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Abstract. We prove that the existential theory of equations with nor-
malized rational constraints in a fixed graph product of finite monoids,
free monoids, and free groups is PSPACE-complete. Under certain re-
strictions this result also holds if the graph product is part of the input.
As the second main result we prove that the positive theory of equations
with recognizable constraints in graph products of finite and free groups
is decidable.

1 Introduction

Since the seminal work of Makanin [19] on equations in free monoids, the decid-
ability of various theories of equations in different monoids and groups has been
studied, and several new decidability and complexity results have been shown.
Let us mention here the results of [25,27] for free monoids, [6,15,20,21] for
free groups, [9] for free partially commutative monoids (trace monoids), [10] for
free partially commutative groups (graph groups), and [7] for plain groups (free
products of finite and free groups).

In this paper we continue this stream of research. We will present two main
results. The first one concerns existential theories of equations. We start with
the definition of a class of monoids, which are constructed from finite monoids,
free monoids, and free groups using the graph product construction, which is a
well-known construction in mathematics. This class of graph products strictly
covers all classes mentioned above. Then we prove that for such a graph product
the existential theory of equations is PSPACE-complete, where in addition we
are allowed to specify constraints for the variables. These constraints are taken
from a class of sets, called normalized rational sets, which (in general) lies strictly
between the class of recognizable and rational sets. Furthermore under certain
restrictions our PSPACE upper-bound holds also in the case that (a suitable
description) of the graph product is part of the input.

Our second main result concerns positive theories of equations. We prove that
if we restrict our class of graph products to groups, then for each group from the
resulting class the positive theory of equations with recognizable constraints for
the variables is decidable. Under certain restrictions we obtain an elementary
complexity. Up to now only for the class of free groups a decidability result for



the positive theory was known, in particular it was open whether the positive
theory of equations for a free partially commutative group is decidable. The full
paper of this extended abstract can be found in [8].

2 Preliminaries

An involution on a set is a mapping ~ such that T = z for all elements z. For
an involution on a monoid we demand in addition that both Ty = § T and
1 = 1, where 1 is the neutral element of the monoid. Taking the inverse in a
group is for instance an involution. In our setting we let I" be a finite alphabet of
constants and A C I' such that an involution ~ is defined on A. This involution
is extended to A* by Ty -~ &, = Ty, ---Z1. For a monoid M we denote by Z(M)
a submonoid of M such that an involution ~ is defined on Z(M). In many cases
we choose Z(M) to be the submonoid of elements having left- and right-inverses,
i.e., Z(M) is the group of units of M, but this is not necessarily the case, for
instance for M = I'* we take Z(M) = A*. We consider only finitely generated
monoids. More precisely, we consider monoids M together with a fixed surjective
homomorphism ) : I'* — M such that =} (Z(M)) = A* and ¥(Z) = 9 (z) for all
x € A*. Moreover, we assume that there is a normal form maeppingv : M — I'*,
ie., ¥(v(z)) = z for all x € M, such that v(M) is a regular subset of I'*. Note
that it is allowed that v(Z) # v(z) for some € M. A language L C M is called

— recognizable if y~1(L) C I'* is regular,
— normalized rational if v(L) C I'* is regular,
— rational if L = (L") for some regular language L' C I'*.

The corresponding classes are denoted by REC(M), NRAT(M), and RAT(M),
respectively. We have REC(M) C NRAT (M) C RAT(M). The classes REC(M)
and RAT (M) are classical, see e.g. [4], their definitions do neither depend on v
nor on 1 as can be seen easily. The definition of NRAT (M) is less robust, it de-
pends on the normal form mapping v. The classes REC(M) and NRAT (M) are
Boolean algebras, whereas RAT (M) is not a Boolean algebra in general. For free
monoids we have REC(M) = NRAT (M) = RAT(M). For the canonical normal
form mappings which we will use we have: REC(M) # NRAT(M) = RAT(M)
for free groups [3], REC(M) = NRAT(M) # RAT(M) for free partially commu-
tative monoids (trace monoids) [24], and REC(M) # NRAT(M) # RAT(M) for
free partially commutative groups (graph groups). The later holds for instance
in M =7Z x Z.

