢ V(G). We can write G uniquely
as G = F* for some F € E and p : O(F) — a.E such that a does not occur in
F. Note that X ¢ V(H) for all H € im(p). We claim that im(p) C a.Py .

First let us reduce the problem to closed expressions. Choose an action b €
A\{r,a} and denote for an expression H € E by H the expression that results
from H by replacing every free variable Y € V(H)\{X} by b.0. Thus V(H) C
{X}. Slmllarly for m : O(H) — E denote by 7:O(H ) — E the function defined
by o — 77( ). With this definition we have Eo =* Fr. We may identify the sets
O( ) and O(E ) and s1m11arly for F. By doing this identification and noting that

im(c) C P we obtain E7 = E°. Similarly we have Fr = F?.

We claim that im(p) C a.Pq . Before proving this, let us first explain how this
implies im(p) C a.lPg . Take some H € im(p). Then H =a.H' for some H eE. If
H' would contain a free variable Y, then the he expression H=aH € im(p) would
not be contained in a.Py (the expression H' would contain a subexpression b.0,
which implies H’ #* 0). But this would contradict im(p) C a.Py. Thus H € P
and hence p = p.

It remains to prove im(p) C a.Pg . By definition we have im(p) C a.P. Assume
that there is a free occurrence o of X in F such that P, = p(o) & aPy, ie.,
P, = a.P; and P #* 0 Then we can reach from F by some sequence of transitions
an expression where this occurrence is totally unguarded (this can be proved by

a simple induction). Furthermore since a € A does not occur in F', this sequence

of transitions does not involve a. Thus ) L NN Py #* 0 for some

b; € A\{a}. Since Eo =~ FP, ie., E° ~* F? and both expressions belong to
P, we have Eo &y .. Ly Q1 = Q2 = Q3 for some ¢; € A\{a} and
Q1, @2, Q3 € P such that P, ~* @3, and thus @3 #* 0. Since a does not occur
in E, the expressions (1,2 must satisfy 1 € im(c) and Q1 = a.Q2. Thus

Q2 ~* 0. With Qs = Q3 this implies Q3 ~* 0, a contradiction. O

Lemma 26. Assume that a € A\{r} does neither occur in E nor in F. If
E” =F? foro:O(E) = alPy and p: O(F) - a.Py then E=F.

Proof. The lemma can be shown by induction on the structure of £ € E. O

Lemma 27 (restated Lemma 4). Let x # 0 and G,H € E. If a € A\{7}
does neither occur in G nor in H then G{a.0/ X} =* H{a.0/X} implies G =* H

Proof. Let x # 0 and G,H € E. We will prove the following more general
statement. Let 0 : O(G) — a.Py and p: O(H) — a.Py. We claim that G” =* H?
implies G =* H. Assume that G° =* H”. We will prove G =* H by an induction
on the structure of the proof for G =* H?. We have to consider the following
cases:

Case 1. G° = H”. This case is covered by Lemma 26.

Case 2. G° =* HP’ is an instance of one of the axioms for ~* except of the
conditional axiom (rec3). We show that already G =* H is an instance of an
axiom for ~*. Most of the axioms to not involve action prefixes, and are therefore
quite easy to treat. Let us exemplary consider the cases (rec2) and (73).
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(rec2): We have G° = recY.E and H? = E{recY.E/Y} and wlo.g. X ZY.
Thus G = recY.F and E = F? for some F such that a does not occur in
F. Thus H? = E{recY.E|Y} = F°{recY.F°|Y} = (F{recY.F/Y})™ for some

O(F{recY.F/Y}) — a.Py. Lemma 26 implies H = F{recY.F/Y}. Thus
G =* H is an instance of axiom (rec2).

(73): Assume that G° = b.(E+7.F) and H? = b.(E+7.F)+b.F for E,F € E
and b € A. From H? = b.(E + 7.F) + b.F we deduce H = H; + Ho, H* =
b.(E + 7.F) and HY? = b.F. We can distinguish the following two cases:

Case 2.1. a = b: Thus G° = a.(E + 7.F), H* = a.(E + 7.F) and H}? = a.F.
Since a does neither occur in G nor in H;, we have G = Hy = H, = X. Thus
H =X+ X and G =* H is an instance of axiom (S3).

Case 2.2. a # b: It follows G = b.(G1 + 7.G2), G{* = E, G3> = F, H; =
b.(H11 + 7.H12), Hflll =E, Hf122 = F, and finally also Hy = b.H3, H* = F.
Thus G{* = Hy}' and G3* = H1p122 = H{”. Lemma 26 implies G; = Hy; and
Go=Hio= H3 It follows H=b. (G1 +T. G2)—l—b G5, and G =* H is an instance
of axiom (73).

Finally note that case 2. cannot deal with axiom (0): If G = A(X + 0)
and H = 7(X + 0) then G = H is not an instance of an axiom for ~° but
G{a.0/X} = H{a.0/X} is an instance of axiom (0). This is the reason for
excluding the case * = 0 in Lemma 4.