3 The theory of equations with constraints

Let M be a monoid as above and let C be a family of subsets of M such that
I(M) € C. Let 2 be a set of variables and 2 = {X | X € 2} a disjoint copy
of 2. An equation is a pair (U,V) with U,V € (I' U 2 U 2)*, it is written as
U = V. Equations and constraints of the form X € L with X € U and L € C



are called atomic formulae. From these we construct first order formulae using
conjunctions, disjunctions, negations, and universal and existential quantifica-
tion over variables from (2. We impose the syntactical restriction that whenever
we use a variable X € (2, then this goes together with the implicit constraint
X € Z(M). Given ¢ : I'* — M, Z(M), the involution ~ : Z(M) — Z(M), and
a sentence ¢, i.e., a formula in the sense above without free variables, we can
evaluate ¢ over M in the obvious way with the restriction that if a variable X
evaluates to * € M, then X must evaluate to . The theory of equations with
constraints in C, briefly Th(M,C), denotes the set of all sentences that are true
in M. A well-known example of a decidable theory of equations is the Pres-
burger Arithmetic [26]. Translated into our framework this gives the following
proposition.

Proposition 1. Th(N*, RAT(NF)) and Th(Z*, RAT(Z*)) are decidable.

Note that RAT(N*) and RAT(Z*) are the classes of semilinear sets in N* and
7%, respectively. The following result can be easily deduced from Proposition 1
since the free product Z /27 x Z /27 of two copies of Z /27 is isomorphic to the
semi-direct product of Z by Z /27Z.

Corollary 1. Th(Z /2Z x Z [2Z, RAT(Z [2Z x 7 |27)) is decidable.

The positive theory of equations with constraints in C is the set of all sentences
in Th(M,C) that do not use negations. The existential theory of equations with
constraints in C is the set of all sentences in Th(M,C) that are in prenex normal
form without universal quantifiers. We will need the following result, which is a
decomposition lemma in the style of the Feferman Vaught Theorem. Its proof in
[8] is due to Yuri Matiyasevich (personal communication).

Proposition 2. Let My and M, be monoids with classes C1 C 2M1 and Cy C
2Mz Let C be a class of subsets of My x Moy such that each L € C is a finite
union of sets of the form Ly x Ly with Ly € C1 and Ly € Cy. If both Th(M;,C;)
and Th(M>,Cs) are decidable, then Th(My x Ms,C) is decidable, too. The same
implication also holds for positive theories.

4 Graph products

Let (V, E) be a finite undirected graph with vertex set V and edge set E C (}).
Every node n € V is labeled with a monoid M,, which is either a free monoid, a
free group, or a finite monoid. In fact, it is enough (and convenient) to assume
that M, is either isomorphic to N or to Z, or M, is finite. If M,, = N, then we
let I, = {an} and A, = 0. If M,, = Z, then we let [, = A,, = {an,a,}. Finally
if M, is finite, then we let I, = M,\{1} and A, = Z(M,)\{1}, where Z(M,,)
is the subgroup of units of My, i.e., Z(M,) = {a € My, | 3b: ab = ba = 1}.
Thus, for each n € V' we have a canonical homomorphism %y, : Iy — M, with
¥, H(Z(M,)) = A%. To see this note that if uv € Z(M,,) and if M, is finite, then

n

u,v € (M), too. The graph product defined by (V, E) is the free product of the



monoids M, n € V, modulo commutation relations zy = yz for all x € M,,,
y € M, with (m,n) & E. Graph products of arbitrary groups and monoids were
investigated in [5,14]. Note that we have defined a commutation, if there is no
edge, so an edge corresponds to a rigid ordering. The choice for this convention is
due to the representation of elements which is best based on dependence graphs,
see e.g. [11]. Before we make our definition more formal let us mention some
examples.