Case 8. G =* HP is derived by axiom (rec3). Thus there is E € E such
that H? = recY.E and G° =" E{G°/Y} can be derived by a smaller proof.
Furthermore Y must be guarded in £ and w.l.o.g X # Y. Since H? = recY.E,
we have H = recY.F and E = F? for some F. Thus G° =* E{G°/Y} =
(FPY{G° Y} = (F{G/Y})™ for some 7 by a smaller proof. Hence by induction
we get G =* F{G/Y}. Furthermore since ¥ must be guarded in E = Ff and
Y # X, Y must be also guarded in F. We obtain G =* recY .F,ie., G =* H.
Case 4. G° =* H? is derived from G? =* F and F =* HP”, which both have
smaller proofs. With Lemma 25 we get F' = E™ for some E and 7 : O(E) — a.IPy.
Thus G° =* E™ and E™ =* H? by smaller proofs, which implies by induction
G="FEand E=*"H,ie, G =

Case 5. G = b.E, HP = bF and E =* F by a smaller proof. ¢ We can
distinguish two cases:

Case 5.1. a = b: Since a does neither occur in G nor in H we have G = X = H.
Case 5.2. a # b: It follows G = b.G', H =b.H', E=G'?, and F = H'”. Thus
G'° =* H'" and by induction we have G’ =* H', i.e, G =* H. O

Theorem 17 (soundness of (E) for ~°). Assume that E{0/X} ~° F{0/X}
and E{a. O/X} ~0 F{a.0/X}, where a € A\{r} does neither occur in E nor in
F. Then E~O F.

Proof. Let E{0/X} ~° F{0/X} and E{a.0/X} ~% F{a.0/X} where a € A\{7}
does neither occur in E nor in F. We have to show that E ~° F. Due to the
definition of ~° for expressions with free variables, it suffices to consider the case

6 All other cases (like for instance G° = E1 + E3, H? = F1 + F; and E; =" F; by a
smaller proof) can be treated similarly.

34



that V(E) UV(F) = {X}. Thus we have to show that for all P € P it holds
E{P/X} ~°% F{P/X}. Fix an arbitrary P € P. We distinguish the following
two cases.

Case 1. P —». We first claim that the symmetric closure of

R = {(G{P/X},H{P/X}) | a does neither occur in G nor in H and
G{a.0/X} ~° H{a.0/X}}

is a WB°. Consider a pair (G{P/X}, H{P/X}) € R.

(WB): Assume that G{P/X} L p By Lemma 7 we can distinguish the
following two cases:

Case i. G 2 G’ and P' = G'{P/X }. Thus G{a.0/X} > G'{a.0/X}. Since
G{a.0/X} ~° H{a.0/X}, we have H{a.0/X} == Q and G'{a.0/X} ~° Q for
some @. Note that G Nyl implies b # a # 7. Thus by Lemnla 7 we have
H =% H' and G'{a.0/X} ~° Q = H'{a.0/X}. Thus H{P/X} =% H'{P/X}
and (G'{P/X},H'{P/X}) € R (note also that since a does not occur in G,
G5 a implies that a does not occur in G’ as well, and similarly for H, H').

Case ii. P -5 P' and X is totally unguarded in G. Thus G{a.0/X} —% 0.
Since G{a.0/X} ~° H{a.0/X}, we obtain H{a.0/X} ==. Using Lemma 7 and
the fact that a € A\{7} does not occur in H it follows H = H' for some H’
such that X is totally unguarded in H'. Hence H{P/X} = H'{P/X} 2P

(0): Let G{P/X} -/ . Lemma 8 implies that G -/ and that X is weakly
guarded in G (recall that P —). Thus G{a.0/X} -/ , from which we obtain
H{a.0/X} = H'{a.0/X} — for some H' with H = H'. Thus X must
be weakly guarded in H' (otherwise H'{a.0/X} —%+), and hence H{P/X} =
H'{P/X} 4.

This finishes the proof that R is a WB". Hence R C ~°. Now consider a
pair (G{P/X},H{P/X}) € R such that not only G{a.0/X} ~° H{a.0/X} but
G{a.0/X} ~° H{a.0/X}. By redoing the proof for the condition (WB) above
and using R C ~°, we see that this pair satisfies the root condition. Thus
G{P/X} ~* H{P/X}. In particular, we obtain E{P/X} ~° F{P/X}. This
finishes the proof for case 1.

Case 2. P - . We first claim that the symmetric closure of

R ={(G{P/X},H{P/X})| G{0/X} ~* H{0/X}}

is a WB°. By symmetry it suffices to consider a pair (G{P/X}, H{P/X}) € R.

(WB): Similarly to case 1 (note that case ii cannot occur, since P - ).

(0): Let G{P/X} - . Then G - . Hence also G{0/X} -/ , which implies
H{0/X} = H'{0/X} — for some H' with H = H'. Since we assumed
P -, it follows H{P/X} = H'{P/X} 4.

This finishes the proof that R is a WB". The rest of the argumentation is
completely analogous to case 1. O

35