If all M, are equal to N, then we obtain free partially commutative monoids,
which are also known as trace monoids, see [11] for more details. Extreme cases
are free monoids (if E = (%)) and free commutative monoids (if E = §). If all
M, are equal to Z, we obtain free partially commutative groups, which are also
known as graph groups [12]. Again free groups and free commutative groups arise
as the extreme cases. If £ = (‘2/) and all M,, are groups, then we obtain plain
groups in the sense of Haring-Smith [16].

Let us proceed with an explicit definition of the graph product using gen-
erators and relations. First we may assume that all the alphabets I, are pair-
wise disjoint. Let I' = |J,,cy [ and A = |J,,cy An- There is a natural involu-
tion ~ on A and this involution has fixed points as soon as some M, contains
an element of order two. We define an independence relation I C I' x I' by
I={(a,b) e I'xI' | a€ [y,be I,,m#n,(m,n) ¢ E}, which is irreflexive
and symmetric. The basic reference monoid for the following consideration is
the trace monoid M = I'*/{ab = ba | (a,b) € I}, it is equipped with a partially
defined involution. More precisely, since I is compatible with the involution in
the sense that (a,b) € I if (a,b) € I and b € A, we can lift ~: A - A to an
involution on the recognizable subset A* = Z(M) of M. We now define a trace
rewriting system S, i.e., a subset of M x M, by

S ={(aa@,1) |a € AU {(ab,c) | In €V :a,b,c € I;, ab=cin M,}.

The graph product GP of the monoids M,, n € V, over the graph (V,E)
is defined as the quotient monoid GP = M/{¢ = r | ({,r) € S}. Clearly
GP = I'*/({ab = ba | (a,b) € I} U{£ = r | ({,r) € S}). Elements of GP
can be represented as words from I'™* or as traces from M. It will be always clear
from the context, which representation is chosen. Furthermore the canonical ho-
momorphism @ : I'* — GP factorizes as ¢ = 1, o ¥y, where ¢ : I'* — M and
1y : M — GP. Note that the trace monoid M itself is a graph product, where
the vertex set is I' and the edges are given by the complement of I. The ex-
ample of a trace monoid shows that rational constraints are too strong in order
to obtain decidability results. Since it is undecidable whether Ly N Ly = () for
Ly, Ly € RAT(N x {a,b}*), see [1], the following result holds:

Proposition 3. Let M = Nx{a,b}*. Then for M the existential positive theory
of equations with constraints in RAT(M) is undecidable.

Thus, we have to restrict the class of constraints. We shall consider normalized
rational constraints. In order to define a suitable normal form mapping v :
GP — I'* we define analogously to string rewriting systems the one-step rewrite



relation - C M x M of the trace rewriting system S by s —»g tif s = ufv
and t = ur v for some (£,r) € S and u,v € M. Its transitive reflexive closure is
5. The following lemma, is fundamental for the following.

Lemma 1. S is a confluent trace rewriting system, i.e., for all s,t,u € M with
* * . . * *
s —>gtand s —>g u there exists v e M witht —>s v and u —>g v.

Let RED(S) = {ufv | u,v € M,3r : (¢,7) € S} and IRR(S) = M\RED(S).
Thus, IRR(S) is the set of traces that are irreducible with respect to S. Since
REC(M) is closed under Boolean operations and concatenation, see e.g. [11,
Chap. 6], IRR(S) is recognizable. Since —g is a Noetherian relation, Lemma 1
implies that for each z € GP there exists a unique u(z) € M NIRR(S) with
x = Pa(p(x)). The trace u(x) is the shortest trace representing x. Now let us
fix a linear order on I" and let Inf(¢) € I'* for t € M be the lexicographical first
word from I'™* that represents the trace ¢, see also [2]. Then for z € GP we define
v(z) = Inf(u(z)). Since L € REC(M) if and only if Inf(L) C I'* is regular [24],
we obtain:

Lemma 2. We have L € NRAT(GP) if and only if u(L) € REC(M) if and only
if ¥ L(u(L)) € REC(I™).

In particular we see that NRAT(GP) does not depend on the chosen lexicograph-
ical ordering. It is really a canonical class depending only on the natural trace
rewriting system S.

5 Existential theories of equations in graph products

In this section we prove that for the graph product GP the existential theory
of equations with constraints in NRAT(GP) is decidable. Since we will also deal
with complexity issues, we have to define the input length of a formula. We
assume some standard binary coding of formulae, where a constraint X € L is
represented by some finite non-deterministic automaton that accepts ¢y * (u(L)).
The input length of a formula is the length of this description. In order to obtain
existing results for free monoids as special cases, we will put a description of the
graph product GP into the input, too. This description contains the adjacency
matrix of (V, E), and for each node either the multiplication table of M, if M,
is finite or a flag indicating whether M, = N or M,, = Z. In order to obtain
convenient complexity bounds we will restrict to graphs (V, E) with a bounded
number of complete thin clans, see [10] for the definition. It is easy to see that
the number of complete thin clans of (V| E) is at most |V|, furthermore it is 0
for a complete graph.

Theorem 1. The following problem is PSPACE-complete for every k > 0.
INPUT: A graph product GP whose underlying graph (V, E) has at most k

complete thin clans and an existential formula ¢ with constraints in NRAT(GP).
QUESTION: Does ¢ belong to Th(GP,NRAT(GP)) ¢

If the number of complete thin clans of (V, E) is not bounded, then the problem

above is in EXPSPACE.



Remark 1. Formally, Theorem 1 generalizes results of [6,7,9,10,15,19,20, 25].
For this it is enough to give a reduction to the main result of [10].

The next lemma is the main technical tool for proving the theorem above. First
we need some further definitions concerning traces. The set IC C M N IRR(S)
consists of all traces ay - - - an, a; € I', such that (a;,a;) € I if i # j. Thus, traces
in IC correspond to independence cliques of (I, I). Note that if u € IC, then the
length of u is at most |I'|. We identify u € IC with the set of symbols that occur in
u. For instance for s € M the set of maximal symbols max(s) = {a € I' | s = ta}
of s and the set of minimal symbols min(s) = {a € I' | s = at} of s belong to
IC.

Lemma 3. Let z,y,2 € M NIRR(S). Then xy s z if and only if there exist
p, s, t,w € IRR(S) and u,v € IC such that

wv Ssw, T=sup, y=pvt, z=swt. (1)
Note that since u,v € IC, there exist only finitely many possibilities for w in (1).

Proof (Theorem 1). PSPACE-hardness follows from the fact that for {a, b}* the
existential theory of equations with constraints in REC({a,b}*) is PSPACE-
hard, see [17, Lem. 3.2.3] and [25, Thm. 1]. Membership in PSPACE will be
shown by a reduction to the following problem, which was shown to be in
PSPACE for every k > 0 in [10]:

INPUT: A trace monoid M, specified by an independence relation I C I" x
I such that the graph (I, (I" x I")\I) has at most k& complete thin clans, a
completely defined involution ~ : I' — I' that is compatible with I (i.e. (a,b) € I
if (a,b) € I), and an existential formula ¢ with constraints in REC(M).

QUESTION: Is ¢ true in M with the lifting =™ : M - M of " : [' = I'?
In this problem a set L € REC(M) is specified via an automaton for ; *(L).

Now let k£ be a fixed bound for the number of complete thin clans, and
let GP be a graph product, specified by a graph (V, E) with at most k¥ com-
plete thin clans. Furthermore let ¢ be an existential formula with constraints
in NRAT(GP). Using standard methods, see e.g. [6], we may assume that ¢ is
an existentially quantified conjunction of equations of the form zy = z, where
z,y,2 € I'UNU R, and of constraints X € L or X ¢ L, where X € 2 U 2 and
L € NRAT(GP). Next we will move from the graph product GP to its underly-
ing trace monoid M (it is easy to see that the number of complete thin clans
of (I, (I' x I')\I) is also at most k). We replace syntactically every subformula
zy = z (resp. X € L) by ¥a(zy) = 12(2) (resp. X € u(L)) and add the negated
constraint X ¢ RED(S) for every variable X.! We obtain an existential formula
which evaluates to true in M if and only if the original formula evaluates to true
in GP. Note also that the automaton used to specify u(L) is the same as the

1 Of course this constraint is equivalent to X € IRR(S), but we prefer the negated con-
straint X ¢ RED(S) since an automaton for 1; *(RED(S)) can be easily constructed
in polynomial time, whereas the construction of an automaton for 7 *(IRR(S))
would involve an additional complementation with a possible exponential blow-up.



one for L. It remains to eliminate all occurrences of 1> from equations. Since
I' C IRR(S) and S is confluent, we can replace an equation 1o (zy) = 1¥2(z)
by zy —s z, which by Lemma 3 is equivalent to an existentially quantified
conjunction of equations.

Now we can almost apply the result of [10] cited above. The only remaining
problem is that due to the presence of non-invertible generators in GP, the
involution ~ may only be partially defined on I'. But this can be resolved by
introducing a new dummy symbol @ for every a € I'\A and by adding the
constraint X € I'* for every variable X. This shows the first statement from
Theorem 1.

For the case that the number of complete thin clans is not bounded, an
EXPSPACE-algorithm can be deduced from the proof in [10]. ]

6 Positive theories of equations in graph products

In this section we prove our second main result. In the following we throughout
assume that all generators in I" have inverses, i.e, I' = A. In particular GP is a
graph product of finite and free groups, and hence itself a group.

Theorem 2. The following problem is decidable.

INPUT: A graph product GP which is a group and a closed positive formula
¢ with constraints in REC(GP).

QUESTION: Does ¢ belong to Th(GP,REC(GP)) ¢

Complexity issues will be postponed to the end of this section. Note that Theo-
rem 2 cannot be extended to the full class of graph products considered in the
previous section. Already for a free monoid {a, b}* the Y33-theory of equations is
undecidable [13,22]. Similarly Theorem 2 cannot be extended to the case of nor-
malized rational constraint, since for a free group F' of rank 2 a free submonoid
{a,b}* belongs to NRAT(F).

We will prove Theorem 2 by reducing the positive theory of equations with
constraints in REC(GP) to the existential theory of equations with normalized
rational constraints in a free extension of GP, which allows us to apply Theo-
rem 1. Our proof strategy will follow a technique developed in [21,23] but the
presence of partial commutation and recognizable constraints makes the con-
struction more involved.

In a first step we may assume that none of the finite groups M,,n € V,is a
direct product of two finite non-trivial groups since otherwise we could replace n
by two non-connected nodes. In particular, if M, is not Z/27Z, then there must
exist an a € I, such that a # @ in GP. Next assume that the graph (V, E) con-
sists of two non-empty disjoint components (Vi, E1) and (V2, Es), which define
graph products GP; and GP,, respectively. Then GP = GP; x GP5. Furthermore
by Mezei’s Theorem, see e.g. [4], every L € REC(GP) is a finite union of sets
of the form L; x Ly with L; € REC(GP;). Thus, we may apply Proposition 2
and proceed with the two graphs (Vi, Ey) and (Va, E»). Hence, for the rest of
the proof we may assume that the graph (V, E) is connected. Furthermore since



by Proposition 1 the (positive) theory of equations with rational constraints in
Z is decidable and the same holds for finite monoids for trivial reasons, we may
assume that |V| > 1. By Corollary 1 we can also exclude the case that V' con-
tains exactly two adjacent nodes which are both labeled by Z /27Z. Thus, we may
assume that either the graph (V, E) contains a path consisting of three different
nodes or one of the groups labeling the nodes has a generator x € I' with T # x.
Hence, there exist three generators a,b,c, € I' such that a and b belong to E-
adjacent (and hence different) nodes from V', b and ¢ also belong to E-adjacent
nodes from V', and finally either a and ¢ belong to different nodes from V' or
a # a = c. In particular (a,b), (b,¢) & I, i.e., the dependency between a, b, and ¢
being used is a —b —c. For the rest of the proof we will fix these three symbols
a, b, and c.

Since L € REC(GP) if and only if there exists a homomorphism p : GP — H
onto a finite group H such that L = p~1(p(L)), see e.g. [4], we may fix for the
further consideration such a homomorphism p and assume that all recognizable
constraints are given in the form p(X) =g for X € 2U 2 and g € H.

We proceed with the definition of a trace rewriting system R%L), where N C N
and h € H. This trace rewriting system will be defined over some free extension
of M. First we need some preliminaries. A chain is a trace ay - - - a,, € M, where
a,---,a;, € I, and a; and a;;, belong to E-adjacent (and hence different)
nodes from V', 1 <1i < n — 1. Note that a chain belongs to IRR(S).

Lemma 4. For all h € H there exists a trace C, € M N IRR(S) such that
min(Ch) = max(Cp) = ¢ and p(Ch) = h.

Let C be a chain with min(C) = max(C) = ¢ and |C| > |Cp| for all h € H
such that for every node n € V at least one symbol from I, occurs in C. Since
(V, E) is connected, such a C exists. Choose an n with |b(ab)?| > |C| + 2, and
let p = b(ab)"C(ba)"b and £;(h) = (ab)*!®ICy(ba)?*H| for i > 1 and h € H.
Note that pZ;(h) p € IRR(S) and p(¢;(h)) = h. For every ¢ € N let us take two
new constants k;, k; € I’ and set k; = k;. For every N C N and every h € H
we define over the trace monoid M * {k;,k; | i € N}*, i.e., the free product of
our trace monoid M and the free monoid {k;,k; | i € N}*, the trace rewriting

system R by R\ = {(pt;(h)p, pkip), (Bl:(h) P, Pk:P) | i € N}. Note that
Rg\’;) is length-reducing and thus, — R is Noetherian. Let us fix h € H for the
N

rest of this section We write Ry and ¢; instead of R%L) and £;(h), respectively.
We write s —; t if the trace t can be obtained from the trace s by an application
of one of the rules (p#; p, pk;p) or (6€; p, Dk; p)- The next two lemmas are the
fundamental statements about the trace rewriting system Ry and the reason for
the complicated definition of the traces p and ¢;(h).

Lemma 5. Leti,j € N CN and s,t,u € M * {k;,k; | i € N}* such that s —; t
and s —; u. Then either t = u or there exists a trace v € M x {ki, ki |1 € N}*
such that t —; v and u —=; v.

In particular, Ry is confluent. Since Ry is also Noetherian, for every s € M there
exists a unique trace kx(s) € M x{k;, k; | i € N}NIRR(Ry) with s g, kn(s).



Lemma 6. For all s,t € M there exists an A C N with |A| < 2 such that for
every N' C N\A it holds k' (st) = kn'(s)kn: ().

6.1 Reduction to the existential theory

In the following, symbols with a tilde like Z will denote sequences of arbitrary
length over some set, which will be always clear form the context. If say & =
Z1---Z; then & € A means 27 € A,...,z; € A and f(&) for some function f
denotes the sequence f(z1)--- f(x;)-

For the rest of the paper let us take some subset K = {ki,...,k,} of our
new constants and let K = {ki,...,k,}. Let k,k ¢ TUK UK be two additional

constants, as usual let k = k. The following lemma will be the key for reducing
the positive theory to the existential theory, it allows the elimination of one
universal quantifier. In this lemma we have to deal with formulae ¢ that are
interpreted over the free product GP x F'(K) of the graph product GP and the
free group F'(K) generated (as a group) by K. Furthermore different recognizable
constraints in ¢ are given by different extensions g : GP x F(K) — H of our fixed
morphism p : GP — H. For h € H we denote by ¢y the formula that results
from ¢ by replacing every constraint o(X) = g by 0 (X) = g, where g}, is the
canonical extension of g : GP * F(K) — H to GP x F/(K U {k}) which is defined
by on(k) = h. Note that ¢» : M — GIP can be extended to a canonical morphism
from M * (K U K)* to GP x F(K), which will be also denoted by 1.

Lemma 7. Let ¢(X,Y1,...,Yn,Z) be a positive Boolean formula with con-
straints of the form o(Y') = g for (possibly different) extensions o : GPx F(K) —
Hofp:GP — H. Let K; C K for 1 <i<m. Then for all Z € GP we have

¢(X71/17"'7Y7TL72) A

VX €GP 34, ..., Y, inGP+ F(K)  (2)

N\ Y: € GP x F(K;)

i=1
if and only if

Gn(k, Vi, ., Vin, 2) A
hé\Haiﬁ,...,Ym A Vi € GF » (K, U {k)) in GP + F(K U{k}). (3)

i=1

Proof. First assume that (3) holds for Z € GP. In order to prove (2), let us choose
an arbitrary s € GP and let h = p(s). Then there exist t; € GP x F(K; U {k}),
1 < i < m, such that ¢n(k,t1,...,tm,2) holds in GP = F(K U {k}). Let us
define a homomorphism o : GP * F(K U {k}) = GP x F(K) by o(k) = s and
o(x) =z for x € GP x F(K). Since p(s) = h and ¢}, is positive, the sentence
o(s,0(t1),...,0(tm), Z) holds in GP * F(K) (note that o(2) = Z). Thus, (2)
holds.

For the other direction assume that (2) holds for 2 € GP. Define a trace
rewriting system 7 over M * (K UK)* by T = SU {27 = 1,72z — 1 |z € K}.



Completely analogously to the proof of Theorem 1 we can now change into the
trace monoid M * (K U K)*. We obtain a sentence of the form

SO(X7}/17--'7Ym7?7/a) A

Xel Vi, ,Ym,V € IRR(T){ % % !
VX € IRR(S) 3V1,...,Yn,Y € IRR(T) /\YiEM*(KiUKi)* @

i=1

which evaluates to true in M x (K U K)*. Here i = u(Z) € IRR(S), and the
positive Boolean formula ¢ results from the original positive Boolean formula ¢
by applications of Lemma 3 to equations zy = z. These transformations only
introduce new existentially quantified variables, which correspond to Y in (4).
The constraints in (4) are the same as in (2) (formally we identify a homomor-
phism ¢ : GP x F(K) — H with 9o 00 : M x (K UK)* — H). Let M C M
consist all traces in @ plus I'. W.l.o.g we assume that all equations in (4) have
the form zy = 2 for z,y,2 € 2 U2 U M U M. Let X be the maximum of n (the
largest index of the constants in K') and the maximal length of the traces in 4.
Let d be the number of equations in (4). Fix an h € H in (3) and let s € M be
the trace

s =Cyplayi(h)peplaya(h)pe---plryaari(h)p € IRR(S), (5)

where g € H is chosen such that p(s) = h. Then by (4) there exist traces
tl, . ,tm,EG IRR(T) with tz eM x (K, @] K,)* and

o(s,t1,. .., tm,t, @) in M x (K UK)*. (6)

Let N ={A+1,...,A+2d + 1} and add to M all traces from {s,t1,...,tm}
Then ¢(s,t1,...,tm,1, ) is a true statement, which contains d atomic statements
of the form zy = 2z with z,y,2 € M U M plus recognizable constraints. Of
course some of these atomic statements may be false. But since there are only d
equations in (6), we have to remove from N by Lemma 6 at most 2d numbers such
that for the resulting set N’ we have k' (2)kn (y) = kn(2) (2,y,2 € MU M)
whenever zy = z is a true atomic statement in (6). Since |N| = 2d + 1, we have
N'"#0,let i € N'. Note that k; ¢ K since A > n. We rename the constant k; into
k and abbreviate ;) (x) by k(x). Again by Lemma 6 we have &(z)k(y) = k()
for every true statement zy = z (2,y,2 € M U M) in (6). Furthermore if one
of the constraints ¢(x) = g in (6) is true, where p is an extension of p, then
also gp(k(z)) = g holds (note that o(¢;(h)) = p(¢;(h)) = h = gx(k)). Finally
k(@) = 4 since A was chosen big enough in (5). Altogether it follows that the
statement @y, (k(s), k(t1),- .., k(tm),x(f),4) is true in M x (K U K U {k, k})*.
Next we can write k(s) = s1ksy for s1,s2 € M. Let us define a homomorphism
o:Mx(KUKU{k,k})* =M x (KUK U{k,k})* by o(k) = 51k3s, o(k) =
soks1, and o(z) = x otherwise. Note that p(si)hp(s2) = p(s) = h and hence
on(31k32) = p(s1)*hp(sa) ! = h for every extension g of p. Thus, the statement
on(o(k(s)),0(k(t1)),...,o(k(tm)),o(k(t)),d) is true in M * (K U K U {k, k})*,
hence it is also true in GP « F(K U {k}). But in this group o(k(s)) = o(s1ks2) =



5151k3289 = k. Since furthermore o (k(t;)) € M x(K;UK;U{k, k})*, the sentence
Ve, Yo, Yo on(k, Ve, Yo, V,2) A\ Y € GP x F(K; U {k}) is true in

i=1
GP * F(K U {k}) for every h € H. But then also (3) holds, since if (1) from
Lemma 3 holds in GP x F(K U {k}), then also zy = z in GP « F(K U {k}). O

Let us fix a formula (Z) = VX;3Y;---VX,3Y, ¢(X1,..., X, Y1,...,Y,, Z),
where ¢ is a positive Boolean formula with constraints of the form p(X) = g. For
hi,...,hy € H we denote by pp,,....n, : GP*x F(K) — H the canonical extension
of p with pp,.... ., (k;) = h; for 1 <4 < n. With ¢p,,....p, We denote the formula,
where every constraint p(X) = g in ¢ is replaced by pp,,...n,(X) = g. The
following theorem is the main result of this section, it can be easily deduced
from Lemma 7 by an induction on n.

Theorem 3. For all Z € GP we have 0(Z) in GP if and only if

¢h1,...,hn(k17"'7kn;}/?|.;"';yn)§)
y;--- 3y, » in GP x F(K).
A i A A N\ Yi €GP x F({ki,....ki}) in GP » F(K)

hi€eH hn€H
i=1

Since GP * F({k1,...,ki}) € NRAT(GP % F(K)), Theorem 2 is a consequence of
Theorem 1 and Theorem 3. Concerning the complexity, it can be shown that in
general our proof of Theorem 2 gives us a non-elementary algorithm due to the
construction in our proof of Proposition 2, see [8]. We obtain an elementary algo-
rithm if we restrict to connected graphs (V, E). For this we have to use the fact
that Presburger arithmetic (without negations), which occurs for GP = Z /27
or GP = Z /27 % Z |27 as a special case, is elementary. More precise complexity
bounds will be given in the full version of this paper.
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